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Abstract

Summary: Sequences of proteins evolve by accumulating substitutions together with insertions and deletions
(indels) of amino acids. However, it remains a common practice to disconnect substitutions and indels, and infer ap-
proximate models for each of them separately, to quantify sequence relationships. Although this approach brings
with it computational convenience (which remains its primary motivation), there is a dearth of attempts to unify and
model them systematically and together. To overcome this gap, this article demonstrates how a complete statistical
model quantifying the evolution of pairs of aligned proteins can be constructed using a time-parameterized substitu-
tion matrix and a time-parameterized alignment state machine. Methods to derive all parameters of such a model
from any benchmark collection of aligned protein sequences are described here. This has not only allowed us to
generate a unified statistical model for each of the nine widely used substitution matrices (PAM, JTT, BLOSUM, JO,
WAG, VTML, LG, MIQS and PFASUM), but also resulted in a new unified model, MMLSUM. Our underlying method-
ology measures the Shannon information content using each model to explain losslessly any given collection of
alignments, which has allowed us to quantify the performance of all the above models on six comprehensive
alignment benchmarks. Our results show that MMLSUM results in a new and clear overall best performance,
followed by PFASUM, VTML, BLOSUM and MIQS, respectively, amongst the top five. We further analyze the
statistical properties of MMLSUM model and contrast it with others.

Contact: arun.konagurthu@monash.edu or lloyd.allison@monash.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Comparing and inferring relationships between protein sequences is
a challenging task and, when done properly, provides a powerful
way to reason about the macromolecular consequences of evolution
(Lesk, 2016). Many biological studies rely on identifying homolo-
gous relationships between proteins. The details of those relation-
ships are represented as correspondences (alignment) between
subsets of their amino acids. Each such correspondence suggests the
divergence of the observed amino acids arising from a common
locus within the ancestral genome.

Although sequence comparison is a mature field, the fidelity of
the relationships evinced by modern homology detection and align-
ment programs remains a function of the underlying models they
employ to evaluate hypothesized relationships. Most programs util-
ize a substitution matrix to quantify amino acid interchanges. These
matrices are often parameterized on a numeric value that accounts
for the extent of divergence/similarity between protein sequences
[e.g. PAM-250 (Dayhoff et al., 1978) and BLOSUM-62 (Henikoff
and Henikoff, 1992)]. Separate gap-open and gap-extension penal-
ties are widely felt to give plausible and sufficiently flexible approxi-
mations to quantify indels. However, mathematically reconciling
the quantification of substitutions with that of indels remains con-
tentious. Often the issue is simply avoided: previous studies have

shown that the choices of which substitution matrix to use, at what
threshold of divergence/similarity, and with what gap penalty val-
ues, remain anecdotal, sometimes empirical, if not fully arbitrary
(Do et al., 2005; Sumanaweera et al., 2019; Vingron and
Waterman, 1994).

Several notable works in the literature (Benner et al., 1993;
Blake and Cohen, 2001; Chang and Benner, 2004; Gonnet et al.,
1992; Holmes, 1998; 2017; Pang et al., 2005; Pascarella and Argos,
1992; Rivas, 2005; Rivas and Eddy, 2015; Vogt et al., 1995) high-
light the importance of handling substitutions and indels jointly, via
experiments that explore the relationship between amino acid corre-
spondences and gap lengths with respect to evolutionary divergence.
For instance, Holmes (1998) notably discusses the evolutionary
time-dependent substitution models and gap models in hidden
Markov model-based protein alignment, whereas Rivas (2005);
Rivas and Eddy (2015) introduced explicit probabilistic evolution-
ary models to obtain time-dependent affine gap scores. Despite these
noteworthy efforts, the field continues to lack a single formal unified
framework to derive time-dependent substitutions and gap models.
Further, an evaluation of the performance of existing substitution
matrices is hampered by the fact that different sequence comparison
programs yield conflicting results (Barton and Sternberg, 1987;
Blake and Cohen, 2001; Do et al., 2005; Löytynoja and Goldman,
2008; Vingron and Waterman, 1994). Thus, as the field stands, it
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lacks an objective framework to assess how well the commonly used
substitution matrices perform for the task of comparison, without
being impeded by ad hoc parameter choices.

In this article, we describe an unsupervised probabilistic and
information-theoretic framework that uniquely allows us to: (i)
compare the performance of existing substitution matrices, in terms
of the Shannon information content (Shannon, 1948), without the
need for any parameter-fiddling, (ii) infer improved stochastic
Markov models of substitution that demonstrably outperform
existing substitution matrices and (iii) infer time-parameterized
three-state alignment models accompanying the above Markov sub-
stitution models, which together provide a unified way to address
both amino acid indels and substitutions. Specifically, for any given
collection of benchmark alignments, our framework uses the
Bayesian Minimum Message Length (MML) criterion (Wallace and
Boulton, 1968; Wallace and Freeman, 1987) to estimate the
Shannon information content (Shannon, 1948) of that collection,
measured in bits. The Shannon information provides a theoretical
lower bound to the codeword length required to encode losslessly
(i.e. compress) any given event within a message of transmission,
computed using that event’s probability. Accordingly, the Shannon
information content of an alignment collection is computed as the
shortest encoding length required to compress losslessly all sequence
pairs in that collection using their stated alignment relationships.
This measure is based on rigorous probabilistic models that capture
protein evolution (both in terms of substitutions and indels).

Parameters of the models are inferred unsupervised (i.e. auto-
matically) by maximizing the lossless compression that can be
gained from the collection. In general, Shannon information is a fun-
damental and measurable property of data, and has had effective
use in studies involving biological macromolecules (Adami, 2004;
Adjeroh and Nan, 2006; Allison and Yee, 1990; Cao et al., 2007;
Hategan and Tabus, 2004; Strait and Dewey, 1996). During model
inference, MML provides an explicit representation of all parame-
ters and their complexities, by taking into account the optimal preci-
sion and the complexity involved with every parameter statement,
unlike other common methods such as maximum likelihood estima-
tion (Allison, 2018; Wallace, 2005). MML has been applied to
DNA/protein sequence alignment and phylogeny inference (Allison
et al., 1992; Allison and Wallace, 1994; Powell et al., 2004; Yee and
Allison, 1993), and protein sequence alignment through our recent
work (Sumanaweera et al., 2018, 2019).

