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SUMMARY

All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive

oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid

response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human

dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate

the regulatory mechanisms that implement this metabolic response, we developed mechanistic

kinetic models for each organism’s central metabolism and systematically tested activation and inac-

tivation of each irreversible reaction by eachmetabolite. This ensemblemodeling predicts in vivo rele-

vant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite

dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during

normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway

flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high

levels of stress.
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INTRODUCTION

The primeval accumulation of oxygen in the atmosphere was arguably one of the most dramatic changes

for life on earth. Although it enabled higher respiratory energy yields due to the high redox potential of

oxygen (Raymond and Segrè, 2006), its reactive nature challenges all organisms through reactive oxygen

species (ROS), such as hydrogen peroxide (H2O2), that occur as by-products of aerobic respiration. ROS-

dependent oxidation of many cellular constituents such as DNA, proteins, and lipids (Mishra and Imlay,

2012; Imlay, 2013) constitutes a severe threat to cell survival and contributes to a number of human disor-

ders such as cardiovascular diseases, cancer, and aging (Harman, 1981; Alexander, 1995; Waris and Ahsan,

2006; Liou and Storz, 2010).

Long-term transcriptional responses that scavenge ROS appear to be conserved across species (Ralser

et al., 2007; Ray et al., 2012; Vatansever et al., 2013; Dan Dunn et al., 2015). In microorganisms, such as

Escherichia coli and Saccharomyces cerevisiae, the coordinated transcriptional response includes the

up-regulation of the ROS scavenging superoxide dismutase, catalases, and glutathione/glutaredoxin sys-

tems (Godon et al., 1998; Zeller et al., 2007). Similarly, mammalian cells employ long-term anti-oxidative

responses that entail ROS detoxification (Morgan and Liu, 2011; Gorrini et al., 2013; Ma, 2013) and, depend-

ing on the severity of stress, initiate either pro-survival gene expression programs that support NADPH

production, ROS clearance, and DNA repair or cell death programs (Martindale and Holbrook, 2002;

Morgan and Liu, 2011; Gorrini et al., 2013; Zhang et al., 2016).

Until transcriptionally regulated defense mechanisms become operational (Chechik et al., 2008), cell sur-

vival depends on the basal expression of the above-mentioned enzymes and non-enzymatic antioxidants

such as reduced glutathione to scavenge some ROS (Fang et al., 2002; Kohen andNyska, 2002; Finkel, 2003;

Stincone et al., 2015). Increasing evidence points to glutathione peroxidase as one of the key short-term

survival mechanisms (Doroshow, 1995; Inoue et al., 1999; Mytilineou et al., 2002; Miyamoto et al., 2003;

Ralser et al., 2007; Kuehne et al., 2015; Christodoulou et al., 2018). Glutathione peroxidase-dependent

reduction of ROS requires a continuous supply of NADPH for regeneration (Imlay, 2008; Aon et al.,

2012). Upon sudden oxidative stress, the glutathione-based detoxification of ROS and the concomitant

oxidation of NADPH drastically decreases the NADPH pool that must be rapidly replenished. The major
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replenishing reactions are catalyzed by glucose 6-phosphate (G6P) dehydrogenase and phosphogluco-

nate (6PG) dehydrogenase in the oxidative branch of the pentose phosphate (PP) pathway of bacteria,

S. cerevisiae, and most mammalian cells (Fuhrer and Sauer, 2009; Stincone et al., 2015). Upon oxidative

stress, all cells increase the reduction rate of NADP+ to NADPH mainly by rerouting their glycolytic flux

into the PP pathway (Ralser et al., 2007; Rui et al., 2010; Anastasiou et al., 2011; Kuehne et al., 2015; Chris-

todoulou et al., 2018).

For E. coli we recently demonstrated this rapid flux rerouting to be achieved primarily by the relief of G6P

dehydrogenase inhibition from NADPH that liberates the reserve flux capacity of the PP pathway (Christo-

doulou et al., 2018). Together with the blockage of lower glycolysis caused by direct oxidation of key

enzymes (i.e., glyceraldehyde 3-phosphate dehydrogenase [GAP dehydrogenase] or pyruvate kinase M2

in mammalian cells) (Colussi et al., 2000; Ralser et al., 2007, 2009; Anastasiou et al., 2011), this mechanism

is sufficient to explain the rapid metabolic adaptation in E. coli (Christodoulou et al., 2018). This view is

consistent with recent findings of an NADPH-dependent activation of oxidative PP pathway fluxes upon

oxidative stress in human dermal fibroblasts (Kuehne et al., 2015). For the lower eukaryote S. cerevisiae,

the short-term oxidative stress response has been suggested to depend primarily on blockage of lower

glycolysis (Ralser et al., 2007, 2009). To elucidate whether the reserve PP pathway flux capacity and the

mechanisms that liberate it for enhanced oxidative stress survival are conserved across kingdoms of life,

we characterized the immediate metabolic response of E. coli, S. cerevisiae, and human dermal fibroblasts

to low and high oxidative stress. Multivariate and timing analysis revealed a conserved metabolome

between species, and mechanistic modeling with ensembles of thousands of models of glycolysis and

PP pathway, with different combinations of regulatory mechanisms for each of the species, revealed that

alleviation of NADPH inhibition of G6P dehydrogenase, is a conserved and highly important mechanism

for the rerouting of flux in every cell type and stress intensity, with the only exception of S. cerevisiae

when exposed to high levels of stress.
RESULTS

The Immediate Metabolic Response upon Exposure to Oxidative Stress

To compare the immediate metabolic response to oxidative stress between E. coli, S. cerevisiae, and

human dermal fibroblasts, we challenged exponentially growing cultures with low (0.5 mM) and high

(20 mM) levels of H2O2. Before the stress, E. coli and S. cerevisiae were grown in minimal and rich medium

(Figure 1) to assess the influence of growth rate and condition. Given previous knowledge on the dynamics

of the oxidative stress responses (Ralser et al., 2009) (Kuehne et al., 2015) (Christodoulou et al., 2018), dy-

namic metabolome profiles were determined in triplicate experiments during 1 min for E. coli and

S. cerevisiae and 5 min for human dermal fibroblast post stress. The employed non-targeted mass spec-

trometry method (Fuhrer et al., 2011) allowed us to annotate 230 measured ions to 467 metabolites listed

in the KEGG metabolite database (Kanehisa and Goto, 2000; Kanehisa et al., 2017) based on the

mass-to-charge ratio using a strict tolerance of 0.001 amu (Table S1).

Consistent with previous data (Christodoulou et al., 2018; Ralser et al., 2007, 2009; Kuehne et al., 2015), all

three species responded rapidly already to the lower H2O2 challenge (Figures S1 and S2). Under all tested

conditions, we observed an immediate metabolic response at the earliest measured time point (5 s for

E. coli and S. cerevisiae and 30 s for human cells) that steadily progressed over time (Figure S1). Specifically,

the ratio of oxidized to reduced glutathione increased after only 5 s (human dermal fibroblasts [HDF]: 30 s)

and stabilized after about 10 s (HDF: 60 s), most pronounced upon treatment with 20mMH2O2 (Figure S2A).

