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Abstract

Original Article

IntroductIon

Pathology is the study and diagnosis of diseases including 
cancers and has long been associated with medical development 
and patient care and treatment. More specifically in histology, 
samples of tissue are taken from patients and then prepared 
using appropriate staining protocols to detect and diagnose 
the disease. Hematoxylin and eosin (H&E) staining is the 
standard protocol used in histology as it gives a good overview 
of the tissue and the cellular components and it clearly shows 
different types of structures. It is very useful to assess the 
presence or absence of disease processes in the tissue and to 
measure disease progression. It is also likely that this protocol 
continues being used in the next decades.[1] Hematoxylin is a 
basic dye staining acidic components in shades of purple and 
blue and eosin is an acidic contrasting counterstain coloring 
the basic components (mostly proteins) in shades of pink and 

red.[2] In a normal H&E stain, cell nuclei are colored in blue 
and purple whereas cell cytoplasm and most connective tissue 
are colored in degrees of pink [Figure 1].

Major industry trends in pathology and tissue analytics include the 
adoption of tissue image digitization, automatic image analysis, 
and multiplexing of biomarkers as key steps for streamlining drug 
development and improving the quality of cancer diagnosis and 
care. H&E staining contains important visual information that 
allows assessing tissue morphology but is not compatible with 
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multiplex biomarker staining technology. In general, brightfield 
microscopy staining is limited in the number of simultaneous 
different separable stains that can be made on a single section 
due to the nature of the color space. When slides are imaged with 
stains having overlapping spectra [Figure 2], color deconvolution 
might not provide an accurate result, leading to misdetection of 
biomarkers. This problem is further complicated when more than 
three biomarkers are present on the same slide.[3,4]

In contrast, with fluorescence staining and microscopy 
technology, multiple biomarkers can be stained and imaged 
in separate channels. This enables easy separation between 
biomarkers for automatic analysis algorithms, but pathologists 
are nowadays not able to examine or annotate tissue in 
fluorescence images [Figure 3].

One of the major challenges is to enable multiplexing of 
different biomarkers while retaining the advantages of 
H&E in terms of morphology information. However, the 
current fluorescent staining technology (e.g., tyramide signal 
amplification) does not yet allow simultaneous combination 
of H&E dyes and fluorescent dyes on the same slide due 
to the fluorescent characteristics of H&E and chemical 
interaction between them and the fluorescent antibodies.[5] 
Using consecutive sections to obtain brightfield and fluorescent 
images might be problematic when the amount of tissue is 
limited and might also introduce artifacts due to the difference 
that exists even between consecutive slides. Sequentially 
imaging one slide with H&E dyes then with fluorescent dyes 
requires a washing step between the two types of staining 
and introduces additional and sensitive laboratory work. All 
of these methods additionally require the registration of the 
two images obtained with the different modalities. In order to 
overcome these challenges, we developed an algorithm that 
transforms in real time the fluorescence images into H&E 
like images.

Several attempts have been made to generate virtual H&E 
images from other modalities in order to facilitate the 

interpretation of fluorescent images and allow pathologists to 
perform both quantitative analysis and pathologic diagnostics 
using the same set of fluorescent images. Reflectance and 
fluorescence confocal microscopy images were compared to 
standard classical H&E histology in the previous studies,[6‑8] 
but these types of images show reduced stromal details in 
comparison with nuclear details. Reflectance and confocal 
images are also different from classical histopathological 
images; it is then necessary for pathologist to understand the 
correlation between these images and traditionally prepared 
slides. In another study, a false coloring technique using 
confocal reflectance and fluorescence images was used in 
order to mimic H&E histologic staining[9,10] and facilitate 
the interpretation and annotation of images by pathologists. 
Dobbs et al. developed a similar method using only confocal 
fluorescent images.[11]

In these three studies, virtual H&E images were obtained by 
adding the transmission spectra of the dyes which is physically 
not realistic.[12] A linear least square estimation was used in the 
study by Can et al.[13] to estimate the intensity transformation 
that maps the fluorescent images into the brightfield color 
space, but the assumption of a linear transformation between 
darkfield (fluorescent) and brightfield images is not necessarily 
realistic.  Tao et al.[14] demonstrated that using nonlinear 
microscopy (NLM) and mapping the NLM‑detected channels 
into virtual H&E colors allow to achieve results in 95.4% 
sensitivity and 93.3% specificity for the assessment of breast 
pathologies compared to paraffin‑embedded H&E histology. 
Nevertheless, no clear algorithm for mapping NLM channels 
to virtual H&E was described.