Central to our information-theoretic framework is a time-para-
meterized stochastic matrix which gives the probabilities of inter-
changes between amino acids as a function of a Markov
time parameter. This matrix works in concert with a set of time-par-
ameterized Dirichlet probability distributions, learnt
unsupervised from any stated alignment collection. Each (time-para-
meterized) Dirichlet distribution is used to model the corresponding
alignment three-state machine over match, insert and delete states,
and quantify the descriptive complexity of any alignment in infor-
mation terms. Importantly, this formal handling of alignment com-
plexity using these models rectifies the ad hoc considerations of gap
penalties, commonly used by sequence alignment methods.

Crucially, all probabilistic parameters including the stochastic
matrix in this framework can be automatically inferred. As a result,
we have been able to infer a new and demonstrably improved model
of protein evolution. Our framework also facilitates a conversion of
existing substitution matrices to their corresponding Markov matri-
ces with high-fidelity, even those that do not explicitly model amino
acid interchanges as a Markov process [We note that there have
been only a few varying attempts at such a conversion (Rivas, 2005;
Veerassamy et al., 2003)]. This provides a direct way to objectively
compare the performance of various substitution matrices, without
any need for parameter-tuning. To the best of our knowledge, the
above mentioned features are unique to the work presented here.
Our method of MML-based model estimation is described in
Section 2.

The inferred time-parameterized models along with all other
models compared here are freely available for use with the latest

version of seqMMLigner (Sumanaweera et al., 2019) program for
pairwise sequence comparison.

2 Materials and methods

2.1 Introduction to minimum message length inference
The Minimum Message Length (MML) principle (Allison, 2018;
Wallace, 2005; Wallace and Boulton, 1968) is a powerful technique
to infer reliable hypotheses (models, theories) from observed data.
MML is an information-theoretic criterion that, in its mechanics,
combines Bayesian inference (Bayes, 1763) with lossless data com-
pression. Formally, the joint probability of any hypothesis H and
data D is given by: PrðH;DÞ ¼ PrðHÞPrðDjHÞ ¼ PrðDÞPrðHjDÞ as
per the Bayes theorem. Commonly, model inference depends
on identifying suitable hypotheses based on posterior probability
(i.e. PrðHjDÞ). Separately, Shannon’s Mathematical Theory of
Communication (Shannon, 1948) quantifies the amount of informa-
tion in any event E that occurs with a probability of PrðEÞ as:
IðEÞ ¼ � log 2PrðEÞ bits. I(E) can be understood as the minimum
lossless encoding length required to communicate the event E.
Accordingly, the joint probability PrðH;DÞ can be expressed in
terms of Shannon information content as:

IðH;DÞ ¼ IðHÞ þ IðDjHÞ ¼ IðDÞ þ IðHjDÞ bits (1)

This relationship can be rationalized as the length of a two-part
message required to communicate the hypothesis H and the data D
given H, as a notional communication between a transmitter and re-
ceiver. In this formulation, the transmitter losslessly encodes the hy-
pothesis H which takes I(H) bits to state, followed by the data D
given the stated hypothesis H, taking another IðDjHÞ bits to state.
Note, for any H and D, I(H) and IðDjHÞ should be accurately esti-
mated, and we carry out this estimation using the well-established
technique of Wallace and Freeman (1987) from the statistical-
learning literature. Note, one of the important aspects of MML is its
consideration of all model complexities—the statement (i.e. lossless
encoding) of every parameter estimate to its optimum precision,
which in turn ensures an honest evaluation of the model at hand.

Many attractive properties emerge from the MML formulation,
but most useful here is the observation that the difference in message
lengths between any pair of competing hypotheses (say H1 and H2)
gives the posterior log-odds ratio as: IðH1;DÞ � IðH2;DÞ ¼ � log 2

ðPrðDÞPrðH1jDÞÞ þ log 2ðPrðDÞPrðH2jDÞÞ ¼ log 2
PrðH2 jDÞ
PrðH1 jDÞ

� �
bits.

This allows competing hypotheses to be objectively compared and
the best one to be reliably chosen. See Allison (2018) and Wallace
(2005) for further mathematical details on model selection.

2.2 Formulating the description of a protein alignment

dataset using the MML framework
In this work, the observed data D denotes any (benchmark) dataset
of aligned protein sequences. Formally, it is composed of pairs of
amino acid sequences and their given alignments D ¼ fhA1; S1;T1i;
hA2; S2;T2i; . . . ; hAjDj; SjDj;TjDjig, where each Si and each Ti are
sequences over the alphabet of 20 amino acids, and Ai represents
their given alignment relationship specified as a 3-state string over
fmatch, insert, deleteg states. Note that each alignment Ai is
a part of the observed data, coming from structural alignments or
from some set of benchmark alignments.

A hypothesis H that losslessly explains the above data D is com-
posed of the following statistical models (and we emphasize that all
the models shown below are automatically inferred from any given
D, as those that are optimal under the MML criterion):

1. A time-parameterized stochastic Markov matrix MðtÞ which is

used to encode losslessly the corresponding pairs of amino acids

in hSi;Tii that are under ‘match’ states in Ai at time t. Note, this

matrix can either be optimally inferred under the MML criterion

from the collection D, or for comparison purposes, be any exist-

ing substitution matrix.
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2. A multinomial model P, of the 20 amino acids, used to encode

losslessly the amino acids in the unaligned regions of hSi;Tii [i.e.

those under insert or delete (indel) states in Ai]. Estimates

of P are optimally inferred using MML from the indel regions

observed in the alignments of the collection D [Note, for a com-

parison, we also explore two other choices for P: one derived

from the stationary distribution of M, and the other one derived

from a data source independent of D (refer Supplementary

Section S2.2)].