This rapid increase was conserved across almost all species and conditions. Only treatments with 0.5 mM

H2O2 in yeast cultivated in rich media and human cells resulted in a continuous increase of the oxidized to

reduced glutathione ratio. Remarkably, the ratio of oxidized to reduced glutathione was higher, in partic-

ular for E. coli in minimal medium and yeast in rich medium (Figure S2B). This observation indicates that

E. coli has a lower capacity to cope with high oxidative stress in minimal medium, which could explain

the greater increase of the oxidized to reduced glutathione ratio at high stress in rich medium (>10-fold

increase) compared with minimal medium (�2-fold increase).

Pathway enrichment analysis of metabolite changes at each time point (compared with untreated controls)

revealed glycolysis, gluconeogenesis, tricarboxylic acid cycle, PP pathway, glyoxylate, amino acid, and pu-

rine and pyrimidine metabolism as the first responders (Figure S3). The changes in central and nucleotide

metabolism exhibited a high degree of similarity across species and conditions (Figures S4–S9), suggesting
1134 iScience 19, 1133–1144, September 27, 2019



Vacuum

Figure 1. Experimental— – Computational Workflow

Triplicate cultures of E. coli and S. cerevisiae were grown in rich and minimal medium and human dermal fibroblasts in rich medium. Mid exponential growth

phase cultures of microbes were transferred to a filter and for 10 s perfused with the cultivation medium and then with the samemedium but with either a low

(0.5 mM) or high (20 mM) dose of H2O2. The mammalian stress experiments were performed in liquid culture through addition of H2O2 dosage. Culture

aliquots were immediately transferred into approximately �20�C cold quenching/extraction liquid and prepared for mass spectrometric analysis of the

intracellular metabolome. Using the data from the untargeted metabolomics measurements, we performed multivariate analysis and timing analysis. To

systematically map all metabolite-enzyme interactions and their functional relevance, we developed kinetic models of glycolysis and the PP pathway for all

species and conditions. Ensembles of models with different putative regulatory interactions were then tested for their ability to capture the dynamics of eight

metabolites in central metabolism.
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Figure 2. The Immediate Metabolic Response to Oxidative Stress

The immediate metabolic response upon exposure to oxidative stress for (A) 5 s, (B) 15 s, (C) 30 s, and (D) 60 s. The axis shows the first two principal

components of a principal component analysis of the metabolomics data of cells treated for 30 and 60 s with H2O2. (A) and (B) are without data for HDF cells

since shortest treatment was 30 s.
a conserved response, consistent with reports on individual species (Colussi et al., 2000; Shenton and

Grant, 2003; Murakami et al., 2006; Ralser et al., 2007, 2009; Anastasiou et al., 2011). Stress intensity had

the strongest impact on the metabolic response because the first principal component of the metabolo-

mics data separated the samples based on stress level of H2O2 at every treatment duration (Figure 2).

The pre-stress growth condition was less relevant than cell type becausemost samples clustered according

to cell type, with the exception of the 5 s time point of E. coli at high and low stress.
Timing Analysis Reveals Conservation of the Metabolic Response Dynamics

To elucidate whether the conserved pathway responses were also similar in terms of their dynamics, we

determined the time needed for every measured metabolite to reach half of its maximum fold change

(T1/2) (Figures 3A and S10–S14). In the tricarboxylic acid cycle, we observed continuous—up to 4-fold—

increase of cis-aconitate (except for HDF 20 mM) and citrate and a decrease of fumarate and malate in

all species, for all stress intensities and in both media (Figures 3B and S6). These results are consistent

with the strong reduction of TCA cycle activity due to inhibition of isocitrate dehydrogenase, aconitase,

and alpha-ketoglutarate dehydrogenase upon exposure to oxidative stress (Murakami et al., 2006; San-

doval et al., 2011; Tretter and Adam-Vizi, 2000, 2005). Succinate did not consistently decrease in all cases,

which could be explained by a potential direct conversion of aKG to succinate to neutralize ROS (Liu et al.,

2018).

Glycolysis dynamics were also consistent across organisms, with fructose 1,6-bisphosphate and GAP/dihy-

droxyacetone phosphate (DHAP) increasing and metabolites of lower glycolysis such as 2/3-phosphoglyc-

erate and phosphoenolpyruvate (PEP) decreasing (Figures 4 and S5). The response of hexose phosphates

was not conserved because E. coli exhibited an opposite effect compared with the increase in

S. cerevisiae and human cells. Finally, we found the PP pathway dynamics to be highly conserved across spe-

cies and conditions (except E. coli in rich media and yeast in minimal media under high stress), with the stron-

gest immediate increase for 6PG in the oxidative branch of the PP pathway. The levels of metabolites in the

non-oxidative branch, like sedoheptulose 7-phosphate (S7P) and pentose phosphates, showed a synchro-

nous dynamic increase, except for the high stress in E. coli. Interestingly, under low-stress conditions

accumulation of PP pathway metabolites is faster or as fast as accumulation of upper glycolytic metabolites

(Figures 4 and S15). In contrast, under some high-stress conditions (yeast in both media and E. coli in minimal

medium), accumulation of glycolytic intermediates precedes accumulation of PP pathway intermediates.

Thus, our analysis demonstrates that the short-term dynamic responses in central metabolism are largely

conserved across all tested cell types, where high stress levels induced faster responses across all cell types

and the human cell line responded on average five times slower than E. coli and S. cerevisiae (Figures 3B

and 4). However, the detailed mechanisms that are involved in this rerouting and if they are conserved

remain unclear.
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Figure 3. Timing Analysis and Its Results for the Citric Acid Cycle

(A) Timing analysis. To determine the timing of the metabolic change upon H2O2 exposure, multivariate adaptive regression splines were fit to each

temporal trace (log2[x vs 0 min H2O2]) of each metabolite.

(B) Timing analysis results for the citric acid cycle. Timing analysis results for all organisms and conditions considered, for the intermediates of the citric acid

cycle. The half-time to local maximum t1/2 was not determined (1) for spline fits with R2 < 0.2 and (2) if no significant maxima could be identified (i.e., peak

prominence of Dlog2(FC) < 0.2). Furthermore, following local maxima with less than 50% change of log2(FC) were removed.
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Figure 4. Timing Analysis Results for Glycolysis, the PP Pathway, and the Glutathione System

(A) Timing analysis results for all organisms and conditions considered for the intermediates of glycolysis and the PP pathway.