Giacomelli et al.[12] demonstrated a physically realistic 
rendering approach modeling the transmission of a wavelength 
through a specific thickness of a specimen containing N 

Figure 2: The color space created as a planar representation of the RGB 
optical density space. When imaging with an RGB scanner, hues inside 
the polygon spanned by the four reference stains are ambiguous, for 
example, there are multiple combinations of up to three stains that can 
result in this hue

Figure 1: Field of view of a slide stained with typical hematoxylin and 
eosin. Cell nuclei are colored in shades of blue and purple and connective 
tissue is colored in shades of pink
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absorbing dyes using a discrete model based on optical density 
from Beer–Lambert law.[15] Giacomelli et al. described the 
virtual H&E image in the RGB color space as:

( ), ,HTX M HTX Eos M EosM Exp c cβ β= − −  (1)

In equation (1), HTX and Eos are abbreviations for H&E, 
respectively, M corresponds to one of the 3 RGB color 
channels, Ci corresponds to the concentration of the dye i and 
βi, M corresponds to the attenuation of the ith dye integrated over 
the spectral range of the Mth color channel.

Assuming a linear relationship between the intensity emitted 
by a fluorophore and the concentration of a dye, the virtual 
H&E equations become then:

( ), ,HTX M DNA Eos M ProteinsM Exp I k I kβ β= − −  (2)

Where k corresponds to a scaling factor accounting for the 
linearity between the intensity emitted by the fluorophore 
and the concentration of the dye and IDNA and Iproteins are the 
fluorescence signals corresponding to DNA and proteins, 
respectively. Giacomelli et al. used DAPI and eosin as the 
fluorescence signals corresponding to DNA and proteins, 
respectively. An arbitrary and unique scaling factor k was used 
for both H&E dyes and βi, M was obtained using the output 
color space (for instance sRGB). However, defining a standard 
color for a dye is highly subjective due to tissue, laboratory 
protocol, staining, scanner, and capture parameter variability.[16] 
In addition, the definition of an ideal H&E image depends on 
the pathologist and differs from person to person.

In order to combine the advantages of H&E morphology and 
multiple biomarker detection, we developed an algorithm to 

generate virtual H&E images from fluorescent images meeting 
the essential requirements for identifying morphological 
compartments in the tissue. For this purpose, we propose a 
general method for the determination of the parameters in 
equation (2) by means of minimizing an error function between 
the virtual H&E images and the real H&E staining of the same 
tissue samples. In real‑life scenarios, tissue staining assays 
and imaging protocols are optimized for a specific goal, and 
fluorescent assays in particular are influenced by each additional 
dye used; hence, we want to avoid the need to add a protein 
staining, for example, eosin to our operational assays. Since 
the protein image information already exists in the fluorescence 
images in the form of autofluorescence,[17] we attempted to use 
this information for the reproduction of the eosin channel in 
the virtual H&E without the need for additional changes in the 
staining assays.

SubjectS and MethodS

Different human tissue sections were used. Specimen slices 
were cut at a thickness of 2.5 µM with a rotary microtome 
then dried for 20 min at 60°C. Tissue sections were firstly 
stained with the fluorescent dyes sequentially; a coverslip 
with Fluoro‑Gel Mounting Medium with DAPI was used 
in the fluorescent staining; the sections were washed after 
each fluorescence staining in order to remove the inactivated 
antibodies. The slides were subsequently scanned with a Zeiss 
Axio Z1 microscope scanner. Then, the same sections were 
incubated in warm water (40°C) in order to remove coverslip 
and stained with H&E before being scanned in a Ventana iScan 
HT brightfield microscope scanner. In the H&E staining, a 
Ventana Symphony coverslip was used. This method allows us 
to have the same parts of tissue stained with both brightfield and 
fluorescence enabling us to perform a pixel‑wise comparison 
between brightfield and fluorescence images.

