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Key messages

What is the key question?
►► How can we reduce the number of unnecessary 
procedures on subjects with identified nodules 
on lung screening by performing integrative 
analysis of CT scan and other clinical data?

What is the bottom line?
►► Using causal graphical models, we developed a 
new lung cancer predictor with three variables 
which outperforms existing methods and may 
help reduce further tests in 30% of subjects 
with benign nodules.

Why read on?
►► Both the methodology of developing the 
predictor (causal graphs) and the predictor 
itself are novel and significant and can 
contribute significantly to the field of early lung 
cancer prediction.

Abstract
Introduction  Low-dose CT (LDCT) is currently used in 
lung cancer screening of high-risk populations for early 
lung cancer diagnosis. However, 96% of individuals with 
detected nodules are false positives.
Methods  In order to develop an efficient early lung 
cancer predictor from clinical, demographic and LDCT 
features, we studied a total of 218 subjects with lung 
cancer or benign nodules. Probabilistic graphical models 
(PGMs) were used to integrate demographics, clinical 
data and LDCT features from 92 subjects (training 
cohort) from the Pittsburgh Lung Screening Study cohort.
Results  Learnt PGMs identified three variables directly 
(causally) linked to malignant nodules and the largest 
benign nodule and used them to build the Lung Cancer 
Causal Model (LCCM), which was validated in a separate 
cohort of 126 subjects. Nodule and vessel numbers and 
years since the subject quit smoking were sufficient to 
discriminate malignant from benign nodules. Comparison 
with existing predictors in the training and validation 
cohorts showed that (1) incorporating LDCT scan 
features greatly enhances predictive accuracy; and (2) 
LCCM improves cancer detection over existing methods, 
including the Brock parsimonious model (p<0.001). 
Notably, the number of surrounding vessels, a feature 
not previously used in predictive models, significantly 
improves predictive efficiency. Based on the validation 
cohort results, LCCM is able to identify 30% of the 
benign nodules without risk of misclassifying cancer 
nodules.
Discussion  LCCM shows promise as a lung cancer 
predictor as it is significantly improved over existing 
models. Validated in a larger, prospective study, it may 
help reduce unnecessary follow-up visits and procedures.

Introduction
The proliferation of lung cancer screening 
programmes using low-dose CT (LDCT) examina-
tion followed the National Lung Screening Trial 
(NLST) observation of 20% reduction in lung 
cancer mortality for CT exams compared with 
chest X-ray.1 2 Notably, 24% of the LDCT screening 
exams produced a positive result, which required 
follow-up, but 96% of these findings were false 
positives (ie, negative for lung cancer). This often 
leads to harmful and/or costly unintended conse-
quences (eg, follow-up scans, invasive biopsies).3 4 
Therefore, it is critical to improve the discrimina-
tion of benign from malignant screen-detected lung 
nodules.

Over the past decade, several models for lung 
cancer risk prediction have been developed,5–14 and 
some authors have argued that they are more sensi-
tive than the NLST selection criteria.11 12 Although 
these models can be used to discriminate lung 
cancer from non-cancer cases,12 14 their primary 
goal is to select high-risk subjects for LDCT scans. 
Subsequently, radiologists determine the likelihood 
of malignancy of lung nodules primarily based on 
imaging features, such as solidness, calcification, 
spiculation and growth rate. Recently, predictors 
that incorporate LDCT scan features were devel-
oped.12 Current models use regression analyses to 
select informative features.15 However, it is possible 
that more sensitive machine learning methods can 
produce more accurate and interpretable models.