(B) Timing analysis results for all organisms and conditions considered for the glutathione regeneration mechanism. The half-time to local maximum t1/2 was

not determined (1) for spline fits with R2 < 0.2 and (2) if no significant maxima could be identified (i.e., peak prominence of Dlog2(FC) < 0.2). If more than one

local maximum is detected (>50% change of log2(FC)), a half-time for the change between subsequent local maxima is determined.
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Model-Based Identification of a Conserved Mechanism that Enables Rapid Adaptation to

Oxidative Stress

How is this conserved metabolic response mechanistically achieved in the different species? In E. coli and

human dermal fibroblasts, the rapid flux rerouting from glycolysis to the PP pathway under low-stress

conditions is controlled by the relief of G6P dehydrogenase inhibition through dropping NADPH levels

in combination with the ROS-mediated blockage of lower glycolysis (Christodoulou et al., 2018) (Kuehne

et al., 2015). For yeast under high oxidative stress latest studies point toward the latter mechanism (Ralser

et al., 2009). Rapidly depleting intermediates of lower glycolysis (i.e., xPG, PEP) in all organisms and

conditions demonstrate the blockage of lower glycolysis upon stress, most likely due to oxidation of

GAP dehydrogenase (Ralser et al., 2009; Kuehne et al., 2015). Consistent with the E. coli model and previ-

ous findings in mammalian cells (Kuehne et al., 2015), our timing analysis revealed a generally faster and

much stronger increase in the first PP pathway intermediate (6PG) and pentoses than in the glycolytic hex-

oses and fructose 1,6-bisphosphate (Figures 4 and S5). In three cases we found a synchronous increase in

the levels of hexoses or fructose 1,6-bisphosphate compared with 6PG and pentoses, i.e., S. cerevisiae

stressed with 0.5 mMH2O2 in minimal or rich medium and mammalian cells stressed with 20 mMH2O2 (Fig-

ures 4 and S5). The only case with a faster response in the hexoses compared with 6PG and pentoses was

S. cerevisiae grown in minimal medium and stressed with 20 mM H2O2 (Figures 4 and S5).

Overall, our results are consistent with a direct activation of the oxidative PP pathway rather than a passive

flux rerouting as a consequence of the glycolytic block, with the sole exception of S. cerevisiae in minimal

medium and high stress. It is precisely for this condition that blockage of lower glycolysis was suggested to

be largely sufficient to shift NADPH-producing fluxes into the PP pathway of yeast (Ralser et al., 2009). Thus,

our results are in good agreement with previous results (Ralser et al., 2009) (Kuehne et al., 2015) (Christo-

doulou et al., 2018), but our timing analysis does not allow us to conclude whether this blockage alone is

sufficient to explain the metabolite dynamics in every organism and condition or whether the hypothesized

reserve capacity of flux in G6P dehydrogenase is also needed.

To verify whether both regulatory mechanisms are required for all three organisms and to clarify the

discrepancy between the low and high oxidative stress treatment in S. cerevisiae (Ralser et al., 2009), we

developed kinetic models for each of the three organisms. Kinetics of reversible and irreversible reactions

weremodeled with mass action andMichaelis-Menten laws, respectively, as described before (Christodou-

lou et al., 2018). Each model consisted of 12 ordinary differential equations, with 12 metabolites and 24–26

reactions that represent glycolysis, PP pathway, and glutathione detoxification of ROS by the oxidation of

NADPH, which represents the perturbation (see also Transparent Methods, Kinetic Model of Glycolysis/

Gluconeogenesis and the Pentose Phosphate Pathway for more information). Kinetic enzyme parameters

(Table S2) and specific glucose uptake rates were obtained from the literature, where E. coli and

S. cerevisiae are reported to feature similar uptake rates in the range of 1–2 mM/s (Christen and Sauer,

2011; Zampar et al., 2014; Gerosa et al., 2015; Park et al., 2016). The glucose uptake rate for human cells

is approximately two orders of magnitude lower, in the range of 0.02–0.2 mM/s (Lemons et al., 2010;

Park et al., 2016). To account for the parametric uncertainty, the Michaelis-Menten constants (KM) of

each enzyme were randomly sampled 2,000 times in a 0.1–10 times range around their literature values,

and maximum reaction rates (Vmax) were calculated from flux distributions during steady-state growth on

glucose (Link et al., 2013) (see Transparent Methods, Kinetic Model of Glycolysis/Gluconeogenesis and

the Pentose Phosphate Pathway for more information). Owing to these broad ranges in parameter sam-

pling, we adequately considered uncertainty in kinetic parameters, uptake rates, and flux distributions in

the different organisms.

To evaluate species differences with our kinetic models, we quantified absolute intracellular concentrations

of 30 metabolites by a targeted liquid chromatography-tandem mass spectrometry method (Buescher

et al., 2010), for the same conditions and time points as before (Table 1). The models amended with

only ROS inhibition of lower glycolysis could explain accumulation of upper glycolytic metabolites, such

as FBP and GAP/DHAP in particular for the high-stress conditions, but could not capture metabolite

dynamics in the PP pathway (Figure S16). To identify additionally relevant, putative metabolite-enzyme

regulation, we systematically tested activation and inactivation of every irreversible reaction by each of

the 12 metabolites through adding a power law term that affects the maximum reaction rate, as described

previously (Christodoulou et al., 2018). For each organism, we thus generated an ensemble of 10,000–

12,000 structurally different models, each consisting of the base model with ROS inhibition of GAP
iScience 19, 1133–1144, September 27, 2019 1139



Species Medium H2O2 Concentration

(mM)

Time Points

Sampled (s)

E. coli Rich medium (M9 + AA + glucose) 0.5 0, 5, 15, 30, 60

20 0, 5, 15, 30, 60

Minimal medium (M9 + glucose) 0.5 0, 5, 15, 30, 60

20 0, 5, 15, 30, 60

S. cerevisiae Rich medium (YPD) 0.5 0, 5, 15, 30, 60

20 0, 5, 15, 30, 60

Minimal medium (M9 + glucose) 0.5 0, 5, 15, 30, 60

20 0, 5, 15, 30, 60

Human dermal

fibroblasts (HDF)

Rich medium 0.5 0, 30, 60, 120, 180,

300
20

Table 1. Summary of the Different Experimental Conditions

E. coli and S. cerevisiae were subjected to different environments represented by rich medium and minimal medium. HDF

was grown only in rich medium as growth on minimal medium could not be achieved. In addition, each environmental con-

dition was exposed to two different stress levels during the experiment. This corresponds to two different concentrations of

H2O2 (0.5 and 20 mM). In total ten different conditions were obtained and analyzed.
dehydrogenase, plus two putative metabolite-enzyme interactions. The approximately 120 million simula-

tions—2,000 simulations per model, organism, and stress level—were performed with an efficient pipeline

based on parallel computing principles (see Transparent Methods, Kinetic Model of Glycolysis/Gluconeo-

genesis and the Pentose Phosphate Pathway for more information, section Parallel ensemble modeling

framework), as previously described (Christodoulou et al., 2018).

