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Abstract: The symptoms of crown rot on strawberry plants are considered typical for the pathogen
Phytophthora cactorum, which causes high losses of this crop. However, an unknown number of
related species of pathogens of Peronosporales cause symptoms quite similar to those caused by
P. cactorum. To determine their spectrum and importance, strawberry plants were sampled from
41 farms in the Czech Republic. The cultures were isolated from the symptomatic plants using the
baiting method, with subsequent cultivation on a semiselective medium. Isolates were identified to
the species level using nuclear ribosomal internal transcribed spacer (ITS) barcoding after preliminary
morphological determination. In total, 175 isolates of 24 species of Phytophthora, Phytopythium,
Pythium, and Globisporangium were detected. The most represented was Phytophthora cactorum, with
113 (65%) isolates, which was recorded in 61% of farms, and the Pythium dissotocum complex with 20
(11%) isolates, which was recorded in 27% of farms. Other species were represented in units of percent.
Large differences between farms in the species spectra were ascertained. The differences between
species in cardinal growth temperatures and different management of the farms are discussed as
a main reason for such a diversification. Regarding the dissimilar sensitivity of various species of
Peronosporales against fungicides, the proper determination of the cause of disease is of crucial
significance in plant protection.

Keywords: oomycetes; Phytophthora cactorum; root pathogens; strawberry disease; root rot

1. Introduction

Strawberries, which are grown in convenient environments of temperate climate zones
worldwide, are important crops. The most devastating pathogens of this plant species
include fungi such as Botrytis cinerea and Verticilium dahliae [1,2], but one of the most serious
pathogens is an oomycete of the order Peronosporales—Phytophthora cactorum (Lebert
and Cohn) J. Schröt. This polyphagous pathogen causes damage to strawberry plants
by attacking the roots and rhizomes and inflicting extensive necroses [3]; under some
circumstances, it also infects fruits [4,5]. Under the weather conditions convenient for
disease development, losses can reach up to tens of percent [6]. The typical symptoms of
infection are the wilting of leaves and the creation of reddish to brownish lesions often
visible on the cross-section of the rhizome. The symptoms on underground plant organs
are necroses on gradually blackening roots, which simultaneously lose their ability to
supply the plant with water and nutrition [4]. Under conditions beneficial for pathogen
development, the infected plants often die in a few days. On the affected fruits, P. cactorum
causes leather rot and softening of the fruit. The ability of P. cactorum to spread via actively
movable flagellated zoospores is immense under circumstances convenient for spreading,
i.e., in water or water-saturated soil [7,8]. Additionally, the ability to survive viable in
soil via thick-walled oospores is significant [9–11]. Although the detrimental influence
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of this pathogen on the health of strawberry plants has been known for a long time [4],
considerably less is known about the importance of related species of soil-borne pathogens
of the same order, Peronosporales, which are characterized by similar abilities [8]. As
the exact causes of diseases caused by various species of these pathogens are difficult to
distinguish from each other based only on symptoms, part of the damage caused by those
pathogens is probably incorrectly attributed to P. cactorum [8].

During the last few decades, in different parts of the world, many pathogenic species
of the order Peronosporales have been documented in association with strawberry plants.
Dissimilar to P. cactorum, none of them seemed to have a similar regular association with
strawberries. Nine species have been documented from the genus Phytophthora, which
are associated with strawberries, including some of the most important polyphagous
pathogens, such as P. fragariae, P. plurivora, P. citophthora, P. nicotianae, P. cryptogea, P. bisheria,
P. nagaii, P. fragariaefolia, and P. capsici [12–19]. Associations with strawberries have been
documented in other soil pathogens of the related genera Globisporangium, Elongisporangium,
Pythium, and Phytopythium. Some of their members were only recently separated from the
former genus designation Pythium [20,21]. As a cause of strawberry disease, the following
species were identified: Globisporangium ultimum (all Globisporangium spp. in associa-
tion with strawberry plants were originally documented as Pythium spp.), G. intermedium,
G. violae, several members of the G. sylvaticum complex, G. spinosum, G. echinulatum, G. paroe-
candrum, G. carolinianum, G. spinosum, G. intermedium, G. mastophorum and G. polymastum,
Elongisporangium (as Pythium) anandrum, Pythium afertile, Py. angustatum, Py. apleroticum,
Py. inflatum, Py. torulosum, Py. aphanidermatum, Py. myriotylum, Phytopythium helicoides,
and Phy. megacarpum [20,22–29]. Some of these species, together with several members
of the fungal genera Fusarium and Rhizoctonia as well as nematodes, such as Pratylenchus
penetrans, are believed to participate in strawberry black rot disease, which is a complex
disease of strawberry plants [30–33].