3. A set of automatically inferred Dirichlet parameters a, each one

specifying a Dirichlet distribution for a specific value of diver-

gence ‘time’ t, to be used in conjunction with MðtÞ; the align-

ment 3-state machine’s transition probabilities Hi that are

inferred optimally for any alignment Ai are encoded using one

of the time-dependent Dirichlet distributions. These transition

probabilities in turn are used to encode losslessly a 3-state align-

ment string Ai.

4. Finally, the set of automatically inferred time parameters

s ¼ ft1; t2; . . . ; tNg, one for each sequence-pair in D using the

above models. Each ti captures the divergence of corresponding

sequence-pairs hSi;Tii, where ti can be interpreted as the length

of the Markov chain by which their amino acids are related

using the above models.

Using Equation (1), this framework allows the estimation of the
total Shannon information content in the hypothesis H and data D
as a summation of individual Shannon information terms:

IðH;DÞ ¼ IðMÞ þ IðPÞ þ IðaÞ þ
XjDj

i¼1

IðtiÞ þ IðHija; tiÞ

þ IðAijHi; tiÞ þ IðhSi;TiijAi;M;P; tiÞ bits

(2)

where IðMÞ is the lossless encoding (i.e. statement) length of Matrix
M that models matched amino acid regions of D; IðPÞ is the state-
ment length of probability estimates P to model indel regions of D;
IðaÞ is the statement length of inferred time-dependent Dirichlet
parameters; IðtiÞ is the statement length of inferred time ti of a
sequence-pair hSi;Tii given its alignment Ai; IðHija; tiÞ is the state-
ment length of alignment 3-state machine parameters inferred on
each Ai; IðAijHi; tiÞ is the statement length of each Ai; and
IðhSi;TiijAi;M; P; tiÞ is the statement length of explaining all amino
acids in the sequence-pair. The above models and their MML esti-
mation are described in the following sections (see Supplementary
Section S1).

This work utilizes the six alignment benchmarks described in
Supplementary Section S4 to validate the framework introduced
above. Each benchmark individually provides a source collection D
of pairs of sequences and their given alignment relationships. D is
losslessly compressed under the minimum message length (MML)
criterion defined by Equation (2). New stochastic models of amino
acid exchanges are automatically inferred on the above benchmarks
and performance compared (in Shannon information terms) to the
popularly used substitution matrices (historical and recent matrices
including five Markov models and four non-Markov models)
described in Supplementary Section S4, without the necessity to
hand-tune parameters (as demonstrated in Section 3).

2.3 Stochastic matrix MðtÞ to model amino acids in the

matched regions
Amino acid interchanges are modeled by a Markov chain (Norris
and Norris, 1998) defined over the state space of 20 amino acids.
That means, the probabilities of transitions between any pair of
amino acids is represented as a stochastic matrix MðtÞ. For any time
t>0, if an amino acid a0 (at time t¼0) undergoes the following
chain of interchanges (a0 ! a1 ! . . .! at�1 ! at), the Markov
process ensures that the state of the amino acid at (at time t) depends

only on the previous state of the amino acid at�1 (at time t�1):
Prðatja0; a1; . . . ; at�1Þ ¼ Prðatjat�1Þ: Thus, the conditional probabil-
ity Prðatjat�1Þ corresponds to a 1-step transition between states from
the time t�1.

In this work, Mð1Þ represents a 20�20 matrix containing condi-
tional probabilities, where each Mij in the matrix refers to the prob-
ability of an amino acid indexed by j changing to an amino acid
indexed by i at t¼1. When choosing the unit of time, we use the
convention introduced by Dayhoff et al. (1978) and define t¼1 as
the discrete time unit taken to observe 1% (¼ 0.01) expected change
in amino acids. We shorthand the probability matrix M for Mð1Þ,
and term it the base matrix. Each column vector of M is an L1 nor-
malized vector (i.e.

P20
i¼1 Mij ¼ 1 for all 1 � j � 20). Further, as

the Markov property holds, MðtÞ can be computed from Mð1Þ as
Mt, denoting the stochastic matrix after t time-steps. Implicit in M
is its stationary distribution p (derived from the eigenvector corre-
sponding to the eigenvalue of 1—the largest eigenvalue of M), and
limt!1Mt gives a matrix whose columns all tend to p (Norris and
Norris, 1998). Moreover, the eigen-decomposition of M enables an
efficient computation of Mt as Mt ¼ SKtS�1, where S and K are the
eigenvector and diagonal eigenvalue matrices of Mð1Þ. Note: The
above Markov model directly relates to its corresponding
continuous-time Markov model via: Mt ¼ eQt; where Q is an in-
stantaneous rate matrix. It enables a two-way conversion between
them given the knowledge of t (Kishino et al., 1990; Kosiol and
Goldman, 2005). Our framework caters for the inference of the
optimal t as a discrete variable for all practical purposes. While any
M stochastic matrix with a valid logarithm carries an implicit rate
matrix of its own, a discrete approximation does not obstruct align-
ment modeling, as we observe that the expected change does not
vary significantly within ½t; t þ 1� (see Supplementary Section S3.4).

2.4 Multinomial probabilities P to model the amino

acids in the indel regions
In general, the multinomial probabilities can be estimated
over observations from any finite alphabet @ ¼ fx1; . . . ; xj@jg
with j@j symbols/states. The MML-estimate for multinomial
probabilities (Wallace and Freeman, 1987) has been derived as:

PrðxiÞ ¼ niþ1
2Pj@j

j¼1
njþj@j2

, where ni is the number of observations for each

state xi [refer Allison (2018)]. Using the above, we derive the opti-
mal MML probability estimates P by accounting for the number of
observations of each amino acid in the indel regions of all align-
ments in any specified collection D.

To provide an alternate estimate for P, we compare the above
optimal choice with those derived from the stationary distribution p
of the stochastic matrix M. Further, both the above candidates for
estimates of P are dependent on the observed data D. To compare
these against an estimate independent of D, P can be estimated on
the UniProt database (Apweiler et al., 2004) (see Supplementary
Section S2.2).

