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Abstract

Advances in high-throughput sequencing have increased the availability of microbiome

sequencing data that can be exploited to characterize microbiome community structure in

situ. We explore using word and sentence embedding approaches for nucleotide sequences

since they may be a suitable numerical representation for downstream machine learning

applications (especially deep learning). This work involves first encoding (“embedding”)

each sequence into a dense, low-dimensional, numeric vector space. Here, we use Skip-

Gram word2vec to embed k-mers, obtained from 16S rRNA amplicon surveys, and then

leverage an existing sentence embedding technique to embed all sequences belonging to

specific body sites or samples. We demonstrate that these representations are meaningful,

and hence the embedding space can be exploited as a form of feature extraction for explor-

atory analysis. We show that sequence embeddings preserve relevant information about

the sequencing data such as k-mer context, sequence taxonomy, and sample class. Specifi-

cally, the sequence embedding space resolved differences among phyla, as well as differ-

ences among genera within the same family. Distances between sequence embeddings

had similar qualities to distances between alignment identities, and embedding multiple

sequences can be thought of as generating a consensus sequence. In addition, embed-

dings are versatile features that can be used for many downstream tasks, such as taxo-

nomic and sample classification. Using sample embeddings for body site classification

resulted in negligible performance loss compared to using OTU abundance data, and

clustering embeddings yielded high fidelity species clusters. Lastly, the k-mer embedding

space captured distinct k-mer profiles that mapped to specific regions of the 16S rRNA gene

and corresponded with particular body sites. Together, our results show that embedding

sequences results in meaningful representations that can be used for exploratory analyses

or for downstream machine learning applications that require numeric data. Moreover,

because the embeddings are trained in an unsupervised manner, unlabeled data can be

embedded and used to bolster supervised machine learning tasks.
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Author summary

Improvements in the way genomes are sequenced have led to an abundance of micro-

biome data. With the right approaches, researchers use these data to thoroughly character-

ize how microbes interact with each other and their host, but sequencing data is of a form

(sequences of letters) not ideal for many data analysis approaches. We therefore present

an approach to transform sequencing data into arrays of numbers that can capture inter-

esting qualities of the data at the sub-sequence, full-sequence, and sample levels. This

allows us to measure the importance of certain microbial sequences with respect to the

type of microbe and the condition of the host. Also, representing sequences in this way

improves our ability to use other complicated modeling approaches. Using microbiome

data from human samples, we show that our numeric representations captured differences

between various types of microbes, as well as differences in the body site location from

which the samples were collected.

This is a PLoS Computational Biology Methods paper.

Introduction

Recent advances in high-throughput sequencing techniques have dramatically increased the

availability of microbiome sequencing data, allowing investigators to identify genomic differ-

ences among microbes, as well as characterize microbiome community structure in situ. A

microbiome is defined as the collection of microorganisms (bacterial, archaeal, eukaryotic,

and viral) that inhabit an environment. Recent work has shown that there exists reciprocal

interplay between microbiome and environment, such that the configuration of microbes is

often influenced by shifts in environmental state (such as disease in human hosts [1–3], chemi-

cal alterations in soil [4, 5], or oceanic temperature changes [6]). Conversely, the environmen-

tal state may be impacted by particular microbial profiles [7–10].

Identifying and characterizing important microbial profiles often entails sequencing collec-

tions of heterogeneous, fragmented genomic material, which act as a proxy for the micro-

biome’s configuration in situ. Sequencing these fragments yields short strings of nucleotides

(“sequence reads”) with no easily discernible clues to determine from which microbe they

originated. Still, the order of nucleotides within each sequence provides enough information

for approaches that utilize sequence alignment or sequence denoising algorithms, along with

taxonomic reference databases, to quantify the abundance of sequences belonging to different

microbes at different taxonomic levels (e.g., genus), which in turn can be associated with envi-

ronmental factors [11, 12]. Thus, a given sample is represented as a vector of hundreds, often

thousands, taxonomic counts (nonnegative integers), where the taxa have been traditionally

termed Operational Taxonomic Units (OTUs). Clustering sequences into OTUs that approxi-

mate species has relied on the 97% similarity heuristic, which has been widely criticized as a

poor threshold for hypervariable regions and as not being biologically meaningful [13–16] and

can vary from lineage to lineage [17]. Moreover, in Callahan et al. [14], the authors argue that

even though clustering OTUs helps diminish the influence of Illumina sequencing errors, it

nevertheless discards many of the subtle differences between sequences. Other work has

shown that reference gene methods poorly reflect community diversity because they depend

on the database used in the analysis [18–20] Given this, alternative approaches to alignment-
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based similarity, especially those that can take into account subfeatures and their context, war-

rant exploration.

An alternative approach to aligning or denoising nucleotide sequences is to represent the

nucleotide sequences numerically. One can then search for similarities among these numeric

features. In addition, these numeric representations are more suitable for machine learning

algorithms. Two examples of such approaches are one-hot-encoding and k-mer (n-gram)

counting [21, 22]. With one-hot-encoding (also referred to as generating binary indicator

sequences [23]), each sequence is binarized—that is, each nucleotide (ACGT) is represented

as a unit vector of length four, with a value of one indicating the presence of a particular

nucleotide. k-mer counting, on the other hand, counts the frequency of all possible sub-

strings of length k in a sequence. A larger k yields a higher dimensional, more sparse

representation of the sequence since there are more possible k-mers (4k) (“the curse of

dimensionality” [21, 24]), but a smaller k is unlikely to capture much of the nucleotide-to-

nucleotide sequential variation among sequences [25]. With the large GreenGenes database

[26], there are over 2 million sequences comprising over 2.5 billion basepairs, and therefore

using k-mers up to 15 (415 features) reduces the basepairs to a lower dimensional representa-

tion. However, sample classification usually uses OTUs which are on the order of tens of

thousands. Thus, if k-mers are to be used and lower dimensionality is desired, a representa-

tion that further reduces the dimensions of the k-mers is needed. Either set of engineered

features (one-hot-encodings or k-mer frequencies) can be used in various machine learning

algorithms to characterize the sequences in some way [27–30]. Still, one-hot-encoding or k-

mer frequencies, when k is large, yield sparse, high-dimensional features that often present

difficulties during training [31]. In addition, neither approach encodes the relative ordering

of the k-mers [21, 32].