Since the ability of many of these P. cactorum relatives to survive and spread is similar
to that of P. cactorum alone [8,34–36], it is reasonable to evaluate the importance of these
pathogens for strawberry disease development. The aim of the current study is to evaluate
the presence of soil-borne pathogens of Peronosporales in association with strawberry
plants showing symptoms resembling disease caused by P. cactorum in farms in the Czech
Republic. The study is based on the isolation of pathogen strains from plant roots using the
leaf baiting method with subsequent cultivation on semiselective media. Species determina-
tion was performed by the commonly used method, nuclear ribosomal internal transcribed
spacer (ITS) DNA barcoding [36–40], after preliminary morphological classification.

2. Materials and Methods
2.1. Sampling

A total of 41 strawberry farms in the Czech Republic was sampled, covering the whole
spectrum from small farms comprising only a few fields to the largest ones, focused on
intensive commercial strawberry production. Strawberry plants showing typical symptoms
of Phytophthora crown rot (wilting, greyish leaves, necrotic roots, or reddish-brown lesions
on cross sections of rhizomes) [4] were found on the farms, and samples of plants showing
such symptoms were taken. The pathogens were isolated using the leaf baiting method [41].
The roots and rhizomes of symptomatic strawberry plants were washed with tap water
and flooded with demineralised water in a plastic dish. The baiting leaves of susceptible
plant species (Fagus silvatica, Hedera helix, Castanea sativa, Rhododendron sp.) were placed on
the water’s surface. After the necrotic lesions developed on these leaves, the whole leaves
were washed with tap water and surface sterilized with 70% ethanol for 30 s. The border
regions between the affected and healthy tissues on the margins of lesions were cut out and
placed on the semiselective medium PARPNH V8 [42,43]. The cultures developed from
the specimens of plant tissues were then maintained on V8 agar plates. The isolates were
deposited in the culture collection of agriculturally important fungi of the Crop Research
Institute, VURV-F.
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2.2. Species Determination

After a morphological determination based on the morphology of reproductive struc-
tures present (oogonia, zoosporangia, chlamydospores), all cultures were classified into
species using ITS DNA barcoding [44]. For molecular processing, the cultures were culti-
vated on V8 agar plates covered by cellophane wrap. After the colony was developed, the
mycelium was scraped from the surface of the cellophane, and a small piece was placed
into a microcentrifuge tube in 20 µL of a dilution buffer of the Phire Plant Direct PCR Kit
(Thermo Fisher Scientific, Inc., Waltham, MA, USA). This kit was also used to perform
the PCR according to the manufacturer’s instructions; 2 µL of dilution buffer containing
the sample DNA was added to the total volume of 25 µL of Phire Plant PCR Master Mix,
including 0.2 mM primers ITS1 and ITS4 [45]. The reaction was performed in an Eppen-
dorf Mastercycler Nexus Thermal Cycler (Eppendorf AG, Hamburg, Germany) under the
following settings: 98 ◦C for 2 min; 35 cycles of 98 ◦C for 30 s; 55 ◦C for 30 s; 72 ◦C for
60 s; then, 72 ◦C for 10 min. The purification and sequencing of the PCR product were
performed by Macrogen, Inc. (Seoul, Korea). The DNA sequences were determined both
in the forward and reverse directions; the consensual sequences were used in subsequent
analyses. The identity of the species was determined by comparing the DNA sequences
to the NCBI database using the BLAST algorithm. In the final species determination, the
preliminary ascertained morphological characteristics were also taken into consideration.