In this study, we first investigate whether proba-
bilistic graphical models (PGMs) can improve lung 
cancer prediction by integrating LDCT scan features 
with other clinical data and comorbidities. PGMs 
have been used in biomedical research due to their 
simplicity and interpretability,16–19 and offer a clear 
benefit over more abstract methods (support vector 
machines SVMs, random forests and so on) without 
loss in classification accuracy.16 Another advantage 
is that the graph can be used to calculate potential 
missing values of one or more of the predictive vari-
ables.20 PGMs also have theoretical guarantees that 
their solutions (dependencies and orientations in 
the graph) are asymptotically correct. This is why 
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Table 1  Characteristics of the training cohort

(A) Training
Lung cancer
(n=50)

Benign nodules
(n=42)

P 
value*

Male, n (%) 25 (50) 28 (67) 0.162

Age (years), mean (SD) 63.6 (7.1) 65.2 (6.9) 0.261

Current smoker, n (%) 32 (64) 19 (45) 0.111

Pack-years, mean (SD) 60.35 (24.11) 61.81 (22.81) 0.766

Years since quit smoking, mean (SD) 1.52 (2.88) 3.25 (3.95) 0.020

Nodule size in diameter (mm), mean (SD) 13.43 (6.14) 9.74 (6.69) 0.007

Nodule number, n (%)† 0.203

 � Solid 28 (56) 34 (81)

 � Non-solid/mixed 22 (44) 8 (19)

Vessel number, mean (SD) 9.22 (9.48) 2.26 (2.21) <0.001

(B) Validation
Lung cancer
(n=44)

Benign nodules
(n=82)

P 
value*

Male, n (%) 23 (52) 48 (59) 0.626

Age, mean, years (SD) 65.23 (9.62) 66.93 (7.54) 0.313

Current smoker, n (%) 37 (84) 36 (44) <0.001

Pack-years, mean (SD)‡ 49.41 (22.79) 49.49 (22.0) 0.985

Years since quit smoking, mean (SD) 0.477 (1.50) 3.037 (4.33) <0.001

Nodule size in diameter (mm), mean (SD) 18.86 (7.12) 11.57 (5.76) <0.001

Nodule number, n (%)† 0.981

 � Solid 28 (78) 54 (68)

 � Non-solid/mixed 8 (22) 25 (32)

Vessel number, mean (SD) 18.57 (5.21) 3.02 (3.98) <0.001

*Two-sided p values were based on t-test and χ2 test for continuous and categorical variables, respectively.
†Nodule type was unmeasured for 11 subjects (8 with cancer).
‡Pack-years was unmeasured for 5 subjects (4 with cancer).

directed graphs are frequently referred to in the literature as 
‘causal’.20 21 A useful property of graphical models is that one 
can use the graph learnt over the complete data set to select 
the most informative variables for any outcome or phenotype 
of interest. This is because, by construction, the Markov blanket 
around a target variable, T, makes T informationally indepen-
dent of any other variable or combinations of variables in the 
data set (Markov blanket of T consists of its parents, children and 
other parents of the children in the graph).21

We also present a first version of the Lung Cancer Causal 
Model (LCCM), a new lung cancer predictor, which is derived 
using PGMs on CT findings and clinical and epidemiolog-
ical factors. LCCM is then compared with currently published 
predictors on an independent validation cohort.

Materials and methods
Study populations
This study uses demographic data, smoking history, comor-
bidities and LDCT scan features of lung nodules from the 
Pittsburgh Lung Screening Study (PLuSS)22 cohort. PLuSS is 
a community-based research cohort that during 2002–2006 
recruited 3642 smokers (current or former). All PLuSS partic-
ipants received a baseline LDCT scan, and 3423 participants 
received a follow-up LDCT scan 1 year later. In addition, each 
PLuSS participant completed a questionnaire including ques-
tions on smoking history, underwent spirometry for pulmo-
nary function testing and provided a blood sample. A subset 
of 970 PLuSS participants received biennial LDCT scans 

in 2006–2016, and yearly spirometry and blood draws. In 
conjunction with the approval of LDCT as a covered service 
for lung cancer screening, all research lung screening activities 
were folded into PLuSS XX, our ongoing lung cancer screening 
research cohort that includes original PLuSS participants as 
well as new participants who fulfil the lung cancer screening 
criteria (2016 to present).