A more suitable representation of nucleotide sequences involves first encoding (“embed-

ding”) each sequence into a dense, numeric vector space via the use of word embedding algo-

rithms such as word2vec [27]. Word embeddings are commonly used for natural language

processing [27, 33–36]. Various architectures exist, but their objective is generally the same:

capture semantic and lexical information of each word based on that word’s context—i.e., its

neighboring set of words. Each word is represented in a vector space of predefined length,

where semantically similar words are placed near one another. Thus, k-mer representations of

sequences could be embedded in such a way that their context is preserved (the position of k-

mers relative to their neighbors), and they become suitable for down-stream machine learning

approaches. Recent work has successfully embedded short, variable-length DNA k-mers [21],

as well as protein sequences for down-stream tasks such as protein structure prediction [37].

Ng [21] showed that the cosine similarity between embedded k-mers is positively correlated

with Needleman-Wunsch scores obtained via global sequence alignment. In addition, he

showed that vector arithmetic of two k-mer embeddings is analogous to concatenating their

nucleotide sequences. This finding is consistent with work demonstrating the ability of vector

arithmetic to solve word analogies, such as “King is to Queen, as Man is to _____” [38].

Thus, here we explore word embeddings as a means to represent 16S rRNA amplicon

sequences, obtained from microbiome samples, as dense, low-dimensional features that pre-

serve k-mer context (i.e., leverage the relative position of k-mers to their neighbors). We use

Skip-Gram word2vec to perform the initial k-mer embedding. Then, we leverage an existing

sentence embedding technique [39] to embed individual nucleotide sequences or sets of

sequences (e.g., all sequences belonging to a given sample) from k-mer embeddings. This sen-

tence-embedding technique interestingly does not explicitly encode word order; yet, it has

shown to outperform competing methods such as recurrent neural networks in textual similar-

ity tasks [39].

16S rRNA sequence embeddings
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The sentence embedding procedure is simple, but effective, consisting of down-weighting

the embeddings for high frequency k-mers, averaging the k-mer embeddings that constitute

a given sequence or set of sequences (forming a sequence or set embedding), and then sub-

tracting the projection of the sequence/set embedding to its first principal component

(“common component removal”, which, per [39], we refer to as “denoising”). Representing

nucleotide sequences in vector space provides multiple benefits that may prove valuable in

characterizing a microbiome: (1) the embeddings are dense, continuous, and relatively low-

dimensional (compared to using k-mer frequencies, for example), making them suitable

for various down-stream machine learning tasks; (2) they leverage k-mer context, yielding

potentially superior feature representations compared to k-mer frequencies; (3) once trained,

the k-mer-to-embedding mapping vectors can be stored and used to embed any set of 16S

rRNA amplicon sequences; (4) the embedding model can be trained with data that are inde-

pendent of the query sequences of interest, such that the training procedure can leverage a

significant amount of unlabeled data that would otherwise go unused; (5) feature extraction

is performed at the sequence level, enabling one to detect relationships between sample-level

information (e.g., soil quality) and all sequences belonging to a given sample and then trace-

back to determine not only which sequences are key, but also which k-mers; and (6) once

important k-mers are identified, because the embedding initially takes place at the k-mer

level, the k-mer contextual information is available, which may indicate the neighborhood

noteworthy k-mers occupy.

In this work, we prove that the embedding space performs well at classifying samples, pre-

dicting the correct sample class (e.g., body site) given the embedding of all its sequences. More-

over, because these embeddings are encoded from k-mer embeddings, their classification

performance helps justify the use of k-mer embeddings as input in more complex architectures

such as deep neural networks. We show that the embedding space provides a set of meaningful

features that capture sample-level (sample class), taxonomic-level (sequence, read), and

sequence-level (k-mer, k-mer context) characteristics, which not only justifies the use of the

embedding space for supervised tasks such as classification, but also justifies its use for unsu-

pervised feature extraction, to capture meaningful signal for the exploratory phase of a given

analysis. Lastly, we illustrate approaches that may help disentangle what the embedding

learned from the data, in the context of microbiome information, such as taxonomy and sam-

ple information.

Results and discussion

We will use the following terminology for the remaining sections. “Query” sequences and k-

mers are all sequences and k-mers that were not used for training (and hence are not in the

GreenGenes reference database). A “k-mer” embedding is an d-dimensional vector containing

the embedding of a nucleotide subsequence of length k. A “sequence embedding” is a d-

dimensional vector formed by performing the sentence embedding approach by [39] on all k-

mers belonging to a single nucleotide sequence (e.g., a 16S rRNA full-length sequence or read).

“Cluster embeddings” or “sample embeddings” are also d-dimensional vectors, but they

encode an embedding that includes all k-mers belonging to a set of sequences (such as a set

identified via clustering) or a set that includes all sequences belonging to a single sample,

respectively. Lastly, “denoising” refers to common-component removal (not dada2-style

“sequence denoising algorithms”), which is performed when we apply the sentence embedding

approach to sequences, sequence reads, clusters of sequences, or all sequences belonging to

specific samples.

16S rRNA sequence embeddings

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006721 February 26, 2019 4 / 25

https://doi.org/10.1371/journal.pcbi.1006721


Evaluation of sequence embeddings on full-length 16S rRNA amplicon

sequences

We began by evaluating the performance of sequence embeddings. DNA alignment combined

with clustering [11] or sequencing denoising algorithms [12] are readily capable of identifying

sequence-level differences between genera. We consequently aimed to discern if genus-level

differences were in fact detectable in the sequence embedding vector space. Genus level resolu-

tion is not only relevant to characterizing a microbial community; it also would suggest that

the vector space is capable of capturing subtle, but important sequence differences among

taxa. These differences may be critical in characterizing data at the sample level, particularly

during classification, where its desired to discern how the configuration of microbes compris-

ing a sample (i.e., all its sequences) is influenced by sample-level information such as soil

quality.