2.3. Evaluation of Soil-Inhabiting Species Spectra of Peronosporales Present in Particular Localities

During sampling in the field, the number of samples of symptomatic plants taken
from each farm, the number of isolates, and the number of species from each sample
were recorded. Only one member of each species isolated from one plant was considered
an individual isolate. The number of isolates of each species found was expressed as a
percentage of the total number of isolates from each farm and from all farms. The number of
farms in which no isolate/only P. cactorum/P. cactorum accompanied by other species/only
other species was found were expressed in absolute values and percentages. The correlation
between the number of samples, isolates, and species found on each farm was ascertained
using the software Statistica 14.0 (Tibco Software Inc., Palo Alto, CA, USA). To express the
degree of correlation of these numbers, the Spearman coefficient was calculated, and the
same numbers were displayed on the line chart.

3. Results

The number of samples taken from particular farms was 1 to 94 depending on the
size of the farm and on the number of symptomatic plants found; the average number of
sampled plants per farm was 16. In total, 459 strawberry plants were taken showing typical
symptoms of infection by Phytophthora cactorum. After the isolation of mycelial cultures
from plant specimens, 24 species were identified (Table 1). The detailed list of all isolates
and the NCBI GenBank accession numbers of sequences of their ITS rDNA region used
in species determination are given in Supplementary Table S1. Since the unambiguous
identification of some species closely related to Pythium dissotocum was not possible on
the basis of either sequencing or morphology [46], these isolates were labelled the Pythium
dissotocum complex, which was in agreement with the solution used in other works [36,47].

Considering only one member of each species isolated from one plant as an individual
isolate, a total of 175 cultures was isolated. In only six cases, two different pathogen species
were isolated from one plant. The majority (113, i.e., 65%) of isolates were identified
as Phytophthora cactorum; other frequently represented isolates included members of a
Pythium dissotocum complex (20, i.e., 11%). Apart from those two species, the other species
were represented by less than ten percent (Table 1). The proportion of farms where only
P. cactorum was sampled was 32%; in another 29% of farms, this species was accompanied
by other pathogens of the genera Pythium, Phytopythium, or Globisporangium. In 22% of
farms, only pathogens other than P. cactorum were revealed; in seven farms (17%), no
soil-borne pathogens of Peronosporales were isolated (Table 2). Regardless of the species to
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which they belong, the number of isolates sampled in farms was mostly one to four, with an
average of four per farm. The maximum number of isolates originating from one farm was
24; this number represented three species. The maximum number of species originating
from one farm was nine, although such a high number was found in only one farm (2%).
Only one species was found in twenty farms (49%), while two species were found in nine
farms (24%) (Table 3, Supplementary Table S1). These results not only demonstrate that
P. cactorum substantially predominates over other soil-borne Peronosporales pathogens,
but also indicate the significant participation of at least another 1–3 species of this family in
plant losses.

Table 1. List of the species of the order Peronosporales isolated in strawberry fields in the
Czech Republic.

Species Name No. of Isolates Obtained % of Particular Species
on the Total No. of Isolates

Globisporangium irregulare 3 1.71
Globisporangium ultimum 3 1.71

Phytophthora bilorbang 1 0.57
Phytophthora cactorum 113 64.57

Phytophthora citrophthora 2 1.14
Phytophthora cryptogea 1 0.57
Phytophthora lacustris 1 0.57
Phytophthora plurivora 1 0.57
Phytopythium citrinum 1 0.57

Phytopythium mercuriale 1 0.57
Phytopythium montanum 1 0.57

Phytopythium vexans 5 2.86
Phytopythium litorale 1 0.57

Pythium aphanidermatum 1 0.57
Pythium conidiophorum 1 0.57

Pythium dissotocum complex 20 11.43
Pythium heterothallicum 3 1.71

Pythium intermedium 4 2.29
Pythium mamillatum 2 1.14

Pythium nodosum 5 2.86
Pythium perplexum 1 0.57

Pythium rostratifingens 1 0.57
Pythium salpingophorum 1 0.57

Pythium torulosum 2 1.14

Table 2. The numbers and percentages of strawberry farms in the Czech Republic in which P. cactorum
and other species of the order Peronosporales were recorded.