The fluorescence scanning results in 5 layers of 16‑bit intensity 
images, each intensity image corresponding to a biomarker. We 
labeled the specimens with the fluorophores Cy5, Cy3, FITC, 
CFP, and DAPI corresponding, respectively, to the biomarkers 
CD8, Ki67, CD4, CD3, and nuclei. CD3, CD4, and CD8 are 
protein complexes associated with T‑cells, Ki67 is a nuclear 
marker for cell proliferation, and DAPI binds to DNA and 
corresponds to nuclei. The H&E scanning yields 24‑bit RGB 
images with levels of purple and pink corresponding to H&E, 
respectively.

The fluorescence and brightfield images of the exact same 
tissue allow us, after image registration, to compare each pixel 
with the corresponding pixel in the other imaging modality. In 
turn, this comparison enables the optimization of the transform 
function parameters minimizing the mean square error between 
the virtual H&E and the real H&E. These optimized parameters 
will then have the advantage of having been systematically 
optimized for multiple and different tissue samples [Figure 4].

As we described in previous sections, our goal is to digitally 
generate virtual H&E images that could be used by pathologists 

Figure 3: Field of view of a slide stained with an immunofluorescence 
assay targeting CD8 (Cy5 ‑ red), Ki67 (Cy3 ‑ yellow), CD4 (FITC ‑ green), 
CD3 (CFP ‑ light blue), and nuclei (DAPI ‑ dark blue). All fluorescence 
channels are combined in an RGB darkfield image. This type of images 
is still difficult to examine or annotate by pathologists
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for annotation and interpretation of tissue samples. For this, we 
start from the physical demonstration described by Giacomelli 
et al.[12] Since in Giacomelli et al.’s study, the parameters k and 
βi, M in equation (2) are selected heuristically and multiplied, 
we use a simplified version of this equation in which k and βi,M 
are combined into one parameter yielding:

( ), ,DNA M DNA Proteins M ProteinsM Exp P I P I= − −  (3)

Using equation (3), we associated the fluorescence signals 
of DNA and proteins to our fluorescence channels. As 
autofluorescence and eosin correspond to proteins in 
fluorescence and brightfield images, respectively, we associated 
the fluorescence signal of protein IProteins to autofluorescence. 
Actually, autofluorescence corresponds to the natural emission 
of light by some parts of the tissue (mostly proteins). These 
proteins, when excited with a specific wavelength, pass to 
an excited state and then emit a fluorescent light resulting 
in a loss of energy and a return to the ground state.[17] In 
addition, as we explained above, hematoxylin and DAPI 
are both nuclear markers. That is why, we have chosen the 
corrected DAPI channel after removing the autofluorescence 
as the fluorescence signal for the DNA IDNA. The virtual H&E 
equation becomes then:

( ), ,DAPI M DAPI AF M AFM Exp P I P I= − −  (4)

Where AF is an abbreviation for autofluorescence.

As can be seen from equation (4), we have 6 parameters to 
optimize (PDAPI, R, PDAPI, G, PDAPI, B, PAF, R, PAF, G, PAF, B). Since 
the slides were stained with both H&E and fluorescence on 
the same tissue, we can, after slide registration, assume that 
pairs of corresponding pixels in these images exist. Applying 
equation (4) to the fluorescence pixels and comparing to the 
same pixel in the brightfield image enables us to derive a 
square error measure. We can then use a least mean square 
optimization technique to minimize the error and obtain the 
optimal parameters for the virtual H&E transformation.