We use this modeling framework primarily as a hypothesis generation tool by asking whether putative reg-

ulatory interactions (or combinations thereof) are able to capture the dynamic responses to oxidative stress

better than models without regulatory interactions. To identify those interactions that occur most probably

in vivo, the 2,000 simulated metabolome responses of each model are compared with the experimentally

determined ones. Putative interactions occurring frequently in better scoring models are considered to be

more likely. With the sole exception of the high stress challenge in S. cerevisiae, additional allosteric inter-

actions strongly improved the description of themetabolite dynamics, in particular for upper glycolytic and

PP pathway intermediates (see Figure S16 and Tables S4, S5, S6, S7, S8, S9, and S10 for quantitative eval-

uation of the improvement). Please note that none of the models was actually fitted to the data, hence the

predicted responses from 2,000 randomly chosen parameter sets are not expected to fit the data perfectly.

To identify the specific regulatory interactions that improved description of the data we used two mea-

sures: (1) how often an interaction occurred in models that improved the base model (frequency), and (2)

the information content of the best model with this interaction (score), using the Akaike information crite-

rion to penalize for additional interactions/parameters (Turkheimer et al., 2003). To further distill and

condense the information from our millions of simulations into one metric and ranking the different metab-

olite-enzyme interactions, we used rank product analysis as a non-parametric statistical method (Messiha

et al., 2014). This method ranks every interaction based on the geometric mean of the individual rank

achieved in frequency and score (Transparent Methods), revealing G6P and 6PG dehydrogenase in the

oxidative PP pathway as the main targets of regulation with glycolytic phosphofructokinase following in

second place, the color of the heatmap showing the rank, and therefore importance, of each interaction

(Figure 5A). Our results clearly demonstrate that, in every tested experiment, with the exception of the

high stress level for S. cerevisiae, the interaction that was consistently the best was the NADPH inhibition

of G6P dehydrogenase (Figures 5A and 5B). We therefore validated the previously suggested NADPH in-

hibition for E. coli (Christodoulou et al., 2018) and human dermal fibroblast G6P dehydrogenase (Kuehne

et al., 2015) and demonstrated physiological relevance for the reported in vitro inhibition of the

S. cerevisiae enzyme (Llobell et al., 1988) (Figure S18).
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Figure 5. Results from the Model-Based Identification of Mechanisms that Enable Rapid Adaptation and the Conserved Inhibition of G6P

Dehydrogenase by NADPH

(A) Heatmap depicting the overall rank achieved by different interactions (activating or inhibiting enzymes) in E. coli, S. cerevisiae, andH. sapiens in different

stress levels. For E. coli and S. cerevisiae the minimal medium condition was used, whereas for H. sapiens the only condition available (rich medium). The

darker the blue, the higher the rank of the interaction, and therefore its importance.

(B) Depiction of the glycolysis and PP pathway circuitry for every organism and stress level in minimal mediumwe considered. Besides the known inhibition of

lower glycolysis by ROS, the best three interactions for each organism, for each stress are depicted on every diagram.
The only case in which NADPH inhibition of G6P dehydrogenase does not appear to play an important

role in vivo was the high oxidative stress challenge in S. cerevisiae. Although ROS blockage of the lower

glycolytic enzyme GAP dehydrogenase (Ralser et al., 2009) was particularly important for this condition

(Figure S16), the increase in metabolite S7P (Figure S17) cannot be captured by inhibition of GAP dehydro-

genase alone (see Figures S16 and S17). The putative interaction that explains these results (which could

not be validated in vitro) was relief of G6P dehydrogenase by pyruvate inhibition, which at the functional

level could achieve a similarly rapid increase in oxidative PP pathway flux as NADPH inhibition.
DISCUSSION

By combining metabolomics with multivariate analysis, timing analysis, and computational modeling, we

revealed a striking conservation of the metabolic response to oxidative stress and the underlying metab-

olite-protein interactions in the widely different species E. coli, S. cerevisiae, and human dermal fibroblasts.

This is surprising because previously different mechanisms were suggested to mediate rapid responses

that mitigate the stress implications and stabilize the cellular redox potential in different species. The

main regulatory interaction that achieves the rapid flux rerouting into the oxidative PP pathway for NADPH

regeneration is the relief of G6P dehydrogenase from NADPH inhibition. Although it was known that this

allosteric interaction occurs in most kingdoms of life (Reznik et al., 2017), we demonstrate here that it is

the main mechanistic basis for a widely conserved metabolic response. The sole exception was the high

oxidative stress in yeast, where the rapid increase in oxidative PP pathway flux was achieved by relief

from pyruvate inhibition. Mechanistically, the relief of G6P dehydrogenase from NADPH inhibition may

be achieved by competition for the active side or allosteric interaction, or a combination of both.

Alleviation of G6P dehydrogenase from inhibition implies that all three cell types do not use the full flux

capacity of the oxidative PP pathway enzymes during normal growth. Consistently, maximum in vitro

enzyme activities of G6P dehydrogenase (Sauer et al., 2004; Fuhrer et al., 2005; Ralser et al., 2007) are about

2-fold higher in E. coli and S. cerevisiae than the in vivo determined fluxes through the oxidative PP pathway

(Fuhrer et al., 2005; Park et al., 2016). In mammalian cells the in vitro activity is even 40 times higher (Table

S3). This investment into a reserve flux capacity enables an immediate metabolic response and thereby

contributes to an intrinsic tolerance against oxidative stress, as was demonstrated for E. coli (Christodoulou

et al., 2018). Our results do not provide any evidence for a function of ROS inhibition of GAP dehydroge-

nase. It can cause specific dynamics of glycolytic metabolites such as PEP andDHAP but does not appear to

have a major functional role in increasing the PP pathway flux. Although our results strongly suggest that

not only the response but also the molecular implementation is conserved across kingdoms, we cannot

exclude that additional metabolite-enzyme interactions, beyond those evaluated here, may be important,

both in the cell lines tested and other organisms. Indeed, Ralser et al. (2007) observed that changes in enzy-

matic activity of S. cerevisiae triose-phosphate isomerase and pyruvate kinase increased concentrations of

PP pathway intermediates, suggesting a possible interplay between lower glycolysis and the PP pathway.
Limitations of the Study

We see three main limitations of our study that point to potential caveats. The first limitation regards the

decrease of succinate levels across all species. The inconsistencies observed in few cases, where succinate

is not consistently decreasing in all cases, could be explained by a potential direct conversion of aKG to

succinate to neutralize ROS (Liu et al., 2018). The second limitation is the lack of instantaneous measure-

ments of glucose uptake rate immediately after the oxidative stress treatment, which is exceptionally

challenging to quantify at a second scale. Hence, we cannot exclude changes in glucose uptake, but

such putative changes would not affect our conclusion because our earlier 13C labeling experiments at a

second resolution (Christodoulou et al., 2018; Kuehne et al., 2015) demonstrated a flux ratio shift toward

the oxidative PP pathway upon oxidative stress. Thus, even if the glucose uptake would change, there

would still be a relatively higher flux through the PP pathway. Furthermore, we tested in silico, with our
1142 iScience 19, 1133–1144, September 27, 2019



ensemble modeling framework, models where regulation would directly affect (increase or decrease) the

glucose uptake rate. These models always scored extremely low, suggesting that such instantaneous

changes in the glucose uptake rate are not likely to be the cause of the system’s dynamic behavior. The

third limitation concerns the precise mechanism of G6PDH inhibition by NADPH that may be competitive,

allosteric, or a combination of both. We do have evidence that NADPH inhibits G6PD by competing for the

active site, at least in E. coli (Christodoulou et al., 2018); however, we cannot exclude the possibility of

allosteric regulation as well.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Transparent Methods 