Presence of
Pythiaceae Pathogens No. of Localities % of Localities

Not any species found 7 17.1
Only P. cactorum found 13 31.7
Only other species than

P. cactorum found 9 22.0

P. cactorum and other species
found 12 29.3
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Table 3. Numbers of plant samples, isolates, and species recorded in strawberry farms in the
Czech Republic.

No.

No. of Plantations
with the Given

Number of Sampled
Plants

No. of Plantations
with the Given

Number of Isolates

No. of Plantations
with the Given

Number of Species

0 0 7 7
1 1 8 20
2 2 7 9
3 1 4 3
4 3 4 0
5 0 1 0
6 2 1 1
7 2 2 0
8 1 1 0
9 1 0 1
10 1 1 0
11 2 1 0
12 0 1 0
13 0 1 0
14 3 0 0
15 5 0 0
16 1 0 0
17 2 0 0
18 3 0 0
19 3 0 0
20 2 0 0
21 0 1 0
22 1 0 0
23 0 0 0
24 1 1 0

A correlation was found between the number of isolates and the number of species
originating from the same farm (Spearman r = 0.74, p < 0.05, Table 4, Figure 1). The
correlation between the number of sampled plants on each farm and the number of isolates
was lower (r = 0.48, p < 0.05); the correlation between the number of sampled plants and
the number of species found was even lower (r = 0.19, p < 0.05).

Table 4. Spearman correlation coefficient r expressing the correlation between the numbers of isolates,
species, and sampled plants in strawberry farms.

No. of Isolates No. of Species
Identified

No. of Plants
Sampled

No. of isolates 1.000000 0.742487 0.485586
No. of species

identified 0.742487 1.000000 0.191530

No. of plants
sampled 0.485586 0.191530 1.000000
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4. Discussion

The species spectra recorded in particular farms substantially differed from each
other, although the distances between farms sampled were lower than a few hundred
kilometres. Regardless of the incomparably lower sensitivity of the method we used, i.e.,
baiting/cultivation, in comparison to the currently widely used metabarcoding, this method
had the advantage of capturing only substantially vigorous organisms [48,49]. However,
this limitation was common for all sampled farms. In contrast, the metabarcoding method
has the disadvantage of a lower ability to clearly differentiate between some species, but
most importantly, this method does not have the ability to differentiate between dead and
living microorganisms [48]. As follows from the correlation analysis (Table 4, Figure 1),
the number of species we found on farms only indirectly and loosely depended on the
sampling intensity. Except for the frequency of the occurrence of symptomatic plants, the
sampling intensity roughly reflected the size of the farm. Therefore, in the current study,
the approximate capture of the true spectrum of oomycete pathogen species present in the
rhizosphere of strawberry plants could be assumed, and the total number of species found
probably would not have increased substantially even if more plants had been sampled.

In the study, 24 species belonging to four genera of Peronosporales were isolated
from symptomatic strawberry plants. All of these species have a global distribution,
and all of them have a relatively wide host spectrum; the majority also included straw-
berries, although in some species, the host spectrum has not yet been well explored in
detail [29–31,47,50–77].

The most important strawberry pathogen we found was Phytophthora cactorum, which
was found in 61% of the farms. Although this species dominated in the majority of
farms we sampled, in 22% of farms, we did not find this species, while other soil-borne
pathogens of Peronosporales (Phytophthora pluvivora, P. cryptogea, Pythium dissotocum com-
plex, Py. nodosum, Py. ultimum, Py. aphanidermatum, Py. heterothallicum, Py. salpingophorum,
and Phytopythium montanum) were successfully isolated. In an additional 15% of farms,
we did not find any of these pathogens, although unsuccessful baiting cannot be sim-
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ply interpreted as evidence of their absence. Regardless, it seems that P. cactorum could
be missing for a significant proportion of farms, where the symptoms on plants could
have been caused by other related members of Peronosporales. Thus, the distribution of
P. cactorum did not meet the basic assumption of a standard distribution model, i.e., the
equilibrium of the distribution of indigenous organisms with the environmental condi-
tions [78]. Since this is a typical feature of invasive species, such an irregular distribution
supports the conception of the non-European origin of this pathogen. The origin of the
entire Phytophthora Clade 1, including P. cactorum, is assumed to be North America [79],
although it has not yet been unambiguously evidenced. The relatively short coevolution
time between strawberry plants and P. cactorum has been documented by the exclusive
presence of only one of five known genetic lineages of this species on strawberry plants in
the Czech Republic [80], although other lineages are also present on woody host species in
this region [81]. Such an exclusive presence of one lineage on strawberries has already been
evidenced and explained in association with the intraspecific host specificity developed in
P. cactorum [82–84].