The k-mer embedding space was obtained by training Skip-Gram word2vec on 2,262,986

full-length 16S rRNA amplicon sequences from the GreenGenes reference database (Fig B in

S1 Appendix). An independent set of 16,699 16S rRNA sequences from the KEGG REST

server [40] were obtained as our test dataset. (We will refer to these sequences as “KEGG 16S

sequences” henceforth.) 14,520 contained k-mers that intersected with the training set and

thus were sequence-embedded using the sentence embedding approach by [39]. Briefly, for

each sequence of length N, its N − k + 1 k-mers were embedded into vectors of length d. With

these k-mer embeddings, we calculated a weighted average by summing across all k-mer

embeddings (element-wise), down-weighting high-frequency k-mers, and dividing by the total

number of k-mers (N − k + 1). The sequence embedding was then obtained be subtracting its

projection to its first principal component (denoising).

Taxa separate in the sequence embedding space at phylum and genus levels. To visual-

ize the sequence embedding space, we performed dimensionality reduction with t-distributed

stochastic neighbor embedding (t-SNE) [41]. Fig 1 shows the 2-dimensional projections of

256-dimensional sequence embeddings that were formed by averaging 10-mer (k-mer where

k = 10) embeddings. Shown are the eight most abundant phyla (A). Sequences (points)

grouped as a function of their phylum classification. When we focus on genus classifications

within a family, grouping persists. For example, within Bacillaceae (B, top), sequences from

Geobacillus spp. (blue) separated from Bacillus spp. (red); within Enterobacteriaceae (B, mid-

dle), sequences from Yersinia spp. (red) separated from Klebsiella spp.; and within Streptococ-

caceae (B, bottom), sequences from Streptococcus spp. separated from Lactococcus spp. These

observations suggest that the sequence embedding preserves genus-level resolution.

As a baseline, we visualized the t-SNE projection of sequence embeddings using k-mer fre-

quencies as features (with k = 6) in Fig 2. We chose k = 6 because larger k, e.g., k = 10 resuls in

a frequency table too large and hence too computational expensive for t-SNE to complete in a

reasonable time. As shown in Fig 2, the k-mer method can separate the sequences from differ-

ent phyla. Also, the projections using k-mer features and embedding features are similar in

terms of cluster quality which indicts that embedding method can provide a lower space repre-

sentation without much information loss.

Pairwise cosine similarity between sequence embeddings agrees with pairwise sequence

alignment identity. With the 2,962 sequence embeddings shown as points in Fig 1B, we

obtained their nucleotide sequences and performed pairwise global sequence alignment via

VSEARCH [42]. These sequences belonged to Bacillaceae, Streptococcaceae, and Enterobac-

teriaceae families. Our objectives were to (1) determine, for a pair of sequences, if the distance

(cosine similarity) between their sequence embeddings was equivalent to the distance (align-

ment score) between their nucleotide sequences and (2) quantify the variation in which

16S rRNA sequence embeddings
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distances between sequence embeddings vary as a function of taxon. We expected that because

sequences are more similar among closely related taxa (such as taxa found within the same

genus), the average pairwise cosine similarity between sequences in a lower taxonomic level

should be larger. Fig 3 shows the (z-scored) within-taxon distributions of (1) pairwise cosine

Fig 1. t-SNE projection of sequence embeddings from KEGG 16S sequences. Embedding results were generated using 256 dimensional

embeddings of 10-mers that were denoised. A: 2-dimensional projection via t-SNE of the sequence embedding space from 14,520 KEGG 16S

sequences. The position of each sequence (points) are colored based on their phylum designation. B: t-SNE projection of sequences that belong to

different genera within the same family.

https://doi.org/10.1371/journal.pcbi.1006721.g001

Fig 2. t-SNE projection of 6-mer frequency table from KEGG 16S sequences. A: 2-dimensional projection via t-SNE

of the sequence embedding space from 14,520 KEGG 16S sequences. The position of each sequence (points) are

colored based on their phylum designation. B: t-SNE projection of sequences that belong to different genera within the

same family.

https://doi.org/10.1371/journal.pcbi.1006721.g002
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similarity between sequence embeddings and (2) pairwise percentage of identity between

nucleotide sequences using VSEARCH. The results suggest that sequence embeddings behave

similarly to sequence alignment in terms of pairwise distance, and as we move down the taxo-

nomic hierarchy, the distance z-scores increased by 0.629 (p< 0.001, R2 = 0.785) and 0.636

(p< 0.001, R2 = 0.803) standard deviations for sequence embeddings and VSEARCH, respec-

tively. Moreover, within genus, the standard deviation of scores for either approach (genus

sequence embedding sd = 0.415; genus VSEARCH alignment sd = 0.399) is similar, suggesting

the spread of distances between sequences from the same genus is equivalent between

approaches. Therefore, this evidence shows that sequence embeddings are similar to global

alignment at distinguishing intra-genus differences among sequences. We performed the same

simulation using the frequencies of 6-mers as features (46 total features). The results were simi-

lar: p< 0.001, R2 = 0.775. Note that we were unable to perform the same comparison using

10-mers due to the computational demand in terms of memory.

Embedding clusters of sequences is comparable to calculating their consensus

sequence. Given that the sequence embeddings behaved analogously with alignment, we

hypothesized that a sequence embedding was equivalent to performing global sequence align-

ment and calculating a consensus k-mer sequence (the majority nucleotide in each column of

a global alignment). By extension, averaging together multiple sequence embeddings could be

thought of as calculating a consensus sequence of their nucleotide sequences. To verify this, we

used VSEARCH to cluster the 14,520 KEGG 16S sequences and then obtained the consensus

sequence from each of the resulting 176 clusters. We calculated (1) the sequence embedding

for each consensus sequence and (2) the cluster embedding for all sequences within a cluster

(i.e., a weighted mean sequence embedding for a given cluster, but the projection to the first

principal component removed only after the complete cluster embedding is constructed). We

expected that if an embedding of multiple sequences was in fact similar to calculating the con-

sensus sequence of their nucleotide sequences, then the cosine similarity would be largest

Fig 3. Within-taxon distribution of pairwise sequence alignment similarity verses pairwise embedding similarity. Embedding

results were generated using 256 dimensional embeddings of 10-mers that were denoised. For a given taxonomic level, the red violin

plots represent the distribution of pairwise cosine similarity between all sequence embeddings from the 14,520 KEGG 16S rRNA

sequences, whereas the blue violin plots represent the distribution of pairwise nucleotide sequence identity using global alignment

via VSEARCH. Both sets of scores were z-scored to make them visually comparable. Linear regression best fit lines are shown to ease

interpretation.

https://doi.org/10.1371/journal.pcbi.1006721.g003
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between the sequence embedding of a cluster’s consensus sequence and its cluster embedding.