 

Kinetic Model of Glycolysis/Gluconeogenesis and the Pentose 

Phosphate Pathway 

 

The irreversible reactions and transport of glucose are described by Michaelis-Menten kinetics: 

𝑣 = 𝑣𝑚𝑎𝑥

𝑐𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑐𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 + 𝐾𝑀
 

Similar to previous studies(Link, Kochanowski and Sauer, 2013) we assume that reversible 

reactions are near equilibrium and the law of mass action describes the kinetics for the forward 

(+) and backward (-) direction in these cases.  

𝑣+ = 𝑘+𝑐𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 

𝑣− = 𝑘−𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 

The detailed equations are given below: 

Kinetic rate equations – irreversible reactions: 

Reaction 1 

glucose specific phosphotransferase system 

𝑣𝑃𝑇𝑆 =  𝑣𝑚𝑎𝑥,𝑃𝑇𝑆

𝑐𝐺𝑙𝑢𝑐𝑜𝑠𝑒

𝑐𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐾𝑃𝑇𝑆,𝐺𝑙𝑢𝑐𝑜𝑠𝑒
 

Reaction 2 

phosphofructokinase (PFK) 

𝑣𝑃𝐹𝐾 =  𝑣𝑚𝑎𝑥,𝑃𝐹𝐾

𝑐𝐹6𝑃

𝑐𝐹6𝑃 + 𝐾𝑃𝐹𝐾,𝐹6𝑃
 

Reaction 3 

fructose-1,6-bisphosphatase (FBPase) 

𝑣𝐹𝐵𝑃𝑎𝑠𝑒 =  𝑣𝑚𝑎𝑥,𝐹𝐵𝑃𝑎𝑠𝑒

𝑐𝐹𝐵𝑃

𝑐𝐹𝐵𝑃 + 𝐾𝐹𝐵𝑃𝑎𝑠𝑒,𝐹𝐵𝑃
 

Reaction 4 

glucose-6-phosphatedehydrogenase (G6PDH) 

𝑣𝐺6𝑃𝐷𝐻 =  𝑣𝑚𝑎𝑥,𝐺6𝑃𝐷𝐻

𝑐𝐺6𝑃

𝑐𝐺6𝑃 + 𝐾𝐺6𝑃𝐷𝐻,𝐺6𝑃
 

Reaction 5 

6-phosphogluconate dehydrogenase (GND) 



𝑣𝐺𝑁𝐷 =  𝑣𝑚𝑎𝑥,𝐺𝑁𝐷

𝑐6𝑃𝐺

𝑐6𝑃𝐺 + 𝐾𝐺𝑁𝐷,6𝑃𝐺
 

Reaction 6 

pyruvate kinase (PYK) 

𝑣𝑃𝑌𝐾 =  𝑣𝑚𝑎𝑥,𝑃𝑌𝐾

𝑐𝑃𝐸𝑃

𝑐𝑃𝐸𝑃 + 𝐾𝑃𝑌𝐾,𝑃𝐸𝑃
 

Reaction 7 

phosphoenolpyruvate synthetase (PPS) 

𝑣𝑃𝑃𝑆 =  𝑣𝑚𝑎𝑥,𝑃𝑃𝑆

𝑐𝑃𝑌𝑅

𝑐𝑃𝑌𝑅 + 𝐾𝑃𝑃𝑆,𝑃𝑌𝑅
 

Reaction 8 

pyruvate dehydrogenase (PDH) 

𝑣𝑃𝐷𝐻 =  𝑣𝑚𝑎𝑥,𝑃𝐷𝐻

𝑐𝑃𝑌𝑅

𝑐𝑃𝑌𝑅 + 𝐾𝑃𝐷𝐻,𝑃𝑌𝑅
 

Reaction 9 

phosphoenolpyruvate carboxylase (PPC) 

𝑣𝑃𝐷𝐻 =  𝑣𝑚𝑎𝑥,𝑃𝐷𝐻

𝑐𝑃𝐸𝑃

𝑐𝑃𝐸𝑃 + 𝐾𝑃𝐷𝐻,𝑃𝐸𝑃
 

 

Kinetic rate equations – reversible reactions: 

Reaction 10/11 

phosphoglucoseisomerase (PGI) 

𝑣𝑃𝐺𝐼
+ =  𝑘𝑃𝐺𝐼

+ 𝑐𝐺6𝑃 

𝑣𝑃𝐺𝐼
− =  𝑘𝑃𝐺𝐼

− 𝑐𝐹6𝑃 

Reaction 12/13 

fructose-1,6-bisphosphate aldolase (ALD).   

Instead  of  GAP  and  DHAP  this  reaction  produces  2  molecules DHAP,  since  we assume that 

GAP  and  DHAP are in equilibrium by triose phosphate isomerase. 

𝑣𝐴𝐿𝐷
+ =  𝑘𝐴𝐿𝐷

+ 𝑐𝐹𝐵𝑃 

𝑣𝐴𝐿𝐷
− =  𝑘𝐴𝐿𝐷

− 𝑐𝐷𝐻𝐴𝑃𝑐𝐷𝐻𝐴𝑃 

Reaction 14/15 



glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglucokinase (PGK), 

phosphoglucomutase  (PGM)  and enolase  (ENO)  are  in  equilibrium(Link, Kochanowski and 

Sauer, 2013)  and  lumped  into  one  reaction.  