Three members of Clade 6 [85] of the genus Phytophthora were found in strawberry
farms; P. bilorbang, P. lacustris, and P. cryptogea. The association of P. lacustris with strawberry
plants was documented only recently [86], while to our knowledge, the association of
P. bilorbang with strawberries has not yet been recorded. However, since this species was
originally described as a pathogen of Rubus anglocandicans (Rosaceae) [87], its association
with the strawberry, a member of the same plant family, is not surprising. Both of these
two pathogen species are associated with wetlands or periodically flooded localities. They
are the most frequently found in association with (semi)natural stands of riparian forests
throughout Europe [50–54]. The possible explanation of their occurrence in strawberry
farms could, thus, be hypothesized as a consequence of irrigation with unfiltered water
from watercourses or ponds contaminated by these Phytophthora species, by flooding
of fields by contaminated water in association with some climatic extremes, or by any
other accidental event. In contrast to these two previous species, P. cryptogea, which has
also been mentioned to occasionally be associated with strawberry plants [88,89], has an
evidenced frequent occurrence in agriculture, although it occurs in forestry and nurseries
as well [55,56]. In Europe, this species is common on crops and ornamental plant species,
as well as in varied natural stands of woody plants [79,90]. Strains of P. cryptogea differ
from each other in their host range [91], i.e., host specificity is evolved in this species.
Some isolates are also pathogenic to wheat and other crops, which is congruent with their
presence in agricultural lands [92].

The members of Phytophthora Clade 6 are considered usually saprophytic or only
occasionally pathogenic in their original forest habitats under normal conditions [93],
although the importance of some of them may be underestimated, and some of them are
also able to cause significant plant damage [94]. For some Clade 6 Phytophthora spp. such
as P. lacustris and P. bilorbang, the development of the infection is also hypothesized to be
highly influenced by the temperature. These species switch to a pathogenic lifestyle from
that saprophytic lifestyle only under highly optimal environmental conditions [94].

In contrast to the previous species, P. plurivora is considered one of the most important
Phytophthora pathogens worldwide, which is associated mainly with forests [79]. This
species was suggested by Schoebel et al. [95] to be indigenous to Europe, but given its
asymptomatic occurrence on trees in local undisturbed native forests as an indirect indica-
tion of long-term coevolution [96], the origin of P. plurivora and all of Phytophthora Clade
2 seems more likely to be in Southeast Asia [97,98]. Nevertheless, P. plurivora is one of
the most frequently sampled Phytophthora species in European forests in diverse natural
and seminatural stands, as well as in ornamental and horticultural nurseries [79], while its
occurrence in association with agriculture and strawberry farms is only rare [18,99]. The
other member of Clade 2 we sampled, P. citrophthora, has a main distribution area in the
Mediterranean basin and similar regions in association with various Citrus species [100].
Although P. citrophthora causes the greatest damage to Citrus spp., it also has a wide spec-
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trum of other hosts, including the strawberry [55,57]. However, even this pathogen has not
yet been shown to be a regular threat to this crop.