The cosine similarities between the consensus sequence embeddings and each cluster embed-

dings are shown in Fig 4. The largest cosine similarity occurs on the diagonal, between consen-

sus and cluster embeddings pertaining to the same cluster. This observation suggests that an

embedding of multiple sequences can be viewed as a consensus sequence.

Clustering the embeddings yield higher fidelity clusters for species than for higher taxo-

nomic levels. To better understand how well the embedding space represented sequence

data, particularly in its ability to resolve subtle differences among sequences in terms of some

similarity statistics, we clustered the KEGG 16S sequence embeddings. We used K-means [43],

which iteratively clusters sequence embeddings into the closest centroid and updates the cen-

troid based on each cluster it contains. The free parameter K was chosen according to the total

number of taxa in a given taxonomic level. For example, at the species level, there were 385

unique taxa; thus, we set K to 385, which resulted in 385 K-means generated clusters.

Table 1 shows the clustering performance for one of the embedding models (10-mers, 256

dimensions, denoised). K-means performed best at the species level for all metrics. For higher

taxonomic levels, performance declined. This shows that the sequence embedding preserved

short- and medium-term distance better than long-term distance—that is, similar sequences

remain close in the embedding space. While the similarity between sequences belonging to dif-

ferent phyla is not well preserved in the embedding space, the clustering performance still

Fig 4. Agreement between consensus sequence embeddings and their cluster embeddings. For each cluster, all

KEGG 16S sequences were embedded into a cluster embedding, and the cluster’s VSEARCH consensus sequence was

embedded into a consensus embedding. The pairwise cosine similarities between all consensus and cluster embeddings

are shown. They are sorted based on the (arbitrary) index for cluster membership. Darker shading indicates larger

cosine similarity betweens cluster and consensus embeddings. Thus, the dark diagonal represents that the cluster

embedding is similar to the consensus embedding for that cluster.

https://doi.org/10.1371/journal.pcbi.1006721.g004
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suggests that the sequence embeddings are informative and capable of preserving the sequence

similarity among nucleotide sequences.

We also applied the same clustering analysis on 6-mer frequency table (Table B in S1

Appendix). We can see that our proposed embeddings outperform 6-mer frequency table sig-

nificantly in terms of Adjusted Rand index (ARI). This indicates that by leveraging sequence

context/neighborhood information, we can generate more meaningful clusters using our pro-

posed embedding.

Evaluation of sequence embeddings on 16S rRNA amplicon sequences from

the American Gut project

Next we aimed to try our embedding approach on empirical data. We obtained sequencing

data of microbiota from three body sites sequenced by the American Gut project [18]. After

preprocessing, 11,341 samples from each of three body sites (fecal, skin, oral) were embedded.

Unlike the KEGG 16S sequences described above, the fact that these are reads (and not full-

length 16S rRNA sequences) presents a new challenge in that they are significantly shorter,

spanning only 125 nucleotides per read; thus, each read is composed of, at most, 116 k-mers

for a 10-mer embedding. The k-mer, sequence, and sample embedding spaces are shown in

Fig 5. There was clear grouping among samples from body sites (Fig 5C) and phyla for sample

and sequence embeddings, respectively (Fig 5B). For the k-mer embedding, discerning any

meaningful patterns is more difficult since the embedding simply encodes contextual informa-

tion for each k-mer. We were interested in the relative position of single nucleotide differences

for a given k-mer. In Fig 5A, we mark the position of every 10-mer present that differs from

AAAAAAAAAA by one nucleotide. As expected, despite subtle differences among the

10-mers, their relative position in the embedding space is broad, suggesting that each 10-mer’s

context significantly influenced its embedding.

As a baseline, we visualized the t-SNE projection of each sample’s vector of k-mer frequen-

cies (with k = 6) (Fig 6). We choose k = 6 based on classification results shown in Table 2,

which indicated that the best performing k using k-mer frequencies was k = 6. Note that

10-mers were too computational expensive for t-SNE. Fig 6 shows that using k-mer features,

one can separate body sites fairly well. There is no substantial difference compared with Fig 5,

which indicts that the embedding method does not result in much information loss.

Sample embeddings show negligible performance loss compared to Operational Taxo-

nomic Unit (OTU) abundances for classification. We evaluated testing performance using

256-dimensional sample embeddings as features to classify body site (fecal, skin, oral). We

used a multinomial lasso classifier [44, 45] to obtain a sparse set of regression coefficients that

we could use to interrogate predictive nodes at both sequence and k-mer embedding levels.

We compared generalizability (testing performance) of different sets of features: (1) QIIME-

Table 1. Clustering analysis of KEGG sequence embeddings.

Taxon K P C O F G S

# of Taxa 2 35 77 143 281 697 385

K 2 35 77 143 281 697 385

Homogeneity 0.11 0.88 0.94 0.94 0.96 0.97 0.98

Completeness 0.02 0.42 0.56 0.78 0.79 0.83 0.94

ARI -0.01 0.24 0.32 0.36 0.43 0.47 0.84

AMI 0.02 0.42 0.55 0.66 0.75 0.76 0.91

NMI 0.04 0.61 0.72 0.80 0.87 0.90 0.96

https://doi.org/10.1371/journal.pcbi.1006721.t001
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generated [11] OTU abundances (centered-log-ratio (clr) transformed [46, 47]), (2) OTU

abundances collapsed into various taxonomic levels (genus, family, order), (3) k-mer frequen-

cies (4-mers, 6-mers, 8-mers), (4) 1000 pseudo-OTUs (clr transformed) that were generated

by clustering sequence embeddings, and (5) 256-dimensional sample embeddings generated

with 4-, 6-, 10, and 15-mers (Table 2). The rationale behind generating pseudo-OTUs was to

more explicitly represent sequence abundances compared to averaging sequence embedding

vectors, which yields a consensus sequence embedding that is weighted as a function of

sequence frequency. All feature sets performed well, with the pseudo-OTUs performed best

(F1 = 0.968) followed by the 6-mer frequency table 0.953) and then the embeddings using

15-mers (0.946 for both raw and denoised embeddings). The dimensionality of the k-mer fea-

ture space scaled exponentially (4k), which limited our ability to perform lasso cross validation

for k> 8 due to memory demands. Using taxonomic relative abundance features yielded the

worst performance in terms of balanced accuracy among any feature set (Acc = 0.916!