2.5 Alignment three-state machine and Dirichlet

distributions as a function of time
In the collection D, any alignment relationship Ai for its corresponding
sequences hSi;Tii is described as a 3-state string over the alphabet of
fmatch (m), insert (i), delete (d)g states. This adheres to
what was previously considered by Gotoh (1982); Allison et al. (1992)
for biological sequence alignment, and later by Eddy (1998) with pair
hidden Markov models specific to protein sequence alignment.

This 3-state machine defines nine possible one-step state transi-
tions with corresponding transition probabilities (denoted as H) (see
Fig. 1), where the sum of probabilities out of any state equals 1.
Further, as is common when dealing with alignments of biomole-
cules, the insert and delete states are treated symmetrically,
thus reducing the number of free parameters to three. Notionally
these free parameters are represented by fPrðmjmÞ; PrðijiÞ; PrðmjiÞg.
The remaining six (dependent) parameters can be derived from them
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as: PrðijmÞ ¼ PrðdjmÞ ¼ 1�PrðmjmÞ
2 ; PrðdjiÞ ¼ PrðijdÞ ¼ 1� PrðijiÞ�

PrðmjiÞ; PrðdjdÞ ¼ PrðijiÞ; PrðmjdÞ ¼ PrðmjiÞ.
These alignment 3-state machine parameters are modeled using

Dirichlet distributions inferred for different values of time t. In gen-
eral, a Dirichlet distribution is a natural choice to model the parame-
ters of multistate (categorical) and multinomial distributions, as the
Dirichlet is a conjugate prior for them. The literature contains many
examples of applying Dirichlet models for other purposes such as
amino acid substitution modeling (e.g. Brown et al., 1993; Nguyen
et al., 2013).

We define a 1-simplex Dirichlet and a 2-simplex Dirichlet
for each discrete time point t to model PrðmjmÞ and ½PrðijiÞ;
PrðmjiÞ�, respectively. The time-dependent Dirichlet parameters
inferred from D are denoted as aðtÞ. See Supplementary Section
S1.3.4 for the methodological details of the inference of time-
dependent Dirichlet parameters aðtÞ, and H given aðtÞ from any col-
lection of alignments D.

2.6 Converting a scoring matrix to a stochastic matrix M
Any existing amino acid substitution matrix can be converted into
its corresponding stochastic matrix M and thus benefit from the
MML’s unsupervised parameter estimation. This lends the ability to
objectively compare the performance of commonly used substitution
matrices, normally published in their linearly scaled log-odds form.
These log-odds scoring matrices are converted back to their condi-
tional probability form by using their reported multiplier and amino
acid frequencies. (Note: Two of the nine matrices we compared—
MIQS and PFASUM—do not provide the amino acid frequencies
used in their log-odds scores computation, so we used the multi-
nomial probability estimates of amino acids optimal for the collec-
tion D). Let C denote the conditional probability matrix derived
from a scoring matrix. Then, M is derived from C by numerically
identifying the kth root of the matrix C, i.e. Mð1Þ ¼ C

1
k, such that

the resulting M is the nearest to having 1% (¼0.01) expected
amino-acid change (refer Supplementary Section S1.5.2). Once the
stochastic matrix is derived from an existing substitution scoring
matrix, all the other corresponding parameters (P, H; a; s) are auto-
matically inferred using MML, as optimal to M for the given collec-
tion D.

2.7 Inference of the best stochastic matrix M� for any

benchmark D
This MML framework also allows the inference of a stochastic ma-
trix from an alignment benchmark D, the best matrix being the one
that minimizes the MML objective function given in Equation (2).
To search for the best matrix, we implement a Monte Carlo search
method (see Supplementary Section S1.4) that uses simulated
annealing (Kirkpatrick et al., 1983). Broadly, beginning from an ini-
tial state of M, randomly chosen columns of an evolving matrix are
perturbed in the near-neighborhood. Using the Metropolis criteria
(Metropolis et al., 1953), each perturbation is either accepted/
rejected over an iterative Monte Carlo process until convergence
(refer Supplementary Section S1.4). Fixing this inferred matrix, we

then optimize the 3-state machine parameters described in Section
2.5. We continue to iteratively optimize them until convergence.

2.8 Estimation of the terms in Equation (2)
The ‘MML87’ method (Wallace and Freeman, 1987) of parameter
estimation is used to compute the Shannon information terms
in Equation (2). In general, for a model with continuous parameters
g, and a prior hðgÞ, Wallace and Freeman (1987) derived the
encoding message length required to communicate any observed
dataset d as Iðg;dÞ ¼ IðgÞ þ IðdjgÞ bits where, IðgÞ ¼ �log½hðgÞ�þ
1
2 log det½FisherðgÞ�

� �
þ jgj2 logðjjgjÞ þ jgj2 bits [jgj is the number of

free parameters, and jjgj is the associated quantizing lattice constant

(Conway and Sloane, 1984)], and IðdjgÞ ¼ LðdÞ bits where L is
the negative log likelihood function, and detðFisherðgÞÞ is the deter-
minant of the Fisher information matrix (the second derivative of L)
that informs the optimal precision required to state g. Equation (2)
is further described in the Supplementary Section S2.

Finally, we note that the simultaneous inference of the complete
set of time-parameterized models, mainly fMðtÞ; aðtÞg, given any
benchmark alignment is a one-time process, and the complexity of
inference is discussed in the Supplementary Section S1.4. Once these
models are identified, they can be used to compare any pair of pro-
tein sequences in time proportional to the product of lengths of the
two sequences using the MML framework of alignment introduced
in Sumanaweera et al. (2019).

3 Results and discussion

Here, we consider nine well-known substitution matrices along with
six new matrices derived using our MML framework described in
this article. The existing matrices include: PAM (Dayhoff et al.,
1978), JTT (Jones et al., 1992), BLOSUM (Henikoff and Henikoff,
1992), JO (Johnson and Overington, 1993), WAG (Whelan and
Goldman, 2001), VTML (Müller et al., 2002), LG (Le and Gascuel,
2008), MIQS (Yamada and Tomii, 2014) and PFASUM (Keul et al.,
2017). These matrices are compared on six large benchmark collec-
tions containing alignments (see Section 2). For each benchmark col-
lection, we further infer a stochastic matrix that best compresses all
the alignments in the benchmark. We compare these six MML-
inferred matrices against the existing matrices.