Although the origin of the majority of the mentioned Phytophthora species remains un-
known, the origin of all other members of the order Peronosporales that we isolated is even
less clear. Based on the number of strains we isolated, the second most important pathogen
after P. cactorum was the Py. dissotocum complex. Comparing the results of the current study
to the other one performed by Toljamo et al. [27] in strawberry fields in Finland, the spec-
trum of species of the order Peronosporales was shown to be completely different from the
spectra found in the current study, where only P. cactorum and Py. dissotocum were isolated
equally. Pythium dissotocum and other related pathogens were recently shown to be able to
cause necrosis on strawberry plants of similar size as P. cactorum [101]. Since Py. dissotocum
was isolated from symptomatic plants in 11 farms (i.e., more than one-quarter of them),
and more than 10% of all isolates belong to this species, this should not be considered an
unimportant pathogen of strawberry plants. This species, together with Py. aphanidermatum,
belongs to the most serious pathogens of this genus for crop production. Both species are
associated mainly with vegetables [102]; however, the association with strawberry plants
has also been documented [58,59]. We isolated two other members of this genus, Py. inter-
medium and Py. mamillatum, which are already known pathogens of strawberries [59,103].
The total host spectrum of the majority of other Pythium spp. we isolated (Py. rotratifingens,
Py. montanum, Py. conidiophorum, Py. nodosum, Py. perplexum, Py. salpingophorum, Py.
Nodosum, and Py. torulosum) remains unknown, and the pathogenicity of some of them
against particular host species is not clear. This is obvious in the example of Py. perplexum,
which is documented as both pathogenic and nonpathogenic on beans [104,105]. To our
knowledge, this was the first report of all eight Pythium species being associated with
strawberry plants. Since we did not perform an exact test of their pathogenic role on this
crop, theoretically, their role in strawberry roots could be saprotrophic. However, their
phytopathogenic nature is well known in many other host species, and since they were
isolated from strawberry plant tissues, their role in damage to this host is quite probable.

The differences in species spectra recorded in the particular farms we investigated
(Table S1), as well as the noticeable differences between the entire species spectrum found
in the current study and in that of Toljamo et al. [27] in Finland, can be explained as
a result of a combination of two phenomena. Mainly during the biotrophic phase of
infection, the formation and severity of plant disease greatly depend on the tempera-
ture [102,106]. This phenomenon has already been mentioned by Littrell et al. [107] for
Pythium aphanidermatum, by Watanabe et al. [29] for Globisporangium ultimum, and by
Grove et al. [108] for Phytophthora cactorum. This optimal temperature for infection can be
quite different from the optimal temperature for growth [29]. The growth temperatures of
the species of Peronosporales we found differed considerably, which was documented by
the range between the lowest and highest optimum temperatures of these species as wide
as 20–35 ◦C [51,59,61,63,68,72,87,97,103,109]. Although little is known about the tempera-
tures beneficial for infection, the optimal temperature for the development of infection by
Globisporangium ultimum is between 9 and 20 ◦C [29], while that of Pythium aphanidermatum
is between 30 and 35 ◦C [59]. The total range of the cardinal temperatures of a whole species
spectrum we isolated was even wider. The composition of the entire community of these
pathogens very likely reflects such differences, which pose a threat considering potential
climate changes, because the increased temperatures have the potential to cause alterations
in the local spectra of pathogens. Such a change could also cause some of the originally
rather saprotrophic Peronosporales to switch to a pathogenic lifestyle, as was described
for the case of Phytophthora spp. of Clade 6 [94]—P. lacustris and P. bilorbang, the species
that we also found. In addition, these two species are also considered tolerant to higher
temperatures [51,87], which is potentially beneficial for them in changed environmental
conditions.

Another phenomenon probably participating in differences between the species spec-
tra we identified lies in the long-term accumulation of pathogenic species in soil in cases
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where one crop is cultivated in the same field for a long time. This phenomenon was de-
scribed for Pythium species in maize and soya fields [110,111] and for many plant pathogens,
including some Peronosporales in strawberries [103]. Our observations appeared to be
in accordance with these conclusions, as fields used for intensive and long-term commer-
cial strawberry production on farms using pregrown plant stocks are the most severely
contaminated with soil Peronosporales pathogens (data not shown), while small fields are
less affected.

