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Abstract
Visual mental imagery is the quasi-perceptual experience of “seeing in the mind’s eye”. While a tight correspondence 
between imagery and perception in terms of subjective experience is well established, their correspondence in terms of neural 
representations remains insufficiently understood. In the present study, we exploit the high spatial resolution of functional 
magnetic resonance imaging (fMRI) at 7T, the retinotopic organization of early visual cortex, and machine-learning tech-
niques to investigate whether visual imagery of letter shapes preserves the topographic organization of perceived shapes. 
Sub-millimeter resolution fMRI images were obtained from early visual cortex in six subjects performing visual imagery of 
four different letter shapes. Predictions of imagery voxel activation patterns based on a population receptive field-encoding 
model and physical letter stimuli provided first evidence in favor of detailed topographic organization. Subsequent visual 
field reconstructions of imagery data based on the inversion of the encoding model further showed that visual imagery 
preserves the geometric profile of letter shapes. These results open new avenues for decoding, as we show that a denoising 
autoencoder can be used to pretrain a classifier purely based on perceptual data before fine-tuning it on imagery data. Finally, 
we show that the autoencoder can project imagery-related voxel activations onto their perceptual counterpart allowing for 
visually recognizable reconstructions even at the single-trial level. The latter may eventually be utilized for the development 
of content-based BCI letter-speller systems.

Introduction

Visual mental imagery refers to the fascinating phenomenon 
of quasi-perceptual experiences in the absence of external 
stimulation (Thomas 1999). The capacity to imagine has 

important cognitive implications and has been linked to 
working memory, problem solving, and creativity (Albers 
et al. 2013; Kozhevnikov et al. 2013). Yet, the nature of 
mental representations underlying imagery remains contro-
versial. It has been argued that visual imagery is pictorial, 
with an intrinsic spatial organization resembling that of 
physical images (Kosslyn et al. 1997, 2006). Others have 
claimed that imagery resembles linguistic descriptions, 
lacking any inherent spatial properties (Pylyshyn 1973, 
2003; Brogaard and Gatzia 2017). This debate has become 
increasingly informed by neuroimaging. For instance, sev-
eral functional magnetic resonance imaging (fMRI) studies 
have indicated that imagery activates cortical networks that 
are also activated during corresponding perceptual tasks 
(Kosslyn et al. 1997; Goebel et al. 1998; Ishai et al. 2000; 
O’Craven and Kanwisher 2000; Ganis et al. 2004; Mechelli 
et al. 2004), lending credence to the notion that imagery 
resembles perception. Applying multi-voxel pattern analyses 
(MVPA), furthermore, enabled the decoding of feature-spe-
cific imagery content related to orientations (Harrison and 
Tong 2009; Albers et al. 2013), motion (Emmerling et al. 
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2016), objects (Reddy et al. 2010; Cichy et al. 2012; Lee 
et al. 2012), shapes (Stokes et al. 2009, 2011), and scenes 
(Johnson and Johnson 2014).

The MVPA approach has recently been criticized on the 
grounds that it does not rely on an explicit encoding model 
of low-level visual features, leaving open the possibility that 
classification may have resulted from confounding factors 
such as attention (Naselaris et al. 2015). To overcome this 
limitation, the authors developed an encoding model based 
on Gabor wavelets which they fit to voxel activations meas-
ured in response to perception of artworks. Subsequently, 
they used the estimated encoding model to identify an imag-
ined artwork from a set of candidates by comparing voxel 
activations empirically observed in response to imagery with 
those predicted from encoding each candidate (Naselaris 
et al. 2015).

While this study constitutes a major methodological 
advancement and largely defuses the aforementioned con-
founds, a complex encoding model allows only for lim-
ited inferences regarding the similarity of perception and 
imagery with respect to any particular feature. It is, for 
instance, conceivable that the largest contributor to image 
identification stemmed from an unspecific top–down modu-
lation of salient regions in the imaged artwork with crude 
retinotopic organization. That is, activations in response to 
mental imagery might have been co-localized to highly sali-
ent regions of the image (without otherwise resembling it) 
and this might have been sufficient for image identification.

Indeed, results from studies reconstructing the visual 
field from fMRI data leveraging the retinotopic organiza-
tion of early visual cortex give the impression that the reti-
notopic organization of mental imagery is rather diffuse. For 
instance, while seminal work has been conducted detailing 
the ability to obtain straightforwardly recognizable recon-
structions of perceived physical stimuli (Thirion et al. 2006; 
Miyawaki et al. 2008; Schoenmakers et al. 2013); similar 
successes have not been repeated for imagery. Retinotopy-
based reconstructions of imagined shapes have so far merely 
been co-localized with the region of the visual field, where 
they were imagined but bore no visual resemblance to their 
geometry (Thirion et al. 2006).

However, unless imagery of an object preserves the 
object’s geometry, it unlikely it would preserve any of its 
more fine-grained features. It is thus pivotal to empirically 
establish precise topographic correspondence between 
imagery and perception. Utilizing the high spatial resolu-
tion offered by 7T fMRI and the straightforwardly invertible 
population receptive field model (Dumoulin and Wandell 
2008), we provide new evidence that imagery-based recon-
structions of letter shapes are recognizable and preserve 
their physical geometry. This supports the notion of tight 
topographic correspondence in early visual cortex. Such cor-
respondence opens new avenues for decoding. Specifically, 

we show that using a denoising autoencoder, it is possible 
to pretrain a classifier, intended to decode imagery content, 
purely based on easily obtainable perceptual data. Only fine-
tuning of the classifier requires (a small amount of) addi-
tional imagery data. Finally, we show that an autoencoder 
can project imagery-related voxel activations onto their per-
ceptual counterpart allowing for recognizable reconstruc-
tions even at a single-trial level. The latter could open new 
frontiers for brain–computer interfaces (BCIs).

Materials and methods

Participants

Six participants (2 female, age range = (21–49), mean 
age = 30.7) with normal or corrected-to-normal visual acu-
ity took part in this study. All participants were experienced 
in undergoing high-field fMRI experiments, gave written 
informed consent, and were paid for participation. All pro-
cedures were conducted with approval from the local Ethical 
Committee of the Faculty of Psychology and Neuroscience 
at Maastricht University.

Stimuli and tasks

Each participant completed three training sessions to prac-
tice the controlled imagery of visual letters prior to a sin-
gle scanning session which comprised four experimental 
(imagery) runs of ~ 11 min and one control (perception) run 
of ~ 9 min as well as one pRF mapping run of ~ 16 min.