We obtain the autofluorescence image from the fluorescence 
image by defining an autofluorescence spectral profile of 

relative intensities between the scanned fluorescence channels 
and by removing a multiple of this profile from the spectral 
profile of each fluorescence image pixel so that the remaining 
spectral profile of the pixel is as sparse as possible. We assume 
that a single pixel could have, biologically speaking, signal in 
only a limited number of channels[17] and that at least one of the 
channels in the spectral profile of each pixel should be zero. 
For example, in the fluorescence staining we used, it would 
be extremely improbable to have membrane (i.e., CD3/CD8) 
and nucleus (DAPI) staining in the same pixel. We calculate a 
factor which when multiplied by the autofluorescence spectral 
profile and removed from the pixel spectral profile yields at 
least one zero value channel in the pixel.

Registration of the fluorescence and the H&E images was done 
manually with a custom‑made Matlab user interface (UI) in 
which we registered the images by selecting corresponding 
control points in the image pairs. The UI also allowed 
fine‑tuning by manual rotations and shifts to the single 
pixel precision. Since the pixel sizes of the fluorescence and 
brightfield microscopes are 0.465 and 0.324, respectively, 
we set the scale parameter of the registration transform to a 
fixed value corresponding to the physical ratio between both 
pixel sizes.

Once the fluorescence and the H&E images are registered, 
we perform a least mean square optimization on the pairs of 
pixels in both images to optimize the parameters PDAPI and 
PAF. We used 5 pairs of registered fields of views (FOVs), 
sized 2048 × 2048 pixels, to perform the optimization. Using 
more FOVs in the optimization did not influence much either 
the optimized parameters or the resulting images. From 
equation (4), we can see that the logarithm of the virtual 
H&E images is a linear function of the fluorescence images 
IDAPI and IAF.

In the optical density space, the system could be written as:

( ) , ,log DAPI R DAPI AF R AFR P I P I=− −  (5)

( ) , ,log DAPI G DAPI AF G AFG P I P I=− −  (6)

Figure 4: Simplified process of obtaining virtual hematoxylin and eosin images from fluorescence images. We used 5 field of views from different 
slides to get the optimized transform parameters. We performed manual registration by selecting control points then fine‑tuning by manual rotations 
and shifts to the single pixel accuracy



Journal of Pathology Informatics 5

J Pathol Inform 2018, 1:1 http://www.jpathinformatics.org/content/9/1/1

( ) , ,log DAPI B DAPI AF B AFB P I P I=− −  (7)

Where R, G, and B correspond to the three RGB channels.

Using a matrix representation, we get the following equation:

( ) ( )log M IP M=  (8)

M is a column vector of a specific color channel in the H&E 
image, P is a column vector of P parameters for the channel 
M transform, and I is a two‑column matrix consisting of the 
DAPI and AF fluorescence channels.

Af te r  op t imiza t ion ,  we  apply  the  v i r tua l  H&E 
transform (equation [4]) with the optimized parameters to a 
set of fluorescence images for which we have also the real H&E 
staining in order to check the performance of our algorithm.

In the next step, we evaluated our results subjectively by having 
them annotated by pathologists for tumor and compared to 

the tumor annotations made by pathologists on the real H&E 
images. For this purpose, we used 5 couples of real/virtual 
H&E whole slide images. We quantify the similarity between 
annotations by using the Dice coefficient.[18]

Considering two samples A and B, Dice coefficient could be 
written as:

2 A B
D

A B
=

+
∩

 (9)

In our case, A and B are, for instance, tumor annotations 
done by a pathologist on real and virtual H&E images, 
respectively.

reSultS

Following least mean square optimization using a training 
set that consisted of 5 FOVs (corresponding to 20971520 

Figure 5: Real hematoxylin and eosin image stained with the classical 
process

Figure 6: Virtual hematoxylin and eosin image obtained with the optimized 
parameters

Figure 7: Results of tumor annotation done by pathologists on two 
examples of real hematoxylin and eosin images. The red and black 
lines correspond to tumor annotations done by the two pathologists, 
respectively