Training cohort
The training cohort included 50 subjects with cancer detected 
on their baseline LDCT scan (prevalent cancers) and 50 subjects 
with screen-detected nodules from a previously evaluated 
subset of PLuSS participants.23 Detected nodules were >0.6 cm 
in accordance to the LUNG-RADS schema,24 with the largest 
nodule 3.6 cm. The benign status of the nodules was further 
confirmed through prolonged follow-up (2–15 years). Eight 
control subjects were excluded because of missing information 
on CT scan variables (seven) and number of nodules (one). Thus, 
the final training cohort had 50 cases and 42 controls (table 1A). 
Based on the inclusion criteria (age 55–77, pack-years >30 and 
quit <15 years), the PLuSS cohort has a very homogeneous 
population and the selected subjects were at very high risk of 
lung cancer. As a result, age, sex and smoking history were 
similar in subjects with malignant and benign nodules (table 1A). 
The training cohort variables are presented in online supplemen-
tary table S1.
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Validation cohort
The validation cohort consists of 126 subjects (44 cases and 
82 controls) from the PLuSS XX cohort. The data from these 
subjects were collected independently of the training cohort. 
The characteristics of the validation cohort are presented in 
table 1B. Age, sex and smoking history were similar in subjects 
with cancer and benign nodules in the validation cohort too. For 
nodules <3 cm the validation cohort consisted of 39 cases and 
63 control subjects. When considering all (benign) nodules in 
the control subjects (not only the largest), we have a total of 84 
nodules (online supplementary table S2).

Extraction of CT features
One experienced thoracic radiologist identified and character-
ised lung nodules according to size, presence and type (solid, 
non-solid or part-solid), and lobar location. The radiologist used 
the axial image showing the nodule to its fullest extent to measure 
the maximum nodule diameter and the nodule diameter perpen-
dicular to this maximum. The average of these two diameter 
measurements, referred to as the average diameter, was used as a 
summary measure of nodule size. The same methods were used 
to extract the radiographic features in cancer cases and controls 
in both cohorts. We have previously described the procedure 
for quantification of the vasculature surrounding a nodule.23 In 
short, lung nodules were automatically segmented from LDCT 
images and subvolume was defined around the nodule. Vessels 
within the subvolume were automatically segmented and skele-
tonised. The subvolume vessels were processed to compute the 
count of the number of vessels attached to, close to or projected 
towards the nodule.

Probabilistic mixed graphical models with latent variables for 
cancer prediction
For modelling the dependencies in the data, we used 
MGM-FCI-MAX,25 which learns a directed graph over mixed 
data types in the presence of latent confounders. This is 
important because medical and biomedical data usually contain 
variables of mixed types (continuous and discrete) and unmea-
sured confounders (due to lack of knowledge or measurement 
inability).

MGM-FCI-MAX works in two steps (see details in online 
supplementary materials). First, the undirected graph is calcu-
lated over all data (see refs 16 and 26). This step has one regu-
larisation parameter per edge type: continuous-to-continuous, 
continuous-to-discrete, discrete-to-discrete. To avoid overfit-
ting, we use subsampling (Stable Edge-specific Penalty Selec-
tion - StEPS)16 to select parameter values that produce the most 
stable graph across subsamples. Second is the orientation phase, 
in which the undirected graph of step 1 is used as the starting 
point. A modified version of FCI-MAX algorithm orients and 
removes the edges of the skeleton based on the p values of condi-
tional independence tests we developed for mixed data.27 The p 
value threshold is also determined using StEPS. Notably, in high 
dimensional data sets (small sample size, large number of vari-
ables) PGMs’ edge prediction accuracy remains high, but orien-
tation accuracy suffers.28

Statistical analysis, model building and evaluation
Statistical analyses were done in R (V.3.4.2). t-Tests and χ2 
tests were used to evaluate differences between subject groups 
in continuous and categorical variables, respectively. In the 
external validation data set, we performed pairwise receiver 
operating characteristic (ROC) curve comparisons by using a 

bootstrap-based test (pROC package).29 Probability density plots 
for cancer and benign nodule cases were computed using kernel 
density estimation with a Gaussian kernel in R.