Training session and task

Training sessions lasted ca. 45 min and were scheduled 
1 week prior to scanning. Before the first training session, 
participants filled in the Vividness of Visual Imagery Ques-
tionnaire (VVIQ; Marks, 1973) and the Object–Spatial 
Imagery and Verbal Questionnaire (Blazhenkova and Koz-
hevnikov 2009). These questionnaires measure the subjec-
tive clearness and vividness of imagined objects and cog-
nitive styles during mental imagery, respectively. In each 
training trial, participants saw one of four white letters (‘H’, 
‘T’, ‘S’, or ‘C’) enclosed in a white square guide box (8° by 
8° visual angle) on grey background and a red fixation dot 
in the center of the screen (see Fig. 1). With the onset of 
the visual stimulation, participants heard a pattern of three 
low tones (note C5) and one high tone (note G5) that lasted 
1000 ms. This tone pattern was associated with the visually 
presented letter with specific patterns randomly assigned for 
each participant. After 3000 ms, the letter started to fade out 
until it completely disappeared at 5000 ms after trial onset. 
The fixation dot then turned orange and participants were 
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instructed to maintain a vivid image of the presented letter. 
After an 18 s imagery period, the fixation dot turned white 
and probing started. With an inter-probe-interval of 1500 ms 
(jittered by ± 200 ms), three white probe dots appeared 
within the guide box. These dots were located within the 
letter shape or outside of the letter shape (however, always 
within the guide box). Participants were instructed to indi-
cate by button press whether a probe was located inside or 
outside the imagined letter shape (Podgorny and Shepard 
1978). Depending on the response, the fixation dot turned 
red (incorrect) or green (correct) before turning white again 
as soon as the next probe was shown. The positions of the 
probe dots were randomly chosen, such that they had a mini-
mum distance of 0.16° and a maximum distance of 0.32° 
of visual angle from the edges of the letter (and the guide 
box), both for inside and outside probes. This ensured simi-
lar task difficulty across trials. A resting phase of 3000 ms 
or 6000 ms followed the three probes. At the beginning of 
a training run, all four letters were presented for 3000 ms 
each, alongside the associated tone pattern (reference phase). 
During one training run, each participant completed 16 
pseudo-randomly presented trials. In each training session, 
participants completed two training runs during which refer-
ence letters were presented in each trial (described above) 
and two training runs without visual presentation (i.e., the 
tone pattern was the only cue for a letter). Participants were 
instructed to maintain central fixation throughout the entire 
run. After the training session, participants verbally reported 
the imagery strategies they used.

Imagery runs

Imagery runs were similar to the training task with changes 
to the probing phase and the timing of the trial phase. After 
the reference phase in the beginning of each run, there was 
no visual stimulation other than the fixation dot and the 
guide box. Imagery phases started when participants heard 
the tone pattern and the fixation dot turned orange. Imagery 
phases lasted 6 s. Participants were instructed to imagine the 
letter associated with the tone pattern as vividly and accu-
rately as possible. The guide box aided the participant by 
acting as a reference for the physical dimensions of the letter. 
The resting phases that followed each imagery phase lasted 
9 s or 12 s. There was no probing phase in normal trials. In 
each experimental run, there were 32 normal trials and two 
additional catch trials which entailed a probing phase of four 
probes. There was no visual feedback for the responses in the 
probing phase (the fixation dot remained white). Data from 
the catch trials were not included in the analyses.

Perception run

To measure brain activation patterns in visual areas during 
the perception of the letters used in the imagery runs, we 
recorded one perception run during the scanning session. 
The four letters were visually presented using the same trial 
timing parameters as in the experimental runs. There were 
neither reference nor probing phases. Letters were presented 
for the duration of the imagery phase (6 s) and their shape 
was filled with a flickering checkerboard pattern (10 Hz). 
No tone patterns were played during the perception run. 
The recorded responses were also used to train a denoising 
autoencoder (see below).

pRF mapping

A bar aperture (1.33° wide) revealing a flickering checker-
board pattern (10 Hz) was presented in four orientations. 
For each orientation, the bar covered the entire screen in 12 
discrete steps (each step lasting 3 s). Within each orienta-
tion, the sequence of steps (and hence of the locations) was 
randomized (cf. Senden et al. 2014). Each orientation was 
presented six times.

Stimulus presentation

The bar stimulus used for pRF mapping was created using 
the open source stimulus presentation tool BrainStim (http://
sveng​ijsen​.githu​b.io/Brain​Stim/). Visual and auditory stimu-
lation in the imagery and perception runs were controlled 
with PsychoPy (version 1.83.03; Peirce 2007). Visual stim-
uli were projected on a frosted screen at the top end of the 
scanner table by means of an LCD projector (Panasonic, No 

Fig. 1   Training task. In the reference phase (top), four letters H, T, 
‘S’, and ‘C’ were paired with a tone pattern. In the trial phase (bot-
tom), the tone pattern was played and the letter shown for 5 s (fading 
out after 3 s) followed by an imagery period of 18 s, a probing period 
of 4.5 s, and a resting period of 3 s or 6 s

http://svengijsen.github.io/BrainStim/
http://svengijsen.github.io/BrainStim/
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PT- EZ57OEL; Newark, NJ, USA). Auditory stimulation 
was presented using MR-compatible insert earphones (Sen-
simetrics, Model S14; Malden, MA, USA). Responses to 
the probes were recorded with MR-compatible button boxes 
(Current Designs, 8-button response device, HHSC-2 × 4-C; 
Philadelphia, USA).

Magnetic resonance imaging

We recorded anatomical and functional images with a Sie-
mens Magnetom 7 T scanner (Siemens; Erlangen, Ger-
many) and a 32-channel head-coil (Nova Medical Inc.; 
Wilmington, MA, USA). Prior to functional scans, we used 
a T1-weighted magnetization prepared rapid acquisition 
gradient echo (Marques et al. 2010) sequence [240 sagittal 
slices, matrix = 320 320, voxel size = 0.7 by 0.7 by 0.7 mm3, 
first inversion time TI1 = 900 ms, second inversion time 
TI2 = 2750 ms, echo time (TE) = 2.46 ms, repetition time 
(TR) = 5000 ms, first nominal flip angle = 5°, and second 
nominal flip angle = 3°] to acquire anatomical data. For all 
functional runs, we acquired high-resolution gradient echo 
(T2* weighted) echo-planar imaging (Moeller et al. 2010) 
data (TE = 26 ms, TR = 3000 ms, generalized auto-calibrat-
ing partially parallel acquisitions (GRAPPA) factor = 3, 
multi-band factor = 2, nominal flip angle = 55°, number of 
slices = 82, matrix = 186 by 186, and voxel size = 0.8 by 0.8 
by 0.8 mm3). The field-of-view covered occipital, parietal, 
and temporal areas. In addition, before the first functional 
scan, we recorded five functional volumes with opposed 
phase encoding directions to correct for EPI distortions that 
occur at higher field strengths (Andersson et al. 2003).