0.938), and collapsing OTUs into order (110 unique features) yielded the worst performance

in terms of F1 sore. Of the taxonomic abundances, family level abundances performed best

(Acc = 0.938, F1 = 0.939), which had a comparably sized feature space (247) to the embedding

space (256).

By using OTUs, the number of features used to classify a sample is 21,749 (generated via

QIIME). The dimensions reduce even further with genera, family, and order taxonomic levels

which correspond to 775, 247, and 110 number of features respectively. Our neural network

takes 4-, 6-, or 10-mers as input and produces d-length vector representations of the sample as

an intermediary output before the final classification of sample type. Assuming d = 256 (based

on our benching results), using these 256-length embedded vectors, we are only using slightly

more features than the 247 family feature vector for classification and significantly fewer than

the over 21,000 OTU feature vector. In addition, we created 1000 pseudo-OTUs by clustering

Fig 5. Lower dimensional projections of k-mer, sequence, and sample embeddings. Embedding results were generated using 256 dimensional

embeddings of 10-mers that were denoised. A: A 2-dimensional projection via independent component analysis of the 10-mer embedding space

from the GreenGenes training sequences. 406,922 unique 10-mers are shown. The position of 10-mers that differ by one nucleotide from

AAAAAAAAAA are labeled to demonstrate that it is not simply sequence similarity that is preserved, since these sequences span a wide range in the

embedding space. The k-mers were sorted alphabetically and ranked; the alphabetical progression of the indexes are shaded from yellow to green. B:

A 2-dimensional projection via independent component analysis. 705,598 total sequences embeddings from 21 randomly chosen American Gut

samples (7 from each class) are shown. The position of each sequence (points) is colored based on its phylum designation (only the 7 most abundant

phyla are shown). C: 2-dimensional t-SNE projection of the 11,341 American Gut sample embeddings. The position of each sample (points) is

colored based on its body site label.

https://doi.org/10.1371/journal.pcbi.1006721.g005
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256-length sequence-embedded vectors. Every time an embedded vector matched to one of

the 1000 OTUs, its count was incremented to create a 1000 pseudo-OTU count table. The

pseudo-OTUs (derived from the embedded vectors) yielded excellent classification with only

1000 features (a little more than genus-level OTUs but much fewer features than the full OTU

table). In fact, all methods obtained better accuracy than just using OTUs with the embedded

vectors using less features.

Overall, these results suggest that generating sample embeddings yields predictive features

that remain generalizable despite drastically reducing the dimensionality of the data. Without

dimensionality reduction, k-mer frequencies are oftentimes too memory-intensive, especially

when k is large. This hurts interpretability since we cannot link genomic structure (using long

Fig 6. Lower dimensional projections of 6-mer sample embeddings using k-mer method. 2-dimensional t-SNE projection of the 11,341

American Gut sample embeddings based on k-mer method (where k = 6). The position of each sample (points) is colored based on its

body site label.

https://doi.org/10.1371/journal.pcbi.1006721.g006
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spans of nucleotide sequences) to sample level or taxonomic information. Also, embeddings

provide a dimensionality reduction approach that performs at the very least comparably

(depending on the parameterization) to taxonomic abundances, but does so using a feature

space that is more interpretable, capturing both nucleotide sequence information and k-mer

context.

Specific sequences activate specific nodes and these activations are a function of the

sequence’s taxon and the sample’s body site. We next aimed to determine (1) how the sam-

ple embedding matured as sequence embeddings from different taxa were introduced and (2)

how specific dimensions (nodes) in the embedding space (the hidden layer) influenced the

final sample embedding. When simply optimizing for classification performance, it is not

unreasonable to treat a neural network, or any machine learning model, as a black box, but

with a better understanding of what these models are learning, the potential for novel applica-

tions increases. Hence, the interpretation of the hidden layers in neural networks is an active

area of research [35, 48–51]. One approach is to train a model and then traceback from its pre-

diction to identify key features influential in the classification decision [48, 52]. By performing

classification with the sample embedding treated as features, we can traceback to disentangle

how key nodes represented the embedding (e.g., whether particular nodes activated as a func-

tion of taxon), as well as discern the impact specific reads, and hence taxa, had on both the

sample embedding and classification.

We obtained the same sparse set of regression coefficients that were estimated via lasso to

classify body site using sample embeddings of the American Gut data (see above). We calcu-

lated read activations (the linear combination of the lasso regression coefficients and the

sequence embeddings) and then inspected how the cumulative sum of these activations

affected the final body site classification (fecal, tongue, or skin).

Fig 7 shows the trajectory of the classification decision for a single tongue sample that was

misclassified as fecal. The sequences were sorted and added to the embedding in order, based

on their taxonomic classification (independently obtained via the naive Bayes RDP classifier).

Fig 7A and 7B) show the trajectory of all nodes (their sum) in the embedding, and thus

Table 2. Sample embedding classification performance.

Features Acc Prec Rec F1

OTUs 0.922 0.958 0.891 0.922

Genera 0.934 0.960 0.905 0.931

Families 0.938 0.963 0.916 0.939

Orders 0.916 0.899 0.881 0.890

4-mers 0.967 0.917 0.956 0.935

6-mers 0.979 0.942 0.969 0.953

8-mers 0.964 0.916 0.945 0.929

Embeddings (4-mers, raw) 0.967 0.916 0.956 0.933

Embeddings (4-mers, denoised) 0.972 0.910 0.963 0.933

Embeddings (6-mers, raw) 0.958 0.900 0.943 0.920

Embeddings (6-mers, denoised) 0.945 0.905 0.925 0.914

Embeddings (10-mers, raw) 0.964 0.909 0.945 0.926

Embeddings (10-mers, denoised) 0.960 0.929 0.945 0.936

Embeddings (15-mers, raw) 0.968 0.937 0.957 0.946

Embeddings (15-mers, denoised) 0.968 0.937 0.957 0.946

Pseudo-OTUs (10-mers, denoised) 0.977 0.971 0.964 0.968

https://doi.org/10.1371/journal.pcbi.1006721.t002
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represents the overall classification decision as reads are introduced. Fig 7C–7F show the acti-

vations for individual nodes that greatly impacted the classification decision (i.e., they had

large activations). Note that only Fig 7A shows the cumulative trajectory; Fig 7B–7F show the

activations specific for a given read (index).