Figure 8: Results of tumor annotation done by pathologists on the 
corresponding virtual hematoxylin and eosin images. The red and black 
lines correspond to tumor annotations done by the two pathologists, 
respectively. The green line corresponds to the annotation made by the 
third pathologist on the virtual hematoxylin and eosin image
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Figure 10: Real hematoxylin and eosin field of view

Figure 11: The corresponding virtual hematoxylin and eosin field of 
view. The structures are similar in the real and virtual hematoxylin and 
eosin images

pixels) from different slides, we applied the optimized H&E 
transform to whole slide images. We performed a comparison 
between the virtual H&E images and the corresponding real 
H&E images [e.g., Figures 5 and 6] based on pathologists’ 
evaluation. From Figures 5 and 6, we can visually see that 
the real and virtual H&E images are quite similar and show 
the same details both microscopically and macroscopically.

Pathologists’ annotations on slide images consist of defining 
areas with specific characteristics and are used as regions 
of interest for the automatic analysis algorithms and data 
exploration. Since in our case, the aim of this virtualization 
of H&E is to enable pathologists to annotate tumor on 
fluorescent‑stained images, it seemed natural to choose the 

similarity of these annotations on both real and virtual H&E 
images as a measure for the quality of the virtualization 
transform. This method was also used in previous brightfield 
virtualization studies[11] and presents a very practical and 
functional measure of the quality of the transformation, 
allowing us valuable insight into the question of “if” and “how” 
the virtualization of brightfield‑stained images affects the 
underlying visual data and patterns used by the pathologists to 
diagnose and identify anomalies in the tissue. A disadvantage 
of this case pointed out to us by our expert pathologist team 
is that because they see both the real and virtual images they 
might tend to annotate both the same way even if some time 
elapses between annotations since they have a developed 
“photographic” memory when it comes to tissue sections. We 
address this problem by comparing annotations made only 
on virtual H&E images by one pathologist to the annotations 
made on real H&E images by another pathologist. Since neither 
of them saw the others annotations, the comparison can give 
insight into the actual difference between real and virtual 
H&E annotation without bias. Five tissue samples containing 
tumor were stained with our fluorescence assay, imaged, 
and converted to virtual H&E. The slides were then washed 
and restained with H&E and imaged again in a brightfield 
scanner. Two pathologists annotated the pairs of real and 
the virtual H&E images, and one pathologist annotated only 
virtual H&E images. We used Dice coefficient to evaluate the 
similarity between the annotations. The intrapathologist Dice 
coefficient measures the similarity between the annotations 
made by the same pathologist on the real and the virtual 
H&E images. The interpathologist Dice coefficient measures 
the similarity between the annotations made by the third 
pathologist annotating only on the virtual H&E images and 
the annotations made by the other pathologists on the real 
H&E images. High intrapathologist Dice coefficients mean 
that a pathologist annotated the real and virtual images very 
similarly. High interpathologists Dice coefficients mean that 
the pathologist annotating the virtual image only, annotated it 
very similarly to how the other pathologists annotated the real 

Figure 9: Boxplot representation of Dice coefficients of the 
pairs of slides (real/vir tual hematoxylin and eosin) annotated 
by the same pathologists (intrapathologist) and by different 
pathologists (interpathologists). The central mark (red line) corresponds 
to the median, the edges of the box correspond to the 25th and 
75th percentiles, and the whiskers extend to the minimum and maximum 
values. The average Dice coefficient intrapathologist is equal to 0.97 and 
the average Dice coefficient interpathologists is equal to 0.95
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image. This also mitigates the potential bias from pathologist 
visual memory when annotating both virtual and real images.

Figures 7 and 8 show two examples of tumor annotation results 
done by pathologists on the real and the virtual H&E slides.