Processing of (f)MRI data

We analyzed anatomical and functional images using Brain-
Voyager 20 (version 20.0; Brain Innovation; Maastricht, The 
Netherlands) and custom code in MATLAB (version 2017a; 
The Mathworks Inc.; Natick, MA, USA). We interpolated 
anatomical images to a nominal resolution of 0.8 mm iso-
tropic to match the resolution of functional images. In the 
anatomical images, the grey/white matter boundary was 
detected and segmented using the advanced automatic seg-
mentation tools of BrainVoyager 20 which are optimized for 
high-field MRI data. A region-growing approach analyzed 
local intensity histograms, corrected topological errors of 
the segmented grey/white matter border, and finally recon-
structed meshes of the cortical surfaces (Kriegeskorte and 
Goebel 2001; Goebel et al. 2006). The functional images 
were corrected for motion artefacts using the 3D rigid body 
motion correction algorithm implemented in BrainVoyager 
20 and all functional runs were aligned to the first volume of 
the first functional run. We corrected EPI distortions using 
the COPE (“Correction based on Opposite Phase Encoding”) 

plugin of BrainVoyager that implements a method similar to 
that described in Andersson, Skare, and Ashburner (Anders-
son et al. 2003) and the ‘topup’ tool implemented in FSL 
(Smith et al. 2004). The pairs of reversed phase encoding 
images recorded in the beginning of the scanning session 
were used to estimate the susceptibility-induced off-reso-
nance field and correct the distortions in the remaining func-
tional runs. After this correction, functional data were high-
pass filtered using a general linear model (GLM) Fourier 
basis set of three cycles sine/cosine, respectively. This filter-
ing included a linear trend removal. Finally, functional runs 
were co-registered and aligned to the anatomical scan using 
an affine transformation (9 parameters) and z-normalized to 
eliminate signal offsets and inter-run variance.

pRF mapping and region‑of‑interest definition

For each subject, we fit location and size parameters of 
an isotropic Gaussian population receptive field model 
(Dumoulin and Wandell 2008) by performing a grid search. 
In terms of pRF location, the visual field was split into a 
circular grid of 100 by 100 points, whose density decays 
exponentially with eccentricity. Receptive field size exhibits 
a linear relationship with eccentricity with the exact slope 
depending on the visual area (Freeman and Simoncelli 
2011). For this reason, we explored slopes in the range from 
0.1 to 1 (step = 0.1), as this effectively allows for explora-
tion of a greater range of receptive field sizes (10 for each 
unique eccentricity value). We used the pRF mapping tool 
from the publicly available Computational Neuroimaging 
Toolbox (https​://githu​b.com/MSend​en/CNI_toolb​ox). Polar 
angle maps resulting from pRF fitting were projected onto 
inflated cortical surface reconstructions and used to define 
regions-of-interest (ROIs) for bilateral visual areas V1, V2, 
and V3. The resulting surface patches from the left and right 
hemisphere were projected back into volume space (from 
− 1 mm to + 3 mm from the segmented grey/white matter 
boundary). Volume ROIs were then defined for V1, V2, V3, 
and a combined ROI (V1V2V3).

Voxel patterns

All our analyses and reconstructions are based on letter-
specific spatial activation profiles of voxel co-activations; 
i.e., voxel patterns. Voxel patterns within each ROI were 
obtained for both perceptual and imagery runs. First, for 
each run, single-trial letter-specific voxel patterns were 
obtained by averaging BOLD activations in the range from 
+ 2 until + 3 volumes following trial onset and z-normaliz-
ing the result. This lead to a total of eight (one per trial) per-
ceptual and 32 (four runs with 8 trials each) imagery voxel 
patterns per letter. We, furthermore, computed perceptual 
and imagery average voxel patterns per letter by averaging 

https://github.com/MSenden/CNI_toolbox
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over all single-trial patterns (and runs in case of imagery) 
of a letter and z-normalizing the result. Imagery average 
voxel patterns were used in an encoding analysis and for 
assessment of reconstruction quality, while perceptual aver-
age patterns were used for training a denoising autoencoder 
(Vincent et al. 2008).

Encoding analysis

To test the hypothesis that spatial activation profiles of visual 
mental imagery are geometry-preserving, we tested whether 
voxel activations predicted from the encoding model (one 
isotropic Gaussian per voxel) and a physical (binary) stimu-
lus corresponding to the imagined letter provides a signifi-
cantly better fit with measured voxel activations than predic-
tions from the remaining binary letter stimuli. Specifically, 
for each participant and ROI, we predicted voxel activations 
for each of the four letters based on pRF estimates and physi-
cal letter stimuli.

Autoencoder

We trained an autoencoder with a single hidden layer 
k = ⌊0.1 ⋅ Nvoxels⌋ to reproduce average perceptual voxel 
patterns from noise-corrupted versions per subject and 
ROI. Since the values of voxel patterns follow a Gaussian 
distribution with a mean of zero and unit standard devia-
tion, we opted for zero-mean additive Gaussian noise with 
a standard deviation � = 12 for input corruption. Note that 
the exact value of � is not important as long as it sufficiently 
corrupts the data. We achieved similar results with values 
in the range [8, 14] . The hidden layer consisted of units with 
rectified linear activation functions. Output units activated 
linearly. Encoding weights (from input to hidden layer) and 
decoding weights (from hidden to output layer) were shared. 
Taken together, the input, hidden, and output layers were, 
respectively, given by

In Eq. 1, � is a voxel pattern (of length v), �� its noise cor-
ruption, and �� its restoration. �� (k-by-v matrix) and �� 
(v-by-k matrix) are the tied encoding and decoding weights, 
respectively. Finally, �� (k-by-1 vector) and �� (v-by-1 vec-
tor) are the biases of the hidden and output layers, respec-
tively. We used mean squared distances to measure loss 
between the input and its restoration and implemented the 
autoencoder in the TensorFlow library (Abadi et al. 2016) 
for Python (version 2.7, Python Software Foundation, https​

(1)

�� = � + �, with � ∼  (�,�)

� = �
(
���� + ��

)
, with �(x) =

1

1 + e−x

�� = ��� + ��, with�� = �T
�
.