The initial set of reads introduced to the sample embedding were 3327 reads belonging to

the phylum Firmicutes. This set of reads drove the classifier to favor a “skin” classification.

Highly influential genera among these reads include Granulicatella, Gemella, and Streptococ-
cus, which is consistent with work linking these genera to microbiota inhabiting the nares [53],

as well as work demonstrating shifts in Gemella and Streptococcus occurring in response to

atopic dermatitis [54]. As 4263 Bacteroidetes reads were introduced to the sample embedding,

the classifier began to favor a “feces” classification. However, influential reads predominantly

Fig 7. Maturation of the body site classification decision as sequence embeddings are introduced. Embedding results were generated using 256

dimensional embeddings of 10-mers without denoising (since the number of reads varies throughout the figure). One American Gut tongue sample

is shown, which was misclassified by lasso as “fecal.” Read activations are defined as the linear combination of a given sequence embedding and the

regression coefficients obtained from lasso for a particular body site. A: The trajectory of the body site classification decision via multinomial lasso.

The cumulative activation is the sum of all read activations across all nodes (dimensions of the embedding) up until the introduction of a specific

read. A body site is favored when it has the largest cumulative activation of the three body sites. Reads were sorted and introduced based on their

taxon (phylum designations are color coded). B: The (non-cumulative) activations (across all nodes) for body site as reads are introduced (with no

accumulation from previous reads). Genera labels are shown for reads with large activations. C-F: The (non-cumulative) activations for individual

nodes and specific body sites as reads are introduced.

https://doi.org/10.1371/journal.pcbi.1006721.g007
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belonged to Flavobacteriaceae, a family often associated with oral microbiota [55, 56]. Perhaps

during training, the encoding of this family became associated with k-mers belonging to gut

sequences. Thus, the fact that the classifier incorrectly associated these oral microbiota with

the fecal body site likely influenced the classifier to classify the sample incorrectly. The intro-

duction of Proteobacteria influenced the classifier differently at different stages, depending on

the type of Proteobacteria introduced. Initially, reads assigned to the family Comamonada-

ceae (x-axis read index = 7591), a bacterial family associated with gut microbiota [57], rein-

forced the fecal classification. Favorability towards tongue increased upon introduction

of reads (read index = 8641) belonging to the genera Neisseria, and to a lesser extent, Cam-
pylobacter and Haemophilus, all of which have been linked to oral microbiota [55, 56]. Acine-
tobacter reads (read index = 10866) that were favorable to a fecal classification were then

introduced. Acinetobacter has been linked dental plaque accumulation, nosocomial respira-

tory disease, poor cholesterol profiles, gut dysbiosis, and colorectal cancer [58–61]; thus, Aci-
netobacter’s association with both oral and gut microbiota may have also contributed to the

misclassification. Finally, Pseudomonas and Stenotrophomonas reads (read index = 21189), as

well as a short-lived contribution of Atopobium, Rothia, and Actinomyces reads from the phy-

lum Actinobacteria (read index = 31655) shifted the classifier closer to a tongue classification,

which is consistent with literature [5, 56]. However, these oral shifts were unable to outweigh

the misclassifications from the Flavobacteriaceae, and thus “fecal” was the final classification

decision.

When we focused on individual nodes (dimensions in the embedding space), we were able

to link nodes to specific taxa. For example, nodes 44 and 136 received non-zero regression

(lasso) coefficients for classifying samples as fecal. These nodes had large activations for

sequences stemming from Prevotella and Flavobacterium from the Bacteroidetes phylum, but

node 136 was specific for large Bacteroides activations (sequence index = 3328-3336). Node

168, on the other hand, was important in skin classifications (non-zero regression coefficients)

and had relatively large activations for sequences from Firmicutes phyla, specifically Staphylo-
coccus, Gamella, Oribacterium, Veillonella, and Granulicatella.

k-mers associated with Lachnospiraceae genera were specific for different body sites

and specific regions of the 16S rRNA gene. Because the embedding was trained with k-

mers, and each sequence or sample embedding therefore amounts to a weighted sum of k-

mer embedding vectors, we found it necessary to traceback further to the encoded k-mer

information. This is similar to the question found in natural language processing where feature

interpretation is necessary to elucidate how the neural network represents saliency and com-

positionality [35]. Trying to extract meaning from sequences of nucleotides is obviously a dif-

ferent question, but nevertheless, much can be learned from natural language processing in

understanding the context of a given k-mer, its co-occurrence profile, and how sequential sets

of k-mers influence a classification decision differently than their constituent parts. For exam-

ple, recent work has attempted to identify regulatory regions in genomic sequences in this

manner [49].

Thus, our objectives were to identify (1) k-mers that strongly influence the performance

during sample-level (body site) classification and (2) characteristics of the sequences that con-

tain these k-mers, such as the sequence’s taxonomic classification vis-á-vis the neighborhood

in which important k-mers occur. We again obtained the sparse set of regression coefficients

that were estimated via lasso to classify body site using sample embeddings of the American

Gut data. We calculated k-mer activations (the linear combination of the lasso regression

coefficients and the k-mer embeddings) and then selected the top-1000 k-mers with largest

activations for classifying skin, tongue, or fecal body sites. These k-mers, when present in a

sequence, have the single greatest influence on the classification outcome for a given sample,
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although it should be noted that the final classification decision is predominantly driven by

high-frequency (after weighting) k-mers with relatively large activations.

Here we focus on the classification of skin samples. For each of the 3 sets (skin, tongue,

fecal) of 1000 k-mers with large activations, we identified which reads from American Gut

skin samples contained these k-mers. From the 11,838,849 reads in the 282 skin samples,

241,006 reads contained any of the top-1000 k-mers with large activations for skin, whereas

74,240 and 197,505 reads contained any of the top-1000 k-mers with large activations for ton-

gue and fecal classification, respectively. Only 2781 reads contained k-mers from both skin

and fecal-associated k-mers (the intersection), whereas 5056 reads contained both skin and

tongue-associated k-mers. Also, 626 of the 2781 reads with both skin and fecal-associated k-

mers belonged to only two samples (221, 405). Interestingly, the sample with 221 reads that

contained skin- and fecal-associated k-mers was misclassified by the lasso classifier (using the

parameterization optimized during training), but any general trend between misclassification

and the proportion of high-activation k-mers was not apparent. This finding is consistent with

how the embedding activations affect classification, as we demonstrated above; k-mer activa-

tions incrementally influence the classifier, with no single k-mer embedding having substantial

impact on the ultimate classification decision. Still, as we have shown, the k-mer profiles asso-

ciated with particular body sites are distinct.