We computed the Dice coefficient on the set of real and 
virtual H&E slide pairs annotated by pathologists [Figure 9]. 
The average Dice coefficients intrapathologists and 
interpathologists are equal to 0.97 and 0.95, respectively. Both 
values are close to 1.0 which reflects a good match between 
the pathologist tumor annotations made on virtual compared 
to annotations made on real images. The number of slides 
in the validation set does not allow a statistical comparison 
between the values of the interpathologist and intrapathologist 
Dice coefficients.

dIScuSSIon

The objective of this work is to generate virtual H&E images 
using fluorescence images to enable medical diagnosis and 
to combine the advantages of fluorescence multiplexing 
and brightfield image familiarity and ease of annotation. 
Fluorescent staining allows the staining of several different 
biomarkers within the same specimen but creates multilayered 
image which is not trivial for a pathologist to annotate. 
Pathologists are very familiar with classical histopathology 
and specifically H&E staining which has been the standard 
staining used for tissue diagnosis for over a century. In 
addition, fluorescence staining and imaging technologies are 
relatively new and are still not the standard methods used 
in the clinic. This conflict lies at the core of the motivation 
for this study since we wish to use fluorescence imaging in 
the context of cancer drug research and development, but 
we rely on pathologists to annotate and diagnose tissue as 
part of this process. We aim to virtually reproduce classical 
histopathology images in high‑quality virtual H&E images 
to empower pathologists in the diagnosis and annotation of 
complex fluorescence scenes.

Our approach aims to solve the gap presented by the lack of 
eosin stain in our staining assays by extracting and using the 
autofluorescence data which is inherent in the slides.

Since most of this autofluorescence originates in protein 
molecules, it makes sense that we can use this data as a 
surrogate for a protein staining dye like eosin. We try to 
find an optimal transform between the fluorescence and the 
brightfield images by optimizing transform parameters so that 
the difference between the virtual and real H&E stain images 
of the same tissue is minimized.

Since the practical objective of our study is to enable 
pathologists to annotate the fluorescence images by means 
of this virtual H&E images generation, we evaluate our 
transformation by comparing the tumor annotation results 
done by pathologists on pairs of real and virtual H&E images 
of the exact same tissue.

The validation of our results shows that the virtual H&E images 
generated by our algorithm can be used by pathologists for 
annotation and interpretation purposes and lead to conclusions 
that are similar to the ones obtained with real H&E images. 
The similarity can of course also be seen with the naked eye, 
especially since we have managed to stain and image the 
exact same tissue sample with both H&E and fluorescence 
staining. We could potentially use the same technique to 
also virtually create other brightfield immunohistochemical 
stains from the fluorescence image data in order to emulate 
other staining that pathologists feel comfortable working 
with. The Dice coefficients for the tumor annotation on 
the test set is above 0.96, demonstrating a high correlation 
between pathologist annotation of tumor on real H&E slides 
compared to the tumor annotations on the virtual H&E slides. 
This high value correlation between annotations on real and 
virtual slides is precisely what we were trying to achieve 
since it will enable us to keep staining and imaging tissue 
with fluorescence technology, enabling multiplexing of many 
targets simultaneously while still enabling pathologists to 
diagnose and annotate these images comfortably through the 
virtualization of brightfield H&E (or other stains) images.

Another interesting question we have yet to address includes 
whether our transform retains enough high‑resolution nuclear 
details to enable detection of nuclear atypia. In the source, 
fluorescence images loss of fine grain nuclear details can also 
originate from saturation of the DAPI staining or the fluorescent 
imaging system as compared to hematoxylin brightfield 
imaging. However, as can be seen from Figures 10 and 11, 
FOVs at ×20 show similar structures on the real and virtual 
H&E images.

concluSIon

We propose a method for generating virtual brightfield 
images of H&E stained tissue from fluorescence images of 
immunohistochemical stained tissue in order to facilitate 
pathologist annotations of histopathological structures on 
fluorescence microscopy images. Our method is based on 
optimizing a transform function using paired slide images 
stained consecutively with an immunohistochemical 
fluorescent staining technique and H&E. We validate the 
results by comparing tumor annotations done by pathologists 
on real and virtual H&E images. The comparison as well as 
visual assessment indicate that the virtual stain is similar to 
the real stain and that pathologists annotations are similar on 
both real and virtually stained slide images.
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