In the remainder of this section, the performance of all the matri-
ces across six benchmarks is measured using the Shannon informa-
tion content. This measure gives the length of lossless compression
(in bits) of each benchmark, using respective matrices and their cor-
responding optimal three-state machine models. From this, one of
our six MML-inferred substitution matrices was observed to be the
most generalizable matrix across all the benchmarks—we term this
matrix, MMLSUM. Further, we detail the characteristics of
MMLSUM including aspects of physicochemical and functional
properties that the matrix captures, its relationship with the
expected change in amino acids as a function of divergence time,
and the properties of gaps that can be derived from its companion
three-state machine models.

3.1 Composition of alignment benchmarks
Table 1 summarizes the six alignment benchmarks. The distribu-
tions of sequence identity across these benchmarks are shown in
Supplementary Figure SF2. Accordingly, HOMSTRAD covers a wide
range of sequence relationships, whereas SABMARK-Sup and
MATTBENCH contain alignments of distant sequence-pairs.
SABMARK-Twi contains alignments of sequences that have diverged
into the ‘midnight zone’ (Rost, 1999) where the detectable sequence
signal is extremely feeble. Finally, the largest benchmark contains
59 092 unique sequence-pairs sampled from the superfamily and
family levels of SCOP (Murzin et al., 1995). These pairs were
aligned separately using DALI (Holm and Sander, 1993) and
MMLigner (Collier et al., 2017) structural alignment programs to
obtain SCOP1 and SCOP2 benchmarks, respectively (Note: of the
59 092 pairs in the sampled SCOP data-set, DALI does not report

Fig. 1. The symmetric three-state machine for modeling an alignment string (Note:

the red transitions refer to the three free parameters. Equivalent transitions are indi-

cated in blue.) (A color version of this figure appears in the online version of this

article)
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any alignment for 2800 pairs). Collectively, all six benchmarks
cover varying distributions of sequence relationships. This diversity
of chosen benchmarks minimizes the possibility of introducing any
systematic bias to the evaluation.

3.2 Measuring Shannon information content of

benchmarks using different substitution matrices
We estimated the lossless encoding message length for each of the
above benchmarks using our MML framework described in Section
2. The framework quantifies the Shannon information content of a
benchmark, measured in bits, under each of the substitution models.

Further, following the notations described in Section 2, for a sto-
chastic matrix M chosen to compress losslessly all the sequence-
pairs in a specific alignment benchmark D, all the other models
involved in this MML information-theoretic framework, i.e.
fP; a;H; sg (denoting the 20-nomial model of amino acids, Dirichlet
distribution parameters, alignment three-state machine parameters
and evolutionary time parameters, respectively), are automatically
inferred (optimized) for M on each benchmark D under the MML
criterion [Note: In the context of model evaluation using Shannon
information, the lossless compression of data is expected to reach
the minimum (optimal) encoding length when the underlying prob-
abilistic model approaches the (unknown) true model. Hence, a
lower encoding length is indicative of better models].

Table 2 presents the lengths of the shortest encoding (i.e.
Shannon information) using each of the 15 matrices (9 existing;
6 inferred) to explain each benchmark.

Previously published matrices are arranged in their chronological
order of publication (rows). The last five rows show results for the
stochastic matrices inferred from each benchmark. To get an overall
view of the performance of each matrix as a consensus over all
benchmarks generated from individual ranks (shown within paren-
theses in each column of Table 2), we use a simple yet effective stat-
istic: the (row-wise) sum of ranks of each matrix over all
benchmarks, ranksum in short. Since this evaluation involves the
ranking of 15 matrices over 6 benchmarks, the ranksum of any ma-
trix is an integer between 6�1¼6 (best possible performance) and
6�15¼90 (worst possible performance).

Amongst the existing matrices, PAM (ranksum¼90) consistently
gave the worst (i.e. longest) lossless encoding lengths across all
benchmarks. This is anticipated, as PAM was derived in 1970s using
the then available (limited) set of closely related protein relation-
ships. This is improved upon by JO (ranksum¼83), JTT
(ranksum¼79), LG (ranksum¼64), WAG (ranksum¼60), MIQS
(ranksum¼56), BLOSUM (ranksum¼52), VTML (ranksum¼44)
and PFASUM (ranksum¼41). These numbers suggest that, by and
large, the previously published amino acid substitution models have
improved over time, becoming more representative of the current
protein corpus. BLOSUM (1992) is amongst the earliest matrices to
outperform several matrices that were proposed much later, and is
only superseded in performance by VTML (2002) and PFASUM
(2017) amongst the recent matrices.

Further, we observe that the MML-inferred stochastic matrices,
specific to each benchmark, perform consistently better than

previously published substitution matrices. Indeed, it is to be
expected that the encoding length of any MML-inferred matrix opti-
mized on a specific benchmark will outperform all the other matri-
ces on that particular benchmark—and this is precisely what is
observed in Table 2. However, the utility of any matrix lies in its
ability to generalize to other benchmarks and perform well on those.
The results clearly demonstrate the ability of MML-inferred matri-
ces to generalize and explain other benchmarks, far outperforming
all existing ones. According to their ranksums: MMLSABMARK�Sup
(i.e. the stochastic matrix inferred from SABMARK-Sup) gives
ranksum¼26 across all benchmarks, while MMLMATTBENCH and
MMLHOMSTRAD give ranksum¼25. The top two performers overall
come from the matrices inferred on the two SCOP benchmarks,
MMLSCOP1 (ranksum¼18) and MMLSCOP2 (ranksum¼15). The
sole outlier amongst the MML-inferred matrices is
MMLSABMARK�Twi with ranksum¼42. As already stated,
SABMARK-Twi benchmark contains alignments of highly diverged
sequence-pairs (with an average sequence identity of 8.4%). Thus,
the benchmark itself carries an extremely weak sequence signal,
deflecting the inference of a stochastic matrix that can generalize ef-
fectively to explain a wider range of sequence relationships that
other benchmarks embody. Nevertheless, a noteworthy observation
is that MMLSABMARK�Twi (ranksum¼42) is nearly in par with
PFASUM (ranksum¼41) which was the best performer amongst the
set of existing matrices.