://www.pytho​n.org/). The autoencoder was trained using 
the Adam optimizer (Kingma and Ba 2014) with a learning 
rate of 1 × 10−5 and a batch size of 100 for 2000 iterations. 
In addition to the four average perceptual voxel patterns, 
we also included an equal amount of noise-corrupted mean 
luminance images to additionally force reconstructions to 
zero if the input contained no actual signal. No imagery data 
were used for training the autoencoder.

Reconstruction

For each subject and ROI, we reconstructed the visual field 
from average perceptual and imagery voxel patterns. We 
obtained weights mapping the cortex to the visual field by 
inverting the mapping from visual field to cortex given by 
the population receptive fields. Since �pRF , a v-by-p matrix 
(with v being the number of voxels and p the number of 
pixels) mapping a 150-by-150 pixel visual field to the cortex 
(i.e., p = 22500 pixels; after vectorizing the visual field) is 
not invertible, we minimize the error function:

with respect to the input image x (a vector of length p). The 
vector � is of length v and reflects a measured voxel pattern. 
Finally, � is a diagonal matrix of the outdegree of each pixel 
in the visual field which provides pixel-specific scaling of 
the L2 regularization term ‖�‖2

2
 and accounts for cortical 

magnification. Minimizing Eq. 2 leads to the expression:

with which we can reconstruct the visual field from voxel 
patterns. To minimize computational cost, we compute the 
projection matrix �VF =

(
�T

pRF
�pRF + �

)−1

�T
pRF

 once 
per ROI and subject rather than performing costly matrix 
inversion for every reconstruction. Note that both raw voxel 
patterns ( � ) as well as restored voxels patterns ( �� ) obtained 
from passing � through the autoencoder, can be used for 
image reconstruction. In the former case, � = �VF� . In the 
latter case, � = �VF�� = �VF

[
���

(
��� + ��

)
+ ��

]
.

For each letter, we assessed the quality of its reconstruc-
tion by calculating the correlation between the reconstruc-
tion and the corresponding binary letter stimulus. This con-
stitutes a first-level correlation metric. However, since the 
four letters bear different visual similarities with each other 
(e.g., ‘S’ and ‘C’ might resemble each other more closely 
than either resemble ‘H’), we also defined a second-level 
correlation metric. Specifically, we obtained one vector of all 
pairwise correlations between physical letter stimuli and a 
second vector of pairwise correlations between correspond-
ing reconstructions and correlated these two vectors.

(2)E =
�
� −�pRF�

�T�
� −�pRF�

�
+ �‖�‖2

2

(3)� =
(
�T

pRF
�pRF + �

)−1

�T
pRF

�

https://www.python.org/
https://www.python.org/
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Classification

We replaced the output layer of the pretrained autoencoder 
with a four-unit (one for each letter) softmax classifier. 
Weights from the hidden to the classification layer as well 
as the biases of output units were then trained to classify 
single-trial imagery voxel patterns using cross entropy as a 
measure of loss. Note that pretrained weights from input to 
hidden layer ( �� in Eq. 1) as well as pretrained hidden unit 
biases ( �� in Eq. 1) remained fixed throughout training of 
the classifier. These weights and biases were thus dependent 
purely on perceptual data. This procedure is equivalent to 
performing multinomial logistic regression on previously 
established hidden layer representations. Imagery runs were 
split into training and testing data sets in a leave-one-run-out 
procedure, such that the classifier was repeatedly trained on 
a total of 96 voxel patterns (8 trials per 4 letters for each 
of three runs) and tested on the remaining 32 voxel pat-
terns. We again trained the network using the Adam opti-
mizer. However, in this case, the learning rate was 1 × 10−4 , 
the batch size equal to 96, and training lasted merely 250 
iterations.

Statistical analysis

Statistical analyses were performed using MATLAB (ver-
sion 2017a; The Mathworks Inc.; Natick, MA, USA). We 
used a significance level of � = 0.05 (adjusted for multiple 
comparisons where appropriate) for all statistical analyses.

Behavioral results were analyzed using repeated-meas-
ures ANOVA with task (visible or invisible runs) and time 
as within-subject factors.

For the encoding analysis, we performed a mixed-model 
regression for the average voxel activations of each imag-
ined letter within each ROI with physical letter as fixed and 
participant as random factors, respectively. This was fol-
lowed by a contrast analysis. For each imagined letter, the 
contrast was always between the corresponding physical 
stimulus and all remaining physical stimuli. For example, 
when considering voxel activations for the imagined letter 
‘H’, a weight of 3 was placed on activations predicted from 
the physical letter ‘H’ and a weight of −1 was placed on 
activations predicted from each of the remaining three let-
ters. Since we repeated the analysis for each imagined letter 
(4) and single region ROI (3), we performed a total of 12 
tests and considered results significant at a corrected cutoff 
of �c = 0.05∕12 = 0.0042.

To evaluate which factors contribute most to first-level 
reconstruction quality, we performed mixed-model regres-
sion with the VVIQ and the OSIVQ spatial and OSIVQ 
object scores, ROI (using dummy coding, V1 = reference), 
letter (dummy coding, ‘H’ = reference), and number of 
selected voxels (grouped by ROI). To assess second-level 

reconstruction quality, we use the same approach omitting 
letter as a predictor.

To assess the significance of classification results, we 
evaluated average classification accuracy across the four 
runs against a Null distribution obtained from 1000 permuta-
tions of a leave-one-run-out procedure with randomly scram-
bled labels. We performed this analysis separately for each 
subject and ROI and consider accuracy results significant if 
they exceed the 95th percentile of the Null distribution. To 
statistically evaluate which factors contribute most to clas-
sification accuracy, we performed mixed-model regression 
with the VVIQ and the OSIVQ spatial and OSIVQ object 
scores, ROI (using dummy coding, V1 = reference), letter 
(dummy coding, ‘H’ = reference), and number of selected 
voxels (again grouped by ROI).