𝑣𝐺𝐴𝑃𝐷𝐻
+ =  𝑘𝐺𝐴𝑃𝐷𝐻

+ 𝑐𝐷𝐻𝐴𝑃 

𝑣𝐺𝐴𝑃𝐷𝐻
− =  𝑘𝐺𝐴𝑃𝐷𝐻

− 𝑐𝑃𝐸𝑃 

Reaction 16/17 

transketolase A (TKTA) 

𝑣𝑇𝐾𝑇𝐴
+ =  𝑘𝑇𝐾𝑇𝐴

+ 𝑐𝑃5𝑃 

𝑣𝑇𝐾𝑇𝐴
− =  𝑘𝑇𝐾𝑇𝐴

− 𝑐𝐷𝐻𝐴𝑃𝑐𝑆7𝑃 

Reaction 18/19 

transketolase B (TKTB) 

𝑣𝑇𝐾𝑇𝐵
+ =  𝑘𝑇𝐾𝑇𝐵

+ 𝑐𝑃5𝑃𝑐𝐸4𝑃 

𝑣𝑇𝐾𝑇𝐵
− =  𝑘𝑇𝐾𝑇𝐵

− 𝑐𝐷𝐻𝐴𝑃𝑐𝐹6𝑃 

Reaction 20/21 

transaldolase (TALA) 

𝑣𝑇𝐴𝐿𝐴
+ =  𝑘𝑇𝐴𝐿𝐴

+ 𝑐𝐷𝐻𝐴𝑃𝑐𝑆7𝑃 

𝑣𝑇𝐴𝐿𝐴
− =  𝑘𝑇𝐴𝐿𝐴

− 𝑐𝐸4𝑃𝑐𝐹6𝑃 

Reaction 22 

biosynthetic E4P drain (E4PD) 

𝑣𝐸4𝑃𝐷
+ =  𝑘𝐸4𝑃𝐷

+ 𝑐𝐸4𝑃 

Reaction 23 

biosynthetic P5P drain (P5PD) 

𝑣𝑃5𝑃𝐷
+ =  𝑘𝑃5𝑃𝐷

+ 𝑐𝑃5𝑃 

Reaction 24 

anabolic proxy of NADPH drain (NADPHD) 

𝑣𝑁𝐴𝐷𝑃𝐻𝐷
+ =  𝑘𝑁𝐴𝐷𝑃𝐻𝐷

+ 𝑐𝑁𝐴𝐷𝑃𝐻 

Reaction 25 

generation of ROS from external source (ROSG) 

this reaction is implemented as a constant input (that we vary in the different simulations) 



𝑣𝑅𝑂𝑆𝐺
+ =  𝑘𝑅𝑂𝑆𝐺

+  

Reaction 26 

scavenging of ROS with NADPH  (ROSS) 

𝑣𝑅𝑂𝑆𝑆
+ =  𝑘𝑅𝑂𝑆𝑆

+ 𝑐𝑅𝑂𝑆 

 

Kinetic rate equations: Small molecule – enzyme interactions 

An interaction between an enzyme catalyzing reaction i and a small molecule j is included as a 

power law term affecting the reaction rate. 

𝑣𝑖
∗ =  𝑣𝑚𝑎𝑥,𝑖 ∏

𝑗

(
𝑐𝑗

𝑐𝑗,0
)

𝑎𝑖,𝑗

 

In the base model without interactions (except the one from ROS on GAPDH), all exponents 𝑎𝑖,𝑗  

are zero and therefore the power law terms equal to 1. With this model we managed to easily 

search the topological space by testing ensembles of structurally different models by setting the 

according exponent to real-valued numbers. With this approach we also managed to create a 

parallel algorithm that does so efficiently. 

 

Ordinary Differential Equations (ODEs) 

𝑑𝐺6𝑃

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛4 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛10 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛11 = 

= 𝑣𝑚𝑎𝑥,𝑃𝑇𝑆

𝑐𝐺𝑙𝑢𝑐𝑜𝑠𝑒

𝑐𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐾𝑃𝑇𝑆,𝐺𝑙𝑢𝑐𝑜𝑠𝑒
− 𝑣𝑚𝑎𝑥,𝐺6𝑃𝐷𝐻

𝑐𝐺6𝑃

𝑐𝐺6𝑃 + 𝐾𝐺6𝑃𝐷𝐻,𝐺6𝑃
− 𝑘𝑃𝐺𝐼

+ 𝑐𝐺6𝑃

+ 𝑘𝑃𝐺𝐼
− 𝑐𝐹6𝑃 

𝑑𝐹6𝑃

𝑑𝑡
= −𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛2 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛3 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛10 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛11 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛18 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛19

+ 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛20 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛21 

𝑑𝐹𝐵𝑃

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛2 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛3 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛12 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛13 

𝑑𝐷𝐻𝐴𝑃

𝑑𝑡
= 2▪𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛12 − 2▪𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛13 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛14 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛15 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛16

− 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛17 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛18 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛19 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛20 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛21 

𝑑6𝑃𝐺

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛4 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛5 

 



𝑑𝑃𝐸𝑃

𝑑𝑡
= −𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛6 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛7 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛9 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛14

− 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛15
𝑑𝑃𝑌𝑅

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛6 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛7 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛8 

𝑑𝑃5𝑃

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛5 − 2▪𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛16 + 2▪𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛17 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛18 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛19

− 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛23 

𝑑𝐸4𝑃

𝑑𝑡
= −𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛18 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛19 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛20 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛21 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛22 

 

𝑑𝑆7𝑃

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛16 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛17 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛20 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛21 

𝑑𝑁𝐴𝐷𝑃𝐻

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛4 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛5 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛24 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛26 

 

𝑑𝑅𝑂𝑆

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛25 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛26 

Quantification And Statistical Analysis 

Parameterization of the kinetic model of glycolysis/gluconeogenesis and the 

pentose phosphate pathway 

Kinetic parameters followed from statistical sampling of unknown parameters and a steady 

analysis as described below.  

KM values 

The KM values were randomly sampled from an interval of 0.1-10 times the in vitro determined 

literature value. 

Steady state analysis and statistical sampling 

In order to determine Vmax values we performed a steady state analysis using measured glucose 

uptake rate (1.17 mM/sec). Metabolic fluxes were estimated by flux balance analysis during 

growth on glucose (Fong, Marciniak and Palsson, 2003) and we considered uncertainties about 

the fluxes by taking into account measured flux distributions (Gerosa et al., 2015) and by 

statistical sampling of 5 parameters:  

1. Futile cycling between PFK and FBPase: 
𝑣𝐹𝐵𝑃𝑎𝑠𝑒,0−𝑣𝑃𝐹𝐾,0

𝑣𝐹𝐵𝑃𝑎𝑠𝑒,0
= 0 − 1 

2. Futile cycling between PYK and PPS: 
𝑣𝑃𝑃𝑆,0−𝑣𝑃𝑌𝐾,0

𝑣𝑃𝑃𝑆,0
= 0 − 1 

3. PP pathway flux: 15-40% of the glucose uptake 

4. Biosynthetic drain of pentoses (P5P) and E4P: 50-70% of the PP pathway flux  

5. Immediate increase in ROS flux: 0.5 – 1  



The steady state reaction rates (v0) of all reactions follow from these unknown flux ratios and 

the measured glucose rate. Subsequently, the Vmax of reaction i follows from vi0, the sampled Ki,M 

and the measured steady state concentrations cj0 of the particular small molecule:  

𝑣𝑖,𝑚𝑎𝑥 = 𝑣𝑖
0(1 +

𝐾𝑖,𝑀

𝑐𝑗
0 ) 

Rate constants of reversible reactions 

In the case of reversible reactions, we statistically sample for every pair (e.g. reactions 10/11) 

the efficiency of this reaction: if we know that a glycolytic flux of 1 goes through this reaction 

pair in the glycolytic direction and the efficiency is 0.5, this means that reaction 10 will have a 

flux of 2 and reaction 11 a flux of 1. The rate constants k+ and k- are calculated following this 

approach. 