Supplementary Sections S2–S3 present an extended analysis and
additional information for this comparative study. Overall, the
MML-inferred matrix from the SCOP2 benchmark (MMLSCOP2)
with a ranksum¼15 outperforms all other matrices. This is be-
cause the SCOP2 benchmark is three times larger than SABMARK-
Sup (seven times that of HOMSTRAD) and contains a wider range of
sequence relationships than the other benchmarks. Thus, all of our
subsequent analyses will involve the MMLSCOP2 matrix—we will
refer to this as MMLSUM.

3.3 Analysis of MMLSUM (MML SUbstitution Matrix)
MMLSUM above is shown to be effective in compressing all align-
ment benchmarks compared to the other existing substitution matri-
ces, reflecting a reliable representative of average amino acid
substitution patterns observed across the present repertoire of pro-
teins. We now analyze the protein physicochemical and functional
properties that it captures, the expected amino acid change as a
function of divergence time, and the properties of gaps derived from
its companion probabilistic models.

3.3.1 Amino acid clusters

An amino acid substitution matrix encompasses average similarities
and differences present amongst possible substitution patterns,
reflecting physicochemically similar groups of amino acids.
Checking amino acid clusters implicit in a substitution matrix has
been historically flagged as a viable method of checking if the par-
ticular matrix captures sensible patterns of substitutions (Dayhoff
et al., 1978; French and Robson, 1983). Here, we analyze amino

Table 1. Composition of the structural alignment benchmarks used in this work

Benchmark

Name Curated with

structural aligner

No. of

aligned pairs

No. of

matches

No. of

inserts

No. of

deletes

Average

sequence

identity

HOMSTRAD (Mizuguchi et al., 1998) MNYFIT, STAMP, COMPARER 8323 1 311 478 96 911 98 810 35.1%

MATTBENCH (Daniels et al., 2012) MATT 5286 826 506 177 401 177 789 19.4%

SABMARK-Sup (Van Walle et al., 2005) SOFI, CE 19 092 1 750 440 848 859 861 344 15.2%

SABMARK-Twi (Van Walle et al., 2005) SOFI, CE 10 667 694 954 515 318 527 188 8.4%

SCOP1 (Andreeva et al., 2020) DALI 56 292 8 663 652 1 407 988 1 373 882 25.5%

SCOP2 (Andreeva et al., 2020) MMLIGNER 59 092 8 145 678 1 673 687 1 653 531 24.8%
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acid groups implicit in MMLSUM, using (i) hierarchical clustering,
and (ii) tSNE embedding.

Figure 2a gives a dendrogram generated using the average-
linkage method on the MMLSUM base stochastic matrix (repre-
senting evolutionary time t¼1, denoting 1% expected change in
amino acids). We notice the following important clusters of amino
acids, previously marked as necessary for a reliable matrix to cap-
ture (Dayhoff et al., 1978): (i) Hydrophobic amino acids—[Valine
(V), Isoleucine (I), Leucine (L), Methionine (M)]; (ii) Aromatic
amino acids—[Tryptophan (W), Tyrosine (Y), Phenylalanine (F)];
(iii) Neutral amino acids—[Alanine (A), Serine (S), Threonine (T),
Glycine (G), Proline (P)]; (iv) Large amino acids—[Arginine (R),
Lysine (K), Asparagine (N), Aspartic acid (D), Glutamic acid (E),
Glutamine (Q)]; The remaining two amino acids, Histidine (H) and
Cysteine (C) cluster apart from the rest. To study the groupings
more systematically and from a different point of view, we apply

the non-linear dimensionality reduction technique of t-distributed
stochastic neighbor embedding (tSNE) (van der Maaten and
Hinton, 2008) to MMLSUM. Figure 2b–g all shows the same 2D
tSNE plots of MMLSUM, but each subplot colors the amino acids
differently based on widely used classification schemes. These
schemes encompass the hydropathic character, charge, polarity,
donor/acceptor roles in forming hydrogen bonds, size and propen-
sity for being buried/exposed and the chemical constitution of
amino acids. In Figure 2b–f, the tSNE yields clearly separable
amino acid groups on the 2D embedding of MMLSUM. In
Figure 2g where the classification is based on the chemical charac-
teristics of amino acids [as per IMGT (Lefranc et al., 2015)], the
classes are mostly well-differentiated, barring a few outliers that in-
clude Histidine (H), Cysteine (C) and Asparagine (N)—we note
that H and C were also outliers in the hierarchical clustering (cf.
Fig. 2a).

Table 2. Shannon information content (in bits) to ecnode losslessly each structural alignment benchmark by varying the substitution

matrices

Benchmark! HOMSTRAD MATTBENCH SABMARK-Sup SABMARK-Twi SCOP1 SCOP2

Matrix (M) # Shannon information content using existing substitution matrices (and its rank across all matrices)

PAM (1978) 11531556.4 (15) 9143136.9 (15) 23574085.5 (15) 11310226.0 (15) 84925406.9 (15) 82757945.5 (15)

JTT (1992) 11481203.2 (14) 9072068.6 (13) 23450831.6 (13) 11251914.3 (13) 84353986.5 (13) 82218532.0 (13)

BLOSUM (1992) 11437552.8 (10) 9037049.8 (08) 23373908.1 (07) 11228043.6 (06) 84174710.8 (11) 81995179.3 (10)

JO (1993) 11476518.5 (13) 9118266.0 (14) 23501361.5 (14) 11290056.3 (14) 84567477.8 (14) 82405562.0 (14)

WAG (2001) 11419186.0 (05) 9052722.9 (12) 23400017.0 (11) 11243242.0 (12) 84141633.8 (09) 81996154.3 (11)