To further characterize the k-mer profiles, we associated high-activation k-mers with the

neighborhood of their read from which they originated. For each set of reads that contained

the high-activation k-mers, we randomly sampled 25,000 reads and performed multiple align-

ment. Fig 8 shows the mapping regions in the multiple alignment for k-mers with large activa-

tions. We only show genera belonging to the family Lachnospiraceae because focusing on

genera that share a family, for example, may present interesting patterns as to how specific k-

mers, associated with specific taxa, favor specific regions in the 16S rRNA gene. The cluster of

6 k-mers (index 1-6) (TTTCGGAACT, CCAGAACTGA, TTTGGAGCTA, ACTTATAAAC,

AACTGTTGCT, GAAACCGTGC) that span nucleotide 500 in the multiple alignment

mapped to reads from Catonella (120 reads), Clostridium (59), Oribacterium (27), Stomatoba-
culum (101), and two unclassified genera (340). For each of these 6 k-mers, we calculated their

nearest k-mer neighbors—that is, all k-mer embeddings with cosine similarity greater than

0.25 (arbitrarily chosen). TTTGGAGCTA and GAAACCGTGC shared ten neighbors, whereas

TTTCGGAACT, CCAGAACTGA, and ACTTATAAAC shared one, suggesting that some

context (neighboring k-mers) was shared among these k-mers. This helps confirm the posi-

tional relationship seen in Fig 8. Coupling these results with our observation that intra-family

genera separate in the embedding space (Fig 1), this region of the multiple alignment may pin-

point a key location of the 16S rRNA variable region that distinguishes these taxa. While we do

acknowledge this claim garners additional evidence, we do feel it is worthy of future work, par-

ticularly with datasets that can yield more trustworthy taxonomic assignments. In addition,

another interesting avenue for future work may involve using full length 16S rRNA sequences

to identify associations between k-mer and sequence embeddings to elucidate which variable

regions are favored by specific taxa.

The embedding corpora

Many k-mers in the query datasets lacked embeddings. The total number of unique

6-mers and 10-mers in the GreenGenes reference database, used for training, was 4096 and

413,329, respectively. Of the 406,922 unique 10-mers in the KEGG 16S sequences, 270,676

were present in GreenGenes and thus had embeddings (i.e., were present in the training set),

whereas all k-mers were present for 6-mers. Of the 1,048,576 unique 10-mers in the American
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Gut reads, only 413,329 were embedded. Thus, the sample embeddings extracted meaningful

features and maintained high performance despite over half of the American Gut k-mers not

being used. This begs the question: what proportion of a given dataset is required to generate a

meaningful embedding? Future work should explore (1) how sensitive the embedding space is

to the degree of overlap between the of training and query vocabularies and (2) whether the

requirement for sufficient overlap changes when the query data consists of longer sequences.

Denoising sequence and sample embedding spaces removes mean background signal,

which helps resolve the pairwise similarity among embeddings. The predominate effect of

the denoising approach (removal of the projection to the first principal component) can be

seen in Fig 9. Which shows the distribution of pairwise cosine similarity scores for k-mer,

sequence, and sample embeddings using 6-mers and 10-mers. The results indicate three major

trends. First, shorter k-mers result in larger pairwise cosine similarity between sequences,

which is likely due to larger sequences being less common and, by extension, having more dis-

tinctive k-mer neighborhoods. Second, as more sequences are introduced to a given embed-

ding, such as building a sample embedding compared to building a sequence embedding,

the pairwise cosine similarity between sequences increases. We posit that as the number of

sequences increases in an embedding, common k-mer embeddings begin to dominate in

the same way that stop-words such as “the” may affect sentence embeddings. This, in turn,

Fig 8. Regions within Lachnospiraceae reads among in which skin-associated k-mers mapped. The top-1000 k-mers with the

largest activations (the linear combination of the k-mer embedding and regression coefficients obtained via lasso) for skin were

identified. A random sample of 25,000 reads (from skin samples) containing these k-mers underwent multiple alignment. Shown is

the relative position of k-mers found only in Lachnospiraceae reads from skin samples. The position of a given k-mer in the

alignment spans its entire starting and ending position, including gaps. The frequency in which these k-mers mapped to positions

(left column) in the multiple alignment were quantified (y-axis). The order of the k-mers in the heatmap (x-axis) was obtained via

hierarchical clustering (Ward’s method) on Bray-Curtis distances. The Lachnospiraceae genus that most frequently occurred at a

given alignment position for a given k-mer is colored (right column).

https://doi.org/10.1371/journal.pcbi.1006721.g008
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would explain the third trend: denoising mitigates this effect by removing the most common

component that captures a mean background signal. Thus, we can conclude that denoising

is pertinent in tasks involving cosine similarity where resolving subtle differences between

sequences is paramount. Moreover, as the number of sequences introduced increases, denois-

ing becomes more important.

Conclusion

Here we have applied word and sentence embedding approaches to generate k-mer, sequence,

and sample embeddings of 16S rRNA amplicon sequencing data. We present our results at a

time when deep neural network approaches are readily being applied to genomic sequencing

data [62]. Although these approaches have been utilized to a lesser extent in microbiome

research, increased use is likely inevitable as sequencing data becomes more available. Thus,

obtaining meaningful numeric representations of microbiome sequences that does not suffer

from the curse of dimensionality and can act as input to various machine learning architec-

tures is necessary.