Selection of the best parameter set for each model topology  

As described in the main text, we randomly sampled P = 20000 for each of the models with 

single small-molecule enzyme interactions and P = 2000 for each of each model with pairs of 

small-molecule enzyme interactions. For each parameter set, the  simulation was performed 

with MATLAB. The residuals between the simulated species (indicated by ‘) and the measured 

species are calculated at t=5 time points for s = 8 species where we have absolute concentrations 

for. Due to differences in the absolute metabolite concentrations we estimated the sum of 

squared errors for s=8 relative metabolite concentrations (�̃�) that are normalized to the glucose 

steady state concentrations: 

𝑆𝑆𝑅𝑐 = ∑

8

𝑠=1

∑

5

𝑡=1

(𝑐𝑠,𝑡
′̃ − 𝑐𝑠,�̃�)

2
 

We used this objective to select the best parameter set for each model topology. 

Akaike Information Criterion (AIC) 

In order to compare in a systematic manner the simulation results of models with different 

topologies and different number of parameters K (due to different numbers of small-molecule – 

enzyme interactions), we utilized the Akaike Information Criterion (AIC) (Link, Kochanowski 

and Sauer, 2013)(Federico E. Turkheimer, Hinz and Cunningham, 2003).   

𝐴𝐼𝐶 = 𝑁𝑙𝑜𝑔 (
𝑆𝑆𝑅

𝑁
) + 2𝐾 

where N I the total number of residuals. A particular model X with small molecule – enzyme 

interactions is ranked relative to the base model by the difference of AICs: 

𝛥𝐴𝐼𝐶𝑀𝑜𝑑𝑒𝑙𝑋 = 𝐴𝐼𝐶𝐵𝑎𝑠𝑒𝑀𝑜𝑑𝑒𝑙 − 𝐴𝐼𝐶𝑀𝑜𝑑𝑒𝑙𝑋 

Product rank calculation 

The ranks of the pairwise interactions based on how often the interaction appears in models 

with ΔAIC>0 (frequency) and the best ΔAIC that was achieved with a model including this 

interaction, were taken into account in the calculation of the product rank of the interactions. 



The product rank of an interaction i is calculated as the geometric mean of the two individual 

ranks that a certain interaction has achieved. 

Analysis of data 

The analysis of the (experimental and simulated) data was performed using custom MATLAB 

(MathWorks) software. MATLAB was used for all simulations and the kinetic model was partly 

implemented using the SimBiology toolbox.  

 

Parallel ensemble modelling framework 

All the different model topologies are populated as different model objects in one master server 

and then are consequently sent to different CPU cores - workers for simulation, using the High 

Performance Computing service of ETH, containing over 29000 processor cores with a 

theoretical performance reaching over 1000 teraflops. Depending on how many CPU cores are 

available, the time of computation for all the simulations (which depend on the number of model 

topologies and the number of different parameter sets we test for every model, in our case 

12000 topologies for each organism and 2000 parameter sets yield ~ 120 million simulations) 

scales accordingly. Once the simulations from the different CPU cores – workers are finished, the 

saved simulated results return to the master, where they are processed and analyzed thus 

yielding the rank of every interaction, based on the criteria we have set (frequency and score). 

All code was written in MATLAB and various functions from the Parallel Computing toolbox and 

the SimBiology toolbox were used. 



Table S1: Overview of normalized non-targeted metabolomics data. (Additional File) 

Table S2: Kinetic parameters of reactions in the glycolysis – PP pathway models of the three different 
organisms. Vmax of irreversible reactions are estimable parameters and no value is given. Non-applicable 
values indicate that this particular enzyme is non-existent or does not carry flux in this particular 
organism. Related to Figure 5 

Reaction Parameter Value Range E. coli Value Range S. cerevisiae Value Range H. sapiens 

    

Irreversible Reactions     

PFK Vmax,PFK - - - 

 KPFK,F6P (0.1-10) ▪ 0.16mM (0.1-10) ▪ 0.058mM (0.1-10) ▪ 0.0425mM 

FBPase Vmax,FBPase - - - 

 K FBPase,FBP (0.1-10) ▪ 0.015mM (0.1-10) ▪ 0.2mM (0.1-10) ▪ 0.0022mM 

G6PDH Vmax, G6PDH - - - 

 K G6PDH,G6P (0.1-10) ▪ 0.2mM (0.1-10) ▪ 0.042mM (0.1-10) ▪ 0.045mM 

GND Vmax,GND - - - 

 K GND,6PG (0.1-10) ▪ 0.1mM (0.1-10) ▪ 0.062mM (0.1-10) ▪ 0.02mM 

PYK Vmax,PYK - - - 

 K PYK,PEP (0.1-10) ▪ 0.31mM (0.1-10) ▪ 0.281mM (0.1-10) ▪ 0.2mM 

PPS Vmax,PPS - - - 

 K PPS,PYR (0.1-10) ▪ 0.083mM Non-applicable Non-applicable 

PDH Vmax,PDH - - - 

 K PDH,PYR (0.1-10) ▪ 0.515mM (0.1-10) ▪ 0.65mM (0.1-10) ▪ 0.01mM 

PPC Vmax,PPC - - - 

 K PPC,PEP (0.1-10) ▪ 0.19mM (0.1-10) ▪ 0.08mM Non-applicable 

 



 

Table S3: In vivo activity of the enzyme G6P dehydrogenase under growth on glucose for the three 
different organisms. In vitro enzymatic activity of the same enzyme in all three organisms. 

 E.coli Yeast Mammalian cells 

 

 
in vivo 

(mmol/g/h) 
in vitro  

(mmol/g/h) 
in vivo 

(mM/min) 
in vitro 

(mM/min) 
in vivo 

(mM/min) 
in vitro  

(mM/min) 
 

G6PDH 2 3.2 2 4 0.05 2.316 
 

E. coli in vitro: (Fuhrer and Sauer, 2009), E. coli in vivo: (Fuhrer, Fischer and Sauer, 2005; Park 

et al., 2016), Yeast in vitro: (Ralser et al., 2007), Yeast in vivo: (Park et al., 2016), Mammalian 

cells in vitro: BioNumbers, Mammalian G6P dehydrogenase Kinetics, Privately collected by 

Professor Armindo Salvador, Mammalian cells in vivo: (Park et al., 2016) 

 

Table S4: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in E. coli treated with 0.5 mM H2O2. Related to Figure 5 (Additional 
File) 

Table S5: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in E. coli treated with 20 mM H2O2. Related to Figure 5 (Additional 
File) 

Table S6: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in S. cerevisiae treated with 0.5 mM H2O2. Related to Figure 5 
(Additional File) 

Table S7: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in S. cerevisiae treated with 20 mM H2O2. Related to Figure 5 
(Additional File) 

Table S8: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in human dermal fibroblasts treated with 0.5 mM H2O2. Related to 
Figure 5 (Additional File) 