VTML (2002) 11423498.2 (07) 9035903.4 (07) 23377505.0 (08) 11230624.1 (08) 84075908.5 (07) 81925302.7 (07)

LG (2008) 11464263.6 (12) 9049040.6 (11) 23411713.3 (12) 11235389.2 (09) 84255656.9 (08) 82090289.0 (12)

MIQS (2013) 11422215.4 (06) 9040480.8 (10) 23385242.8 (10) 11236323.3 (10) 84076742.8 (12) 81927707.6 (08)

PFASUM (2017) 11412888.2 (02) 9039799.4 (09) 23379074.4 (09) 11236572.3 (11) 84040519.3 (04) 81902713.6 (06)

Matrix (M) # Shannon information using MML-inferred matrices (and its rank across all matrices)

MMLHOMSTRAD 11405604.7 (01) 9035317.6 (05) 23365151.2 (06) 11230184.9 (07) 84026302.3 (03) 81873575.9 (03)

MMLMATTBENCH 11426344.1 (09) 9025882.4 (01) 23355215.8 (03) 11217219.1 (03) 84050927.4 (05) 81886796.3 (04)

MMLSABMARK�Sup 11424135.9 (08) 9031315.9 (04) 23346025.4 (01) 11212252.7 (02) 84067892.9 (06) 81889152.3 (05)

MMLSABMARK�Twi 11442781.7 (11) 9035720.5 (06) 23356054.5 (05) 11211360.9 (01) 84155701.5 (10) 81962307.9 (09)

MMLSCOP1 11413295.6 (03) 9029682.8 (03) 23355235.9 (04) 11221295.6 (05) 83996796.0 (01) 81848381.0 (02)

MMLSCOP2 (MMLSUM) 11413725.3 (04) 9028667.52 (02) 23349826.8 (02) 11218205.6 (04) 83999536.4 (02) 81840654.6 (01)

Note: The rank order of their performance is reported in each column within parentheses (smaller lossless encoding length ¼ better rank). Best encoding length

for each benchmark is highlighted in bold. All other parameters are inferred (optimized) by the MML framework for the matrix chosen to compress losslessly

each benchmark.

Fig. 2. (a) Average-linkage clustering of amino acids generated from MMLSUM. (b–g) tSNE clustering of amino acids generated from MMLSUM. All plots have the same clus-

tering, but colored under different amino acid classification schemes based on: (b) hydropathy, (c) charge, (d) polarity, (e) hydrogen donor or acceptor role, (f) volume and ex-

posure (Swanson, 1984) and (g) chemical properties [based on IMGT classification (Lefranc et al., 2015) and Swanson classification of amino acids (Swanson, 1984)]. Refer to

the legend for the coloring scheme in various subplots
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3.3.2 Expected amino acid change as a function of divergence

time

The expected change of a stochastic matrix is defined as the prob-
ability of observing a change in any state (on average)—see
Supplementary Section S1.5.1 for more details. Figure 3a shows the
growth of expected change of amino acids implicit in MMLSUM as
a function of divergence ‘time’ t. Previous studies (Rost, 1999) have
shown that protein sequence relationships are most reliable when
their sequence identity is > 40% (or the expected amino acid change
is < 60%). This corresponds approximately to the evolutionary
time t 2 ½1; 100� of MMLSUM. The ‘twilight zone’ of sequence rela-
tionships has been characterized by relationships sharing ½20� 35�%
sequence identity (or ½65� 80�% change). This corresponds approxi-
mately to the range t 2 ½125� 200� of MMLSUM. Expected change
of 90% is reached at t¼400, which then increases very slowly there-
after (�94% change at t¼1000) (see Supplementary Section S3.3
for an extended analysis).

3.3.3 Matched block and gap lengths as a function of divergence

time

Significant to this framework is the unified treatment of substitu-
tions and gaps via optimal ‘time’(t)-parameterized Dirichlet distribu-
tions. These Dirichlet models enable the analysis of expected
matched block lengths and gap lengths in protein alignments, as a
function of t. They model time-specific state transition probabilities
of the alignment three-state machine over match (m), insert (i)
and delete (d) states (see Fig. 1). Section 2 introduces the 9 tran-
sition probabilities involved in the alignment three-state machine, of
which three are free (i.e. PrðmjmÞ; PrðmjiÞ and PrðijiÞ) and the
remaining are dependent. Note that, the three-state machine impli-
citly carries the notion of the widely used affine gap function which
supports biologically realistic en bloc indels and computational effi-
ciency (Cartwright, 2006; Gotoh, 1982; Rivas and Eddy, 2015).
There, a match block length or a gap length is modeled as a random
variable over a geometric distribution.

In the three-state machine, the probability of moving from a
match state to another match state (PrðmjmÞ) controls the run
length of any block of matches in an alignment. The expected value
of this run length, a geometrically distributed variable, is given by

1
1�PrðmjmÞ. Also, the value 1� PrðmjmÞ gives the probability of a gap
(i.e. a block of insertions or deletions of any length) starting at a
given position in an alignment. Figure 3b plots the values of PrðmjmÞ
derived from the mean values of the inferred Dirichlets for the
match state. We observe that it remains nearly a constant (PrðmjmÞ
¼ 0.9958 on average) in the range of t 2 ½1; 40�. This value corre-
sponds to an expected run length of �238 amino acids per block of
matches. Sequence-pairs whose time parameter is in that range are
closely related, with > 67% amino acids expected to be conserved
(cf. Fig. 3a). The probability of opening a gap (1� PrðmjmÞ ¼
0:0042) for sequence-pairs in this range is extremely small. Next in
the range t 2 ½40; 300�; PrðmjmÞ decreases linearly with t. Comparing
this range for the expected change of amino acids (Fig. 3a), we can
see that it drastically increases from �32% to �87%. This correlates
with the expected length of match-blocks dropping from 238 amino

acids to about 13. Further, for t � 300; PrðmjmÞ decreases only
gradually.