To evaluate the efficiency of MGM-FCI-MAX on the training 
data set, we used 10X nested cross-validation. Briefly, the training 
data set is divided into 10 partitions, and for each partition we 
used the other 90% of the samples to learn an MGM-FCI-MAX 
graph, then learn the weights of the variables in the Markov 
blanket around ‘lung cancer status’ (using the MGM-FCI-MAX 
logistic regression model) and evaluate on the remaining 10% 
of the samples that were not used for training of this partition.

We compared the prediction accuracy of the MGM-FCI-
MAX-derived model with a random forest (RF) classifier 
(MATLAB TreeBagger class) and with previously published 
methods, such as the PLCO (Prostate, Lung, Colorectal and 
Ovarian cancer) model,11 the Bach model,5 and two Brock 
models12: full and parsimonious. We used the features of these 
models and we recalculated the coefficients in the same training 
data sets as MGM-FCI-MAX. For fairness, we also used the orig-
inally published coefficients. Asbestos exposure information, 
used in the Bach model, is not available for PLuSS participants. 
However, this binary variable has one of the smallest coefficients 
in the original publication and its removal is not expected to 
significantly affect the results. Although PLCO and Bach models 
were originally developed for predicting lung cancer risk, we 
were interested to see if they can discriminate between lung 
cancer and benign subjects as well. From the comparison, we 
excluded the Liverpool Lung Project (LLP) risk model8 because 
two of its variables were missing from PLuSS (asbestos exposure, 
prior diagnosis of pneumonia). We also excluded the Pittsburgh 
predictor13 because, due to PLuSS participants being at high risk, 
cancer and benign cases had similar smoking history and age 
(two of its four features).

Results
Graphical models on the PLuSS training cohort identify highly 
informative variables for lung cancer
We applied MGM-FCI-MAX on the compendium of demographic, 
clinical, smoking and LDCT scan variables of the training cohort 
to learn the interactions among variables. Three variables were 
directly linked to lung cancer (figure 1): years since (the subject) 
quit smoking, (total) number of nodules and number of vessels 
(surrounding the nodule). All three features were statistically signif-
icant in a multivariate logistic regression model (table 2), showing 
that their information is complementary. The number of nodules 
and the years since the subject quit smoking are both inversely 
related to lung cancer risk, whereas the number of vessels is posi-
tively related. We found that all three predictors had statistically 
significant coefficients (p<0.05).

The model suggests that the number of nodules and the number 
of vessels could be related to lung cancer, which are supported by 
recent publications.12 23 However, the number of nodules and the 
decision to quit smoking come as a result of lung cancer status in 
the graph. For quit smoking, only 19% of former smokers with 
benign nodules quit smoking within 2 years of the LDCT scan, 
whereas 44% of subjects with lung cancer who are former smokers 
quit smoking. This may indicate that the onset of symptoms 
from cancer or a cancer precursor influenced the decision to quit 
smoking. We also note that the current smoker ratios are different 
in the two groups (64% in cancer cases vs 45% in benign nodules). 
Another potentially interesting observation from the network is 
that gender and education may influence pack-years. These predic-
tions are supported by studies which indicate that low education 
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Figure 1  The causal graph over all data of the training cohort. Nodes in the yellow box correspond to those directly associated with lung cancer 
status. A list of the variables used for this analysis is provided in online supplementary materials. Note that besides the edges represented by a direct 
arrow (A→B), all other edges do not exclude the possibility of a latent confounder. BMI, body mass index.