Fig 9. Distribution of pairwise cosine similarity for k-mer, sequence, and sample embeddings of the American

Gut data. Sequence and sample embeddings were calculated from 21 randomly selected (7 for each body site) samples.

k-mer embeddings were those used during training with the GreenGenes sequences. Shown are distributions of

pairwise cosine similarities as a function of k-mer size (rows), denoising (blue versus red), and embedding space

(columns).

https://doi.org/10.1371/journal.pcbi.1006721.g009

16S rRNA sequence embeddings

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006721 February 26, 2019 17 / 25

https://doi.org/10.1371/journal.pcbi.1006721.g009
https://doi.org/10.1371/journal.pcbi.1006721


Our work demonstrates that sequence and sample embeddings are dense, lower-dimen-

sional representations that preserve relevant information about the sequencing data such as

k-mer context, sequence taxonomy, and sample class. We have shown that these representa-

tions are meaningful by helping to classify taxa and samples and hence the embedding space

can be exploited as a form of feature extraction for the exploratory phase of a given analysis.

The sequence embedding space performs well compared to common approaches such as clus-

tering and alignment, and the use of sample embeddings for classification seemingly results in

little-to-no performance loss compared to the traditional approach of using OTU abundances.

Because the sample embeddings are encoded from k-mer embeddings, its classification perfor-

mance justifies further inquiry as pretrained input for more complex machine learning archi-

tectures such as deep neural networks. In addition, future work should aim at elucidating the

effects of different training datasets and obtaining a better understanding of the feature repre-

sentations at the k-mer level.

Materials and methods

Primer on word2vec

Word2vec represents words as continuous vectors based on the frequency of pair co-occur-

rence in a context window of fixed length. We can understand it as mapping individual words

(k-mers in our application) to points in a continuous, higher-dimensional space, such that

words with similar semantic meaning are closer to one another.

Training data preprocessing and word2vec training

We obtained 1,262,986 full length 16S rRNA amplicon sequences from the GreenGenes data-

base [63]. Full length sequences were used to ensure that our embeddings were region agnos-

tic, in that the embedding would be trained on context windows found in any variable or

conserved region throughout the 16S rRNA gene, permitting query sequences to be embedded

irrespective to the region of the gene they spanned. For each sequence of length N, we gener-

ated all possible subsequences (N − k + 1) of length k (k-mers), In natural language processing

terms, these k-mers were treated as words belonging to a corpus, and the set of all unique k-

mers comprise the corpus’s vocabulary. k-mers with degenerate bases (bases other than

ACGT) were removed. Four training sets were created for k-mer lengths of 4 (4-mers), 6

(6-mers), 8 (8-mers), 10 (10-mers), 12 (12-mers) and 15 (15-mers).

k-mer embeddings were trained using gensim’s Skip-Gram word2vec implementation over

5 epochs [64]. k-mers occurring fewer than 100 times were removed. We varied the parameters

to generate 48 model parameterizations. Using 6-mers and 10-mers, we varied the dimension-

ality of the embedding (64, 128, 256); the threshold in which high frequency k-mers were

down-sampled (0.0001, 0.000001); the number of negative samples (10, 20); and the width of

the context window (20, 50). Other parameters were set to their default values. However, the

model could not finish training on 8-mers, 12-mers, and 15-mers training sets within 7 days,

whereas the model could finish training using other training sets within 5 days. Limited by our

computational resources, we removed 8-mers and 12-mers from our analyses. In the future

work, one could use other embedding implementations such as GLoVe [65]. In GLoVe, the

model is trained on word-to-word co-occurrence matrix which is sparse and much smaller

than the total number of words in the corpus. Therefore, the training iterations are much

faster.

16S rRNA sequence embeddings

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006721 February 26, 2019 18 / 25

https://doi.org/10.1371/journal.pcbi.1006721


Baseline: k-mer method

k-mer based 16S rRNA embedding for the host phenotype prediction has already been pre-

sented in [66]. In addition, k-mer profiles of samples have been shown to outperform OTU

profiles in body site classification tasks [67]. k-mer frequencies are therefore a natural baseline

for the embedding approach to be compared. Here, we created a k-mer frequency table for our

experimental datasets. For the k-mer frequency table for American Gut dataset, each row is a

sample and each column represent the frequency of a k-mer across all reads for that sample.

For the k-mer frequency table for KEGG dataset, each row is a taxon and each column repre-

sent the frequency of a k-mer in the corresponding DNA sequence in KEGG dataset. These

tables can then be processed and learned by other down-stream analysis tools.

KEGG data acquisition

16,399 full length 16S rRNA amplicon sequences were obtained from the KEGG REST server

(9/2017).

American Gut data acquisition and preprocessing

188,484,747 16S rRNA amplicon reads from the American Gut project (ERP012803, 02/21/

2017) underwent quality trimming and filtering. Sequences were trimmed at positions 10 and

135 based on visualizing the quality score of sampled sequences as a function of base position

[12]. Then, sequences were truncated at positions with quality scores less than or equal to 2.

Truncated sequences with total expected errors greater than 2 were removed. Some American

Gut samples were contaminated by bacterial blooming during shipment. Contaminated

sequences were removed using the protocol provided in the American Gut documentation

(02-filter_sequences_for_blooms.md). Only sequences from fecal, hand, head, and tongue

body sites were kept. Head and hand were merged into a “skin” category. Any remaining sam-

ples with fewer than 10,000 total reads were removed.

American Gut OTU picking

Closed-reference OTU picking was performed with QIIME using SortMeRNA against Green-

Genes v13.5 at 97% sequence identity [11]. Library size was normalized via clr, where the nor-

malized vector of abundances x�s for sample s was obtained by x�s ¼ log ½ðxs þ 1Þ=gs�, where gs
is the geometric mean for sample s,

gs ¼
Y

x2s

x

 !
1
jsj

; ð1Þ

and x is the unnormalized abundance of a single OTU.

Embedding sequences, samples, body sites, and clusters

To generate a sequence embedding, the weighted embeddings of all k-mers m belonging

to sequence r were summed and then normalized by the total number of k-mers Mr in

sequence r. Each k-mer was weighted based on its frequency within the query set of sequences

(sequences to be embedded, but not the sequences initially used for training). Note this down-

weighting is distinct from the down-weighting used during training, which down-weighted
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k-mers based on their frequency in the training (GreenGenes) sequences. Thus, we have

εðrawÞr ¼
1

Mr

X

m2r

εm
a

aþ fm
; ð2Þ

where εm is the d-dimensional embedding for k-mer m, fm is the frequency of k-mer m across

the entire set of query sequences to be embedded, a is the parameter to control the degree

in which k-mer m is down-weighted, and Mr is the total number of k-mers embedded into

sequence r (i.e., the total number of k-mers belonging to sequence r that were also present