Table S9: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in human dermal fibroblasts treated with 20 mM H2O2. Related to 
Figure 5 (Additional File) 

Table S10: Overview of aggregated targeted metabolomics data used for the model-based 
identification of mechanisms that regulate the metabolic response to oxidative stress. Related to 
Figure 5 (Additional File) 

 



Supplementary Figures 

 

 

Figure S1: Overview of the normalized non-targeted metabolomics data. Heatmap shows mean 

values of metabolite data of treatments normalized to their respective controls. Related to Figure 2, 3, 4 

 

Figure S2: (A) Ratio of oxidized to reduced glutathione over time, after exposure to oxidative stress. 
(Note: The first measured treatment of H2O2 is after 30 seconds for every other organism after 5 
seconds). (B) Ratio of oxidized to reduced glutathione in untreated samples. Related to section “The 
immediate metabolic response upon exposure to oxidative stress” 

 



 

Figure S3: Pathway enrichment analysis on the measured metabolites changing at each time point, 
compared to untreated controls. Related to section “The immediate metabolic response upon exposure 
to oxidative stress” 

 



 

Figure S4: Relative metabolite changes in relevant pathways.: a) Glycolysis, PPP and TCA Cycle, b) 

purine and pyrimidine metabolism and c) Valine, Leucine, Isoleucine degradation and biosynthesis. 



Heatmaps show mean values of  relative metabolite changes log2(treatment vs control). Related to section 

“The immediate metabolic response upon exposure to oxidative stress”  



 

Figure S5: Metabolite Profiles of glycolytic and PP pathway intermediates, upon H2O2 treatment. 
The changes of each metabolite relative to the untreated condition (time point 0) are shown. Solid lines 
represent exposure to high stress (20 mM) while dashed lines represent exposure to low stress (0.5 mM) 



 

Figure S6: Metabolite profiles of citric acid cycle intermediates, upon H2O2 treatment. The changes 
of each metabolite relative to the untreated condition (time point 0) are shown. Solid lines represent 
exposure to high stress (20 mM) while dashed lines represent exposure to low stress (0.5 mM). Related to 
section “The immediate metabolic response upon exposure to oxidative stress” 

 

 

  



 

Figure S7: Metabolite Profiles of glycolytic and citric acid cycle intermediates of E. coli, upon H2O2 

treatment. The changes of each metabolite relative to the untreated condition (time point 0) are shown.  

Plots show mean values +/- standard deviation of three biological replicates. Related to section “The 

immediate metabolic response upon exposure to oxidative stress” 

 

 

 

Figure S8: Metabolite Profiles of glycolytic and citric acid cycle intermediates of S. cerevisiae, upon 

H2O2 treatment. The changes of each metabolite relative to the untreated condition (time point 0) are 



shown.  Plots show mean values +/- standard deviation of three biological replicates. Related to section 

“The immediate metabolic response upon exposure to oxidative stress” 

 

 

Figure S9: Metabolite Profiles of glycolytic and citric acid cycle intermediates of human dermal 

fibroblasts, upon H2O2 treatment. The changes of each metabolite relative to the untreated condition 

(time point 0) are shown.  Plots show mean values +/- standard deviation of three biological replicates. 

Related to section “The immediate metabolic response upon exposure to oxidative stress” 

 

 

 



 

Figure S10 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of E. 
coli grown in minimal media and treated with a) 0.5 mM and b) 20 mM H2O2. Local maxima 
(including endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 0.2 were 
identified for fits with R2 < 0.2. Furthermore, following local maxima with less that 50% change of 
log2(FC) were removed. Related to Figure 3 and 4. 

 



 

Figure S11 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of E. 
coli grown in rich media and treated with a) 0.5 mM and b) 20 mM H2O2. Local maxima (including 
endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 0.2 were identified for fits 
with R2 < 0.2. Furthermore, following local maxima with less that 50% change of log2(FC) were removed. 
Related to Figure 3 and 4. 



 

Figure S12 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of S. 
cerevisiae grown in minimal media and treated with a) 0.5 mM and b) 20 mM H2O2. Local maxima 
(including endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 0.2 were 
identified for fits with R2 < 0.2. Furthermore, following local maxima with less that 50% change of 
log2(FC) were removed. Related to Figure 3 and 4. 



 

Figure S13 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of S. 
cerevisiae grown in rich media and treated with a) 0.5 mM and b) 20 mM H2O2. Local maxima 
(including endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 0.2 were 
identified for fits with R2 < 0.2. Furthermore, following local maxima with less that 50% change of 
log2(FC) were removed. Related to Figure 3 and 4. 



 

Figure S14 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of 
human dermal fibroblasts grown in rich media and treated with a) 0.5 mM and b) 20 mM H2O2. 
Local maxima (including endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 
0.2 were identified for fits with R2 < 0.2. Furthermore, following local maxima with less that 50% change 
of log2(FC) were removed. Related to Figure 3 and 4. 

  



 

Figure S15 Comparison of the response of upper glycolytic and pentose phosphate pathway 
metabolites upon exposure to oxidative stress. Plots show the fitting results of Multivariate Adaptive 
Regression Splines. Related to Figure 3 and 4. 

 

 

 



 

Figure S16: Base models (models amended with the ROS inhibition of GAP dehydrogenase) of E. coli, S. 
cerevisiae and human dermal fibroblasts (HDF) simulation results (black solid line) against the 
experimental data (green dots), in low (0.5 mM) and high (20 mM) concentrations of hydrogen peroxide 
stress. Y axis represents the relative change of a particular metabolite, compared to the untreated 
condition (time point 0). Related to Figure 5 



 
Figure S17: Simulation results (black solid lines) of the best performing models of E. coli, S. cerevisiae and 
human dermal fibroblasts (HDF) against the experimental data (green dots). Y-axis represents the relative 
change of a particular metabolite, compared to the untreated condition (time point 0). The best 
performing models include the following interactions (for the cases starting from upper left to bottom 
right): E. coli 0.5 mM: NADPH inhibition of G6P dehydrogenase and P5P activation of GND, E. coli 20 mM: 
NADPH inhibition of G6P dehydrogenase and PEP inhibition of PFK, S. cerevisiae 0.5 mM: NADPH 
inhibition of G6P dehydrogenase and PEP inhibition of G6P dehydrogenase, S. cerevisiae 20 mM: PYR 
inhibition of G6P dehydrogenase and NADPH activation of PFK, HDF 0.5 mM: NADPH inhibition of G6P 
dehydrogenase and NADPH inhibition of GND, HDF 20 mM: NADPH inhibition of G6P dehydrogenase and 
S7P activation of GND. Related to Figure 5. 

 



 

Figure S18: Percentage of relative G6P dehydrogenase activity in the presence of predicted inhibitor 
NADPH. Two concentrations were used: 0.1 mM and 0.3 mM of NADPH. Bars show the average activity 
and error bars denote the standard deviation, calculated from five individual replicates. Related to Figure 
5. 
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