Table 2  Characteristics of LCCM features in the training cohort

Predictors Coefficient (95% CI)
P 
value

Years since quit smoking −0.178 (−0.349 to −0.007) 0.041

Number of vessels 0.238 (0.074 to 0.510) 0.009

Number of nodules −0.203 (−0.325 to −0.081) 0.001

Model intercept 1.053

The numbers in lung cancer and benign nodules correspond to the average 
values and SD of the corresponding features in the two classes. Coefficients were 
estimated using multiple logistic regression.
LCCM, Lung Cancer Causal Model.

levels and gender can predict the intensity of smoking in individ-
uals30; however, the model suggests that the direction of the causal 
relationships are inconclusive. Surprisingly, emphysema was not 
directly linked to ‘lung cancer status’, but this is because emphy-
sema was similar in cancer and benign nodule cases in the training 
cohort due to these being high-risk individuals (see the Materials 
and methods section). Regardless, emphysema and bronchitis, two 
conditions that are difficult to distinguish based on spirometry, are 
connected in our model, but through an unknown confounder. 
Note that although there are 13 more LDCT scan variables in the 
data set, MGM-FCI-MAX finds their information about cancer 
status to be captured by the number of vessels.

MGM-FCI-MAX identifies stable features that can accurately 
predict lung cancer
Next, we evaluated MGM-FCI-MAX performance in identifying 
lung cancer predictive features using 10X nested cross-validation 
(see the Materials and methods section). We found that the number 
of nodules and the number of vessels were selected in all 10 rounds 
and the years since (the subject) quit smoking was selected in 8 
(online supplementary table S3). This selection stability suggests 
that these three variables are highly informative for lung cancer 

status. On average, MGM-FCI-MAX selected three features in 
each round of cross-validation (SD=0.67).

In these cross-validation data sets (training cohort), 
MGM-FCI-MAX performed very well (area under the ROC curve 
[AUC]=0.882; 25th, 75th percentile=[0.786, 1.00]). Compared 
with existing published models, MGM-FCI-MAX offers an advan-
tage (figure 2). It is better than all other models and, except for 
the Brock full model (which uses eight parameters), the differences 
are significant (figure 2B). Similar results are obtained when we 
compare MGM-FCI-MAX models with the published models 
with their original coefficients (online supplementary figure S1). 
Finally, the RF classifier performed slightly worse than our model 
(AUC=0.835), but the difference was not statistically significant 
(p=0.324), which is consistent with previous reports.16

LCCM performs significantly better than Brock parsimonious 
model on the validation cohort
We used the three features identified above in a multivariate 
logistic regression model to build the LCCM. On the external 
validation cohort, we compared the prediction accuracy of LCCM 
with the best performing model in the training phase with compa-
rable number of parameters (Brock parsimonious). We used 
both the retrained Brock parsimonious model and the one with 
the originally published coefficients, which were derived from a 
cohort of 1871 subjects. LCCM was significantly more accurate 
than both Brock parsimonious models. Specifically, the AUC was 
0.903 (±0.061) for LCCM compared with 0.757 (±0.086) and 
0.812 (±0.077) for the retrained and original Brock parsimonious 
models, respectively (online supplementary figure S2), with p 
values of 0.0025 and 0.0176.

We also compared the LCCM and Brock parsimonious models 
on all benign nodules in the validation cohort (not just the largest). 
We evaluate predictions with respect to subject status (ie, for 
a subject to be called ‘Benign’, all nodules should be predicted 
‘Benign’). We find the results to be similar to our main validation 
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A

B Model No. of 
Features

AUC
[25%, 75%]

p-value Features Used

MGM-FCI-MAX 
features 3 0.882 

(0.786, 1.000)
- Smoking: Years Quit

Radiographic: Nodule Count, Vessel Number

Brock Full Features 8 0.792 
(0.650,0.929)

0.16 Demographics: Age, Sex, Family History Ca
Comorbidities: Emphysema
Radiographic: Nodule Size, Nodule Type, Nodule Location, 
Nodule Count

Brock Parsimonious 
Features 3 0.700 

(0.600,0.792)
0.01 Demographics: Sex

Radiographic: Nodule Location, Nodule Size

Bach Features 5 0.722 
(0.643,0.792)

0.02 Demographics: Age, Sex
Smoking: Cigarettes Per Day, Smoke Duration, Years Quit

PLCO Features 10 0.5613 
(0.333,0.778)