Similarly, the free parameter PrðijiÞ (equivalent to PrðdjdÞ in
the symmetric alignment state machine) controls the run lengths of
indels. Figure 3c gives values of PrðijiÞ derived from the mean val-
ues of the inferred Dirichlets for the i state. In the range t 2 ½1;50�,
values of PrðijiÞ are noisy because the probability of a gap is small.
Hence, there are only a few observed gaps from which to estimate
this parameter. However, in the range of t 2 ½50; 400�; PrðijiÞ
grows from 0.5248 to about 0.8431 beyond which the probability
flattens out at about 0.8759 on average (expected gap length

1
1�PrðijiÞ ¼� 8 amino acid residues). The change of PrðmjiÞ with
t mirrors the behavior of PrðijiÞ, as: PrðijiÞ þ PrðmjiÞþ
PrðdjiÞ ¼ 1 and PrðdjiÞ remains very small.

3.3.4 Similarity of protein function versus the time of divergence

The following is a complementary analysis on how function similar-
ity between protein domain-pairs in the largest representative bench-
mark of our selection (i.e. SCOP2) correlates with the estimated time
(of divergence) parameter under MMLSUM [refer Supplementary
Fig. SF5 for the distribution of the inferred set of time parameters].
For this, we use the Gene Ontology (GO) resource (http://gen
eontology.org/) that provides function annotations for protein
domains in three categories: (i) the ‘Biological Process’ (BP) they
come from, (ii) the ‘Molecular Function’ (MF) they exhibit and (iii)
the ‘Cellular Component’ (CC) they belong to. Due to missing tags
in the GO database, not all 59 092 pairs in SCOP2 could be consid-
ered for the analysis presented here: we considered only those
domain-pairs where both domains have one or more of the above
categories tagged in the GO database. This resulted in 37 201 pairs
at the level of BP, 48 215 pairs at the level of MF and 31 594 at the
level of CC, for the exploration of function similarity.

The function similarity between a domain pair is evaluated using
a similarity measure involving their list of terms within each GO
category as follows. Each domain is represented as a Boolean vector
corresponding to the observed set of distinct terms in the GO
database. For each domain-pair, two such vectors x! and y! are

constructed and their cosine similarity
x!	 y!

jj x!jjjj y!jj is computed.

Figure 4 plots the average changes of this measure as a function of t.
Overall, the observed trend seen in Figure 4 is consistent with the
plot showing the convergence of amino acids to the stationary distri-
bution of MMLSUM (cf. Supplementary Fig. SF6). As expected, the
function-similarity measure decreases as the domains diverge from
each other and thereby pick up new functions. The similarity meas-
ure flattens out (and becomes noisy) for t>400.

Interestingly, studying the ‘phylum’ of each domain reveals the
divergence of function from another point of view. We analyzed the
proportion of SCOP2 domain-pairs where both domains belong to
the same phylum, by binning their inferred time parameters using
MMLSUM. We find that 92.3% of the domain-pairs whose inferred
time parameters are in the range t 2 ½1;50� belong to the same phy-
lum. Between t 2 ð50;100� this proportion falls to 53.5%. We ob-
serve a roughly similar proportion of 50.4% for the values of

Fig. 3. (a) Amino acid expected change under MMLSUM as a function of divergence-time t. (b) The variation of PrðmjmÞ when derived from the mean of the inferred time-de-

pendent Dirichlet distributions accompanying MMLSUM. (c) Similarly, the variation of PrðijiÞ estimate with t. Note: For (b) and (c), t is plotted in the range ½1; 600� beyond

which the amino acids have near-converged to the stationary distribution (see Supplementary Fig. SF6)
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t 2 ð100; 200�. Between t 2 ð200; 300� and t 2 ð300; 600�, the num-
ber drops more drastically to 34.1% and 32%.

Finally, Supplementary Section S3.5 discusses a case study
involving a diverging set of 9 Globin sequences, in order to explore
the ability of the inferred models here to detect sequence relation-
ships (and their correlation with inferred Markov time) across vary-

ing evolutionary distances of their host species.

3.4 Conclusions
We combined a time-dependent substitution matrix and an associ-

ated three-state alignment machine in a Bayesian and information-
theoretic framework, to give a unified statistical model of aligned
protein sequences This model provides many advantages, including
the inference of evolutionary divergence time between two proteins,
the Shannon information estimation of any benchmark containing
protein alignments, an objective comparison of widely used substitu-

tion matrices, and the inference of a newly improved Markov model
of protein evolution. The framework was developed using the statis-
tical inference criterion of Minimum Message Length (MML)
(Wallace and Freeman, 1987).

Here, we outlined the significant improvement of substitution
modeling gained over the past forty years of history by comparing
nine popular substitution matrices. The study accommodated both,
Markov and non-Markov models of protein evolution, by convert-
ing matrices which do not explicitly depend on time to correspond-
ing stochastic matrices that can benefit from our information-
theoretic framework. We also inferred optimal Markov matrices for

each of six structural alignment benchmarks. This allowed us to
compare the nine existing matrices with the six MML-inferred
matrices on the six benchmarks. All MML-inferred matrices per-
form very well. In particular, the MMLSUM matrix outperforms
other matrices and generalizes best across the set of benchmarks.
MMLSUM also implies sensible groupings of the 20 amino acids.
Moreover, the complete statistical model yields an interesting rela-

tionship between evolutionary time and the frequency and length of
gaps (indels). Furthermore, the inferred evolutionary time correlates
well with protein function similarity. Overall, the new models and
insights resulting from this study will be useful to advance the field
of protein alignment (e.g. to evaluate new matrices, infer new matri-
ces). All models compared and inferred in this study (along with the

programs and raw data) is downloadable from https://lcb.
infotech.monash.edu.au/mmlsum.

User runs using any of the above models to compare pairs of
protein sequences and reason their relationship can be carried out

using the latest version of seqMMLigner (Sumanaweera et al.,
2019), freely downloadable from https://lcb.infotech.mon
ash.edu.au/seqmmligner. Finally, MMLSUM matrices intro-
duced in this work have been used to estimate the reliability and es-
tablish the limits of inference of alignment relationships from amino
acid sequence information (Rajapaksa et al., 2022).
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