Results

Behavioral results

VVIQ and OSIVQ scores for each participant are shown in 
Fig. 2. The average score over participants for VVIQ was 
4.07 (95% CI [3.71, 4.43]). For the object, spatial, and verbal 
sub-scales of OSIVQ, average scores were 2.88 (95% CI 
[2.48, 3.27]), 3.08 (95% CI [2.75, 3.41]), and 3.81 (95% CI 
[3.33, 4.29]), respectively. Participants reported that they 
tried to maintain the afterimage of the fading stimulus as a 
strategy to enforce vivid and accurate letter imagery. Fur-
thermore, participants determined through button presses 
whether a probe was located inside or outside the letter 
shape, while the letter was either visible or imagined. A 

Fig. 2   Vividness of visual imagery. Vividness of Visual Imagery 
Questionnaire (VVIQ) and Object–Spatial Imagery and Verbal Ques-
tionnaire (OSIVQ) scores (with the sub-scales for “object”, “spatial”, 
and “verbal” imagery styles) are shown for all participants
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repeated-measures ANOVA with task (visible or invis-
ible runs) and time as within-subject factors revealed a 
statistically significant effect of time on probing accuracy 
(F(2,10) = 19.84, p ≪ 0.001), and no significant difference for 
task (F(1,5) = 1.10, p = 0.341) (Table 1).

Encoding

For each imagined letter (H, T, S, C) in each single-area 
ROI (V1, V2, V3), we investigated whether spatial voxel 
activation profiles can be predicted from a Prf-encoding 
model and the corresponding physical stimulus. That is, for 
each imagined letter–ROI combination, we ran a mixed-
model regression with observed imagery voxel activations 
(averaged over trials and runs) as outcome variable, pre-
dicted voxel activations for each physical letter stimulus as 
predictors and participants as grouping variable. Since we 
were specifically interested in testing our hypothesis that 
the retinotopic organization of imagery voxel activations 
is sufficiently geometrically specific to distinguish among 
different imagined letters, we performed contrast analyses 
between the physical letter corresponding to the imagery and 
all the remaining letters (see “Methods” for details). Con-
trasts were significant after applying Bonferroni correction 
(αc = 0.0042) for each of the twelve letter-ROI combinations. 
In other words, predictions based on a specific physical let-
ter gave a better account of voxel activations observed for 
the imagery of that specific letter than those based on every 
other physical letter, as can be appreciated from Table 2. 
Figure 3 visualizes these results in the form of boxplots of 
first-level beta values (i.e., distribution over participants per 
physical letter) in each letter-ROI combination.

Reconstruction

Raw imagery data

We reconstructed the visual field from average imagery 
voxel patterns in response to each letter (see Figs. 4, 5). 
Mean correlations between reconstructed imagery and phys-
ical letters are presented in Table 3 (for comparison, Table 4 
shows correlations between reconstructed perception and 
physical letters). As can be appreciated from these results 
as well as the figures, first-level reconstruction quality varies 
across ROIs as well as across subjects. Differences between 
subjects might be due to differences in their ability to imag-
ine shapes accurately and vividly as measured by the VVIQ 
and OSIVQ questionnaires. Differences between ROIs might 
be due to differences with respect to their retinotopy (most 
likely receptive field sizes) or due to different numbers of 
voxels included for analysis of each ROI. Only the former 
would be a true ROI effect. We investigate which factors 
account for observed correlations (transformed to Fisher 
z-scores for analyses) by performing a mixed-model regres-
sion with questionnaire scores, ROI (using dummy coding, 
V1 = reference), letter (dummy coding, ‘H’ = reference), and 
number of selected voxels as predictors. A number of voxels 
were grouped by ROI. Furthermore, the regression model 
included the VVIQ and the OSIVQ spatial and object scores. 
However, the VVIQ score was not included since it corre-
lated highly with the OSIVQ verbal score (leading to collin-
earity). To further prevent collinearity, we also only included 
single-area ROIs in this analysis and not the combined ROI. 
A number of voxels [t(62) = 2.59, p = 0.012] and the OSIVQ 
object score [t(62) = 2.64, p = 0.010] were significant quan-
titative predictors. Furthermore, letter was a significant 
categorical predictor. Specifically, letter ‘T’ [t(62) = 5.58, 
p≪ 0.001] presented with significantly improved correla-
tion values over the reference letter ‘H’, whereas letters ‘S’ 
[t(62) = − 3.88, p = 0.0003] and ‘C’ [t(62) = − 2.25, p = 0.028] 
presented with significantly decreased correlation values 
with respect to the reference. Neither the OSIVQ verbal 
score [t(62) = 0.0278, p = 0.978] nor the ROI were significant 
predictors of reconstruction quality.

Next, we examined the second-level correlation metric 
of reconstruction quality. Correlations between physical 
and reconstruction pairwise first-level correlation vectors 
were 0.60 (95% CI [0.28, 0.80], p = 0.103) for V1, 0.65 

Table 1   Probing accuracy (averages over participants and time)

T1 T2 T3

Visible 60.42 (95% CI 
[48.2, 72.64])

75.39 (95% CI 
[66.70, 84.08])

77.73 
(95% CI 
[69.36, 
86.10])

Invisible 62.02 (95% CI 
[44.57.36, 
79.45])

73.18 (95% CI 
[65.98, 80.38])

81.57(95% 
CI 
[75.47, 
87.67])

Table 2   Contrast analysis 
comparing the physical letter 
corresponding to the imagery 
with all remaining letters

Each of the 12 letter–ROI combinations was significant after applying Bonferroni correction (αc = 0.0042)

H T S C

V1 t(2) = 32.11, p = 0.0004 t(2) = 48.00, p = 0.0002 t(2) = 14.10, p = 0.0025 t(2) = 29.84, p = 0.0006
V2 t(2) = 25.21, p = 0.0008 t(2) = 67.63, p = 0.0001 t(2) = 19.64, p = 0.0013 t(2) = 47.48, p = 0.0002
V3 t(2) = 47.90, p = 0.0006 t(2) = 27.60, p = 0.0007 t(2) = 11.48, p = 0.0038 t(2) = 32.83, p = 0.0005
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(95% CI [0.34, 0.83], p = 0.082) for V2, 0.48 (95% CI 
[0.15, 0.71], p = 0.167) for V3, and 0.64 (95% CI [0.34, 
0.83], p = 0.084) for V1V2V3, respectively. Finally, we per-
formed a mixed regression to assess which factors account 
for the observed correlations (again transformed to Fisher 
z-scores). We included OSIVQ verbal, spatial, and object 
scores, ROI (dummy coding, V1 = reference), and number of 
selected voxels (grouped by ROI) as predictors. The OSIVQ 
object score [t(11) = 3.26, p = 0.0076] and number of vox-
els [t(11) = 3.94, p = 0.0023] significantly predicted second-
level correlations, while the spatial [t(11) = 0.71, p = 0.492] 
and verbal scores [t(11) = − 0.81, p = 0.436] did not. Further-
more, there was significant effect of ROI, since neither V2 
[t(11) = − 1.56, p = 0.148] nor V3 [t(11) = 0.40, p = 0.697] sig-
nificantly differed from V1.

Processed imagery data

Our results confirm that visual mental imagery preserves 
perceptual topographic organization. This can be leveraged 
to obtain improved reconstructions of mental imagery. 
Specifically, an autoencoder trained to retrieve perceptual 

voxel patterns from their noise-corrupted version can be 
utilized to enhance imagery data. Figure 6 shows how the 
autoencoder affects first-level reconstruction quality on a 
single-trial basis for V1. As shown in the figure, recon-
struction quality was best for ‘T’, followed by ‘H’, ‘C’, and 
‘S’. A subject effect is also clearly apparent with partici-
pants three and five generally displaying the best results. 
Finally, imagery reconstruction quality was generally infe-
rior to perception prior to using the autoencoder. How-
ever, using the autoencoder pushed imagery reconstruction 
quality towards perception levels. Indeed, the autoencoder 
maps imagery voxel patterns onto the corresponding per-
ception voxel patterns it has learned previously. This 
explains two important observations. First, for some tri-
als, using the autoencoder decreased resemblance to the 
physical letter. This is especially apparent for participants 
four and six, whose reconstructions were generally not 
particularly good. Such decrements in reconstruction qual-
ity result from imagery voxel patterns in response to one 
letter falling within the attraction domain of another letter 
(resembling the activation pattern of that letter slightly 
more) and hence get mapped onto the wrong pattern. 

Fig. 3   First-level beta distributions. Distribution of first-level beta values (across participants) for voxel patterns predicted from each physical 
letter (x-axis) for all combinations of ROI (rows) and imagined letters (columns)
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Second, even the few imagery trials, whose reconstruc-
tions match the physical letter better than the perceptual 
data were mapped onto the perceptual pattern. A notable 
example is two trials for the letter ‘S’ by participant two. 
This implies that reconstruction quality of the perceptual 
data used to train the autoencoder constitutes an upper 
limit for imagery when using the autoencoder.

As a general effect, the autoencoder maps imagery 
voxel patterns onto their perceptual counterpart for 
most individual trials. Hence, reconstructions of average 
imagery voxel patterns as well as of individual trials more 
strongly resemble the corresponding physical letter. Fig-
ure 7 shows reconstructions from average imagery voxel 
patterns after feeding the data through the autoencoder. 

Fig. 4   Reconstructed visual field images (participants 1–3). Recon-
structed average visual field images are visualized for each ROI of 
participants one, two, and three. Reconstructions of the remaining 

three subjects are shown in Fig.  5. Perceptual as well as imagery 
voxel patterns were obtained from raw BOLD time-series
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Fig. 5   Reconstructed visual field images (participants 4–6). Recon-
structed average visual field images are visualized for each ROI of 
participants four, five, and six. Reconstructions of the remaining three 

subjects are shown in Fig. 4. Perceptual as well as imagery voxel pat-
terns were obtained from raw BOLD time-series

Table 3   First-order correlations between reconstructed imagined letters and physical stimuli (averages over participants)

H T S C

V1 0.24 (95% CI [0.09, 0.40]) 0.49 (95% CI [0.38, 0.58]) 0.08 (95% CI [0.03 0.19)] 0.14 (95% CI [0.07, 0.21])
V2 0.21 (95% CI [0.13, 0.30)] 0.46 (95% CI [0.36, 0.55]) 0.10 (95% CI [0.04, 0.17)] 0.12 (95% CI [0.07, 0.18])
V3 0.20 (95% CI [0.10, 0.30]) 0.28 (95% CI [0.14, 0.46]) 0.04 (95% CI [0.03, 0.12)] 0.15 (95% CI [0.01, 0.29])
V1V2V3 0.27 (95% CI [0.16, 0.37]) 0.51 (95% CI [0.45, 0.56]) 0.12 (95% CI [0.02, 0.21)] 0.14 (95% CI [0.08, 0.20])
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Figures 8 and 9 show reconstructions of individual trials 
in a single run of participants three and five, respectively.

Obviously, these participants are not representative of 
the population at large but provide an indication of what 
is possible for people with a strong ability to imagine 
visual shapes. Table 5 shows the mean correlation values 
across trials of participant three and five when the data of 
these participants were fed through the autoencoder and 
without using the autoencoder.

Classification

Having established support for the hypothesis that activity 
in early visual cortex in response to imagery exhibits a 
similar topographical profile as perception, we proceeded 
to test whether it is possible to pretrain latent representa-
tions for an imagery classifier using purely perceptual 
data. The classifier consists of three layers with the output 
layer being a softmax classifier stacked onto the hidden 

Table 4   First-order correlations between reconstructed perceived letters and physical stimuli (averages over participants)

H T S C

V1 0.40 (95% CI [0.35, 0.44]) 0.65 (95% CI [0.60, 0.69]) 0.27 (95% CI [0.15, 0.38]) 0.32 (95% CI [0.22, 0.40])
V2 0.37 (95% CI [0.31, 0.42]) 0.58 (95% CI [0.50, 0.64]) 0.19 (95% CI [0.09, 0.29]) 0.31 (95% CI [0.23, 0.38])
V3 0.25 (95% CI [0.19, 0.31]) 0.41 (95% CI [0.30, 0.51]) 0.06 (95% CI [− 0.06, 0.18]) 0.27 (95% CI [0.25, 0.30])
V1V2V3 0.41 (95% CI [0.36, 0.46]) 0.63 (95% CI [0.56, 0.68]) 0.22 (95% CI [0.12, 0.32]) 0.31 (95% CI [0.24, 0.38])

Fig. 6   Effect of autoencoder 
on trial-specific reconstruction 
quality. The radius of the circles 
represents reconstruction qual-
ity (correlations) with r = 1 at 
the center, r = 0.5 at the inner 
ring (dash–dot), and r = 0 at 
the outer ring (solid). Each 
angle represents an imagery 
trial with 32 trials per letter 
and participant. Participants are 
color coded. Solid-colored lines 
reflect reconstruction quality 
based on average perceptual 
voxel patterns of one partici-
pant. This constitutes a baseline 
against which to compare 
imagery reconstruction quality. 
Colored dots reflect imagery 
reconstruction quality for each 
individual trial of a partici-
pant. Finally, arrows reflect the 
displacement of each of these 
dots after feeding imagery data 
through the autoencoder. That 
is, the tip of the head reflects 
the new position of the dot after 
applying the autoencoder. Most 
points were projected onto the 
perception-level correlation 
value and hence approached the 
center. However, some moved 
further away from the center
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layer of an autoencoder pretrained to denoise perceptual 
voxel patterns (see “Methods” for details). We trained 
the classifier on imagery data using a leave-one-run-out 
procedure; that is, we trained the classifier on three of 
the four imagery runs and tested classification accuracy 

on the left-out run. Figure 10 shows average classifica-
tion accuracies per subject and ROI (including the com-
bined ROI ‘V1V2V3’). For five of the six participants, 
average classification accuracies exceeded theoretical 
chance levels (25% correct) as well as the 95th percentile 

Fig. 7   Reconstructed imagery. Reconstructed average visual field images of mental imagery are visualized for each ROI of each participant. 
Imagery voxel patterns were obtained from cleaned BOLD time-series after feeding raw data through the autoencoder
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Fig. 8   Reconstructed visual field images from denoised single trials in a single run of participant 3. Each run comprised of 8 trials (columns) per 
letter (rows). Recognizable reconstructions can be obtained for a number (though not all) individual trials

Fig. 9   Reconstructed visual field images from denoised single trials in a single run of participant five. Each run comprised of eight trials (col-
umns) per letter (rows). Recognizable reconstructions can be obtained for a number (though not all) individual trials

Table 5   Effect of the autoencoder on mean correlation values across trials for two participants

H T S C

P03
 Autoencoder 0.39 (95% CI [0.32, 0.45]) 0.55 (95% CI [0.46, 0.62]) 0.10 (95% CI [0.04, 0.16]) 0.09 (95% CI [0.06, 0.12])
 Raw 0.19 (95% CI [0.15, 0.21]) 0.33 (95% CI [0.28, 0.38]) − 0.02 (95% CI [− 0.06, 0.02]) 0.02 (95% CI [−0.02, 0.06])

P05
 Autoencoder 0.28 (95% CI [0.20, 0.35]) 0.53 (95% CI [0.43, 0.61]) 0.08 (95% CI [0.00, 0.17]) 0.21 (95% CI [0.12, 0.31])
 Raw 0.12 (95% CI [0.08, 0.15]) 0.32 (95% CI [0.25, 0.37]) 0.02 (95% CI [−0.01, 0.06]) 0.07 (95% CI [0.03, 0.10])
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of 1000 permutation runs (randomly scrambled labels) 
in all ROIs. For participant six, theoretical chance levels 
as well as the 95th percentile were (barely) exceeded for 
V2 only.

We performed a mixed-model regression with the 
OSIVQ object, spatial and verbal scores, ROI (using 
dummy coding, V1 = reference), and number of selected 
voxels (again grouped by ROI) as predictors to assess 
which factors account for the observed accuracies. Num-
ber of voxels [t(11) = 4.80, p = 0.0006], the object sub-
score of OSIVQ [t(11) = 4.83, p < 0.0005], and the spatial 
sub-score of OSIVQ [t(11) = 3.45, p = 0.006] were signifi-
cant predictors of accuracy, whereas the verbal sub-score 
of OSIVQ [t(11) = 0.656, p = 0.525] was not. Furthermore, 
neither V2 [t(11) = − 1.72, p = 0.113] nor V3 [t(11) = 1.85, 
p = 0.092] differed significantly from reference (V1).

Discussion

The aim of the present study was to investigate whether 
visual imagery exhibits sufficient topographic organiza-
tion to preserve the geometry of internally visualized 
objects. To that end, we trained participants to maintain 
a vivid mental image of four letter shapes. Subsequently, 
we obtained sub-millimeter resolution 7T fMRI measure-
ments from early visual cortex, while participants viewed 
or imagined the same letter shapes. Finally, we conducted 
a series of encoding, reconstruction, and decoding analy-
ses to establish the degree of similarity between imagined 
and perceived shapes. Our results reveal that an object’s 
geometry is preserved during visual mental imagery.

Fig. 10   Classification accuracies. Average classification accuracies 
across four leave-one-out runs of imagery data are given for four 
ROIs in each participant. Classification was performed for letter-spe-
cific voxel patterns averaged in the range from + 2 until + 3 volumes 

after trial onset. The black dashed line indicates accuracies expected 
by chance; grey lines demarcate the 95th percentile of permutation 
classification accuracies
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Over training sessions, all participants reached a high 
probing accuracy for both imagery and perception trials, 
showing that they could reliably indicate the location of the 
invisible letter shape in visual space. The ability to imagine 
the borders of the letter in the absence of visual stimulation 
suggests that participants were able to generate a precise 
internal representation of the instructed letter. While provid-
ing explicit instructions to participants prohibited them from 
engaging in a more ecologically valid form of imagery, it is 
unlikely to fundamentally alter the neural processes under-
lying imagery. Instead, it allowed us to have a reasonable 
degree of confidence in the ground truth of imagined shapes. 
Next, we showed that patterns of voxel activations predicted 
by a pRF-encoding model and a physical (binary) letter stim-
ulus can account for observed activation patterns in response 
to mental imagery of the letter corresponding to the physical 
stimulus. Given that pRF mapping has been shown to accu-
rately predict fMRI responses to visual stimuli (Wandell and 
Winawer 2015), our results suggest that intrinsic geometric 
organization of visual experiences is also maintained during 
visual mental imagery. Our encoding analysis is somewhat 
reminiscent of that employed by Naselaris et al. (Nasela-
ris et al. 2015) who used a more computational complex 
encoding model to identify an imagined artwork from a set 
of candidates. Given that our encoding model is limited to 
retinotopy, our approach is more restricted in its applica-
tions than that detailed in (Naselaris et al. 2015). However, 
a more restricted approach has the advantage of affording 
tighter experimental control providing a stronger basis for 
drawing conclusions. By focusing on a single feature (reti-
notopic organization), using stimuli differing solely with 
respect to their geometric properties, and directly compar-
ing the predictions based on each stimulus regarding the 
activation profiles in early visual cortex, allowed us to draw 
specific conclusions regarding the topographic organization 
of mental imagery.

With respect to reconstructions, we found significant 
overlap between reconstructed imagery and the physical 
stimulus in terms of object geometry. While we anticipated 
this given findings that visual mental imagery exhibits reti-
notopic organization in early visual cortex (Slotnick et al. 
2005; Albers et al. 2013; Pearson et al. 2015), these results 
were, nonetheless, exciting, because the previous reconstruc-
tions of mental imagery based on retinotopy did not preserve 
object geometry (Thirion et al. 2006). Indeed, to the best of 
our knowledge, we present the first visually recognizable 
reconstructions of mental imagery, even at the single-trial 
level. Our first-level correlation metric of reconstruction 
quality revealed that reconstruction quality of letter ‘S’ was 
significantly reduced, while that of letter ‘T’ was signifi-
cantly improved with respect to that of letter ‘H’. This fits 
with the notion that stimuli exhibiting finer (coarser) spatial 
layouts would be harder (easier) to reconstruct. Furthermore, 

the OSIVQ object score was a significant predictor of first-
level reconstruction quality, whereas the OSIVQ verbal 
score was not. This indicates that participants relying on an 
object-based imagery strategy were generally more success-
ful at imagery of the letter shapes than participants relying 
on verbal strategies. Our findings are further in line with 
recent observations that neural overlap between imagery 
and perception in the visual system depends on experienced 
imagery vividness (Dijkstra et al. 2017). Interestingly, while 
inspection of Figs. 4 and 5 would suggest that reconstruction 
quality is ROI-specific, ROIs do not constitute a significant 
predictor of first-level reconstruction quality. Rather, the 
number of voxels included for any given ROI determined 
the quality. However, this does not imply that uncritically 
adding more voxels will definitely lead to higher classifica-
tion accuracies. We included only those voxels for which 
pRF mapping yielded a high fit. It is likely that reconstruc-
tions benefit from a large number of voxels, whose pRF can 
be estimated to a high degree of precision (i.e., which show 
a strong spatially selective visual response, especially with 
high-resolution 7T fMRI) rather than a large number of vox-
els per se. The OSIVQ object score and number of voxels 
were also significant predictors of second-level reconstruc-
tion quality for reasons similar to those just mentioned.

Both our encoding and reconstruction results show that it 
is possible to extract similar information from perceived and 
imagined shapes. This possibility has previously been sug-
gested to be strongly indicative of the pictorial nature of viv-
idly experienced mental images (Brogaard and Gatzia 2017). 
In conjunction with the observation that the object but not 
the verbal score of the OSIVQ significantly predicts recon-
struction quality, these results support the view that men-
tal imagery is represented pictorially, at least within early 
visual cortex. At later stages of (visual) processing, mental 
imagery may become increasingly symbolic. As such, we do 
not wish to imply that our results settle the imagery debate, 
as they do not rule out the existence of (additional) symbolic 
representations.

We further show that the tight topographic correspond-
ence between imagery and perception in early visual cor-
tex allows for improved reconstruction and opens new 
avenues for classification. Specifically, our results indi-
cate that training a denoising autoencoder on perceptual 
data creates an attractor landscape with one attractor per 
perceived letter. Importantly, the resemblance of imagery 
activation profiles in early visual cortex is sufficiently 
similar to its perceptual pendant to ensure that activation 
patterns of a large proportion of imagery trials fall within 
the attraction domain of the correct letter. The autoencoder 
then projects these imagery activation patterns onto the 
corresponding perceptual activation patterns. Though this 
is not the case for every trial with some being projected 
onto the wrong perceptual activation pattern pointing to 
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intra-individual fluctuations regarding successful imagery 
(Dijkstra et  al. 2017). Nevertheless, these projections 
allow for perception-level reconstruction quality even for 
individual imagery trials for those participants with good 
imagery ability. It may be an interesting avenue for future 
research to study the attractor landscape formed through 
training the autoencoder and investigate under which con-
ditions imagery trials fall inside or outside the attraction 
domain of each letter. Our current observations regarding 
the autoencoder imply that perception provides an upper 
limit on the achievable reconstruction quality. That is, any 
improvements of perceptual reconstructions, for instance, 
obtaining a more accurate encoding model by correcting 
for eye movements during pRF mapping (Hummer et al. 
2016) should improve imagery reconstructions as well.

Furthermore, the autoencoder can be utilized to pretrain 
a classifier purely based on perceptual data before fine-tun-
ing it on imagery data. We showed the feasibility of this 
approach using it for classifying imagined letters with a 
high degree of accuracy from at least one region of interest 
(between 50 and 70% correct) in five out of six participants. 
Statistical analyses revealed that both the OSIVQ object and 
OSIVQ spatial scores are significant predictors of classifica-
tion accuracy. The finding that the OSIVQ spatial score con-
stitutes a significant predictor here indicates that for classifi-
cation, a cruder retinotopic organization of mental imagery 
might already be sufficient. Indeed, classification may rather 
benefit from an increased signal-to-noise ratio (SNR) which 
could be achieved by lowering the spatial resolution. Here, 
we opted for high spatial resolution to obtain precise recep-
tive field estimates (additionally trading temporal resolution 
for SNR). In any case, successful classification may not be 
sufficient to draw conclusions regarding the precise geome-
try of imagined objects. As before, the number of voxels also 
constitutes a significant predictor of classification accuracy.

The autoencoder enables leveraging perceptual data to 
improve reconstructions of imagined letters and pretrain 
classifiers. This may eventually be utilized for the devel-
opment of content-based BCI letter-speller systems. So 
far, fMRI-based BCI communication systems have mostly 
focused on coding schemes arbitrarily mapping brain activ-
ity in response to diverse mental imagery tasks (e.g., mental 
spatial navigation, mental calculation, mental drawing, or 
inner speech), and hence originating from distinct neural 
substrates, onto letters of the alphabet (Birbaumer et al. 
1999; Sorger et al. 2012). As such, current BCI speller 
systems do not offer a meaningful connection between the 
intended letter and the specific content of mental imagery. 
This is demanding for users, as it requires them to memorize 
the mapping in addition to performing imagery tasks unre-
lated to intended letters and words. Our results constitute a 
proof-of-concept that it may be possible to achieve a more 
natural, content-based, BCI speller system immediately 

decoding internally visualized letters from their associated 
brain activity.

In conclusion, our letter encoding, reconstruction, and 
classification results indicate that the topographic organiza-
tion of mental imagery closely resembles that of perception. 
This lends support to the idea that mental imagery is quasi-
perceptual not only in terms of its subjective experience but 
also in terms of its neural representation and constitutes an 
important first step towards the development of content-
based letter-speller systems.
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