<0.001 Demographics: BMI, Education, Family History Ca, Race
Comorbidities: Ca History, COPD
Smoking: Duration, Intensity, Smoking Status, Years Quit

Figure 2  Comparison of MGM-FCI-MAX-derived with retrained lung cancer prediction models on the training cohort. (A) ROC curves were 
computed using nested 10-fold cross-validation. (B) Model discrimination measured by AUC. AUC, area under the ROC curve; BMI, body mass index; 
Ca, cancer; ROC, receiver operating characteristics.

cohort as the LCCM (AUC=0.888) is significantly better than 
the retrained Brock parsimonious model (AUC=0.678, p<0.01) 
and non-significantly better than the original Brock parsimonious 
model (AUC=0.843, p=0.225) (online supplementary figure S3). 
Finally, we compared the LCCM with the Brock parsimonious 
models on all benign nodules <3 cm in the validation cohort, since 
this is the current threshold for biopsy. LCCM still maintained its 
advantage with AUC of 0.871 compared with 0.714 (p<0.01) and 
0.823 (p=0.263) for the retrained and original models, respec-
tively (online supplementary figure S4).

LCCM can be used to accurately screen for benign nodules
Figure 3A displays the density distribution of the predicted prob-
ability scores on the validation cohort. LCCM score is ≥0.9 for 

82% of subjects with cancer (red), whereas subjects with benign 
nodules tend to be more evenly distributed (blue). By contrast, the 
Brock parsimonious model has skewed score distributions for both. 
Figure  3A explains why LCCM has better discriminative power 
than Brock, which indicates that one can set a threshold at which 
benign nodules can be identified without risk of false negative cancer 
prediction. This is illustrated better in figure 3B, which plots sensi-
tivity/specificity across changing score thresholds in the validation 
cohort. At a threshold of 0.609 (dotted line), LCCM correctly iden-
tifies 28.3% of benign nodules without misclassifying a single subject 
with cancer (specificity=1). In terms of cost-effectiveness, this could 
allow a clinician to potentially bypass short interval follow-up 
imaging or invasive procedures for nearly a third of subjects with 
benign nodules without risking a missed cancer diagnosis.
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Figure 3  (A) LCCM sensitivity/specificity plots of predictions across probability thresholds (validation cohort). (B) Distributions of predicted lung 
cancer score across models (validation cohort) for subjects with cancer (red) and benign nodules (blue). Brock parsimonious original refers to the 
model with the published coefficients. LCCM, Lung Cancer Causal Model.

Discussion
LDCT lung cancer screening has been shown to significantly 
reduce lung cancer mortality, but the optimal target population 
and time for subsequent screening(s) remain uncertain. The risk 
of developing lung cancer has historically been attributed to age 
and smoking. More recently, factors such as family history, years 
since smoking cessation, presence of emphysema and environ-
mental exposures (secondhand smoke, asbestos, radon and so on) 
have been taken into consideration, resulting in several lung cancer 
risk models to select individuals for lung cancer screening.5–13 
Currently, the Brock models are the only ones that incorporate 
LDCT image features with clinical data to estimate lung cancer 
risk.12

In this work, we demonstrated two things. First, that PGMs for 
mixed data can integrate clinical and radiological imaging data and 
successfully select informative features for lung cancer status. In 
cross-validation experiments, we showed that our selected models 
performed better than other published models, and except for 
the Brock full model the differences were statistically significant. 
However, the Brock full model uses eight measured variables, 
whereas our models required two to four, depending on the round 
of cross-validation. We also compared our model with RF-based 
models and they performed similarly. Again, the RF models essen-
tially use all parameters. Another important practical advantage 
of PGM-based models is that unlike regression or machine learn-
ing-based models, they could calculate cancer risk score even if 
some of the predictive variables have undetermined values. This is 
done by estimating the undetermined values from their parents of 
the corresponding variable in the graph. For example, in figure 1 
model, if the number of vessels is not observable for a given patient, 
we could estimate it from the mean diameter and irregularity. So 
the PGM-based method we suggest for selecting variables can be 
easily used in clinical practice even when some predictor values are 
missing for certain patients.