Both of the mentioned explanations of the presence of different species spectra, whose
combination is a probable principal cause of the presence of such a wide total species spec-
trum and of differences between local spectra, constitute a certain danger for strawberry
production. Except for temperatures favouring some non-native species, the joint presence
of allopatric species in one field poses a risk of the hybridization of such species [112],
with accompanying effects, such as changes in the host species range, increased inva-
siveness, changes in the ecological requirements of the new hybrid, or the transmission
of the genes of resistance to fungicides into a new context. The instability of newly cre-
ated genomes [113], also associated with potential polyploidy or aneuploidy, enables the
increased development of adaptations [114], improved fitness, and the creation of new
properties of hybrid progenies [115,116], although the detrimental influence on the progeny,
such as the increased oospore abortion rate of some of the descendants or their decreased fit-
ness, could also be the result of hybridization [113]. Such a development can be particularly
increased if the progenies further reproduce asexually or substantially asexually [117,118].
The environmental changes, together with the quite different temperature demands of
participating parental species, present favourable conditions for such development. The
small, genetically plastic populations [119] potentially represented by only a few newly
arisen genotypes are able to readily respond to the changing environment.

Most of the Phytophthora species we found have not yet been shown to be system-
atically associated with strawberry plants, and in the current study, they were recorded
only sporadically. Thus, the ascertained occurrence of P. plurivora and P. citrophthora on
strawberry plants seems to be more likely the result of an accidental infection from some
surrounding sources than the systemic infection spread, for example, by planting stock.
However, similar to P. cactorum, species such as P. cryptogea and P. plurivora [84,91,120,121]
and probably P. citrophthora as well [122,123] have evolved host specificity at the intraspe-
cific level, meaning that particular pathogen species strains have an uneven ability to
infect diverse host species, with one lineage having an increased ability to infect one host
species. Due to their immense capacity for clonal reproduction, after accidental contact
with strawberry plants, the particular strain of these Phytophthora species or some new
hybrids coincidentally better adapted to this host could give rise to a strawberry-specific
lineage with increased pathogenic potential against this crop. The association of these
species with strawberry plants has also been documented in other works [18,55,57], and
the spread of Phytophthora species from nurseries to plantings has also been described [79].
The ability of some members of the genera Phytophthora, Pythium, Phytopythium, and Globis-
porangium to cause strawberry plant damage comparable to that caused by P. cactorum has
been demonstrated [101], and these species are also differently sensitive to fungicides [124].
In the case of the adaptation of these species to strawberry plants, due to the common use
of pregrown plantings replanted from infested fields, the fast spread of such lineages can
be expected.

5. Conclusions

The results of our research showed that in addition to Phytophthora cactorum, many
other related species participate in damage to strawberry plants, which were formerly
almost exclusively attributed to P. cactorum. These polyphagous species are members
of Phytophthora, Pythium, Phytopythium, and Globisporangium. Some of these species are
known as important pathogens associated with some crops, including strawberries, or
more generally with agriculture. The other species we also found have been considered
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to be associated with natural and seminatural habitats. Their presence in fields poses
risks in terms of their potential change from the mainly saprotrophic to a parasitic mode,
which could be mediated by climate change. Another risk is the potentially accidental
development of their lineages specific to strawberry plants, as well as the potential for
the creation of hybrid species through hybridization between formerly allopatric parental
species. The different sensitivity to fungicides of various, often nonindigenous, species
poses another important threat associated with their presence in strawberry fields.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8040346/s1, Table S1: the list of all isolates of Peronosporales
found in strawberry fields in the Czech Republic. The names of sampled localities and NCBI accession
numbers of ITS sequences of all isolates are given.
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98. Jung, T.; Scanu, B.; Brasier, C.M.; Webber, J.; Milenković, I.; Corcobado, T.; Tomšovský, M.; Pánek, M.; Bakonyi, J.; Maia, C.; et al.
A survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described Phytophthora taxa including P.
ramorum. Forests 2020, 11, 93. [CrossRef]

99. Lilja, A.; Rytkönen, A.; Hantula, J.; Müller, M.; Kurkela, T. Phytophthora cactorum, P. ramorum, P. plurivora, Melampsoridium
hiratsukamum, Dothiostroma septosporum and Chalara fraxinea, non-native pathogens in Finland. In Proceedings of the 7th Meeting
of IUFRO Working Party 7.03.04 Diseases and Insects in Forest Nurseries, Hilo, HI, USA, 13–17 July 2010; pp. 55–62.

100. Laviola, C.; Somma, V.; Evola, C. Present status of Phytophthora species in the Mediterranean area, especially in relation to citrus.
EPPO Bull. 1990, 20, 1–9. [CrossRef]
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