Three variables were consistently linked to lung cancer status 
in the cross-validation experiments: years since (the subject) quit 
smoking, number of nodules and number of vessels (surrounding 
a nodule). The association of each of these three variables to lung 
cancer has been previously noted, and some of them have been 
individually used in other predictive models. For example, years 

since the subject quit smoking is well known as a factor inversely 
related to lung cancer risk (PLCO and Bach models). The number 
of nodules is known to be inversely correlated with lung cancer 
risk (Brock model). We recently showed that the number of vessels 
surrounding a nodule, a new imaging feature, strongly correlates 
with lung cancer risk.23 This is consistent with the well-known 
occurrence of angiogenesis and neovascularisation in malig-
nancy.31 32 Emphysema, which is also known to be associated with 
lung cancer, is not predictive in our model, because the prevalence 
of emphysema was similar in cancer and benign groups in our 
training data set. We also note that the number of vessels in our 
model was more informative for lung cancer than nodule size that 
Brock models are using, which is depicted in figure 1 by the latter 
being the parent of the former.

Second, we used these features to build LCCM, a new lung 
cancer predictor. Tested on an independent validation cohort, 
LCCM achieved very high accuracy (AUC=0.903) and performed 
better at discriminating benign and malignant nodules, even when 
compared with the published Brock parsimonious model, whose 
parameters were estimated from 1871 subjects. We also showed 
evidence that the LCCM may be able to confidently identify about 
30% of the individuals with benign nodules after the baseline 
LDCT, without misclassifying any cancers. These individuals with 
lower likelihood of lung cancer can potentially benefit from longer 
screening intervals. If validated in a larger population, this ability 
to rule out cancer in a subset of indeterminate lung nodules would 
limit short-term follow-up imaging and invasive interventions (one 
of the major drawbacks of current LDCT screening protocols) 
and could significantly improve clinical practice. Finally, we tested 
LCCM in more ‘realistic’ conditions. We applied it on all benign 
nodules of the control subjects (validation cohort) that were <3 
cm (current threshold for biopsy). We found that LCCM maintains 
high predictability of the patient’s cancer status and is significantly 
better than the retrained Brock model. The advantage is reduced 
when it is compared with the original Brock model, which high-
lights the need for a larger training cohort for LCCM in future 
studies.

Our study has some limitations. First, we used low-dose (40 
mA) CT scans reconstructed at 2.5 mm images, which are thicker 
and less than ideal for quantitative analysis. The success of LCCM, 
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even against the original Brock parsimonious model, alleviates this 
concern to some degree. Second, our training cohort was not very 
large (n=92), but it was fairly balanced between malignant and 
benign cases and the CT protocol was the same for all subjects. 
However, confounders might exist. For example, the years since 
quit smoking prior to LDCT scan is lower in the cancer group (pack-
years was similar though). We plan to extend this initial study in 
the future with analysis of larger cohorts both retrospectively and 
prospectively. Third, our training cohort was disproportionately 
Caucasian and race will need to be evaluated in racially diverse 
cohorts. Fourth, overfitting, a common problem in all machine 
learning methods, could impact our results. In our case, we avoid 
(or limit the effect of) overfitting by using subsampling to select the 
most stable graph in the training cohort. We are also encouraged by 
the fact that LCCM performs very well on the independent valida-
tion cohort. Finally, our study is limited to participants who have 
undergone lung screening due to high cancer risk (age: 55–77; 
pack-years: >30; quit: <15 years); thus, LCCM needs to be vali-
dated in the broader context of individuals with lung nodules. 
Regardless, this work demonstrates the utility of PGMs in selecting 
informative variables in the context of lung cancer detection and 
shows that a combination of these three features may be a valuable 
component of highly accurate lung cancer predictors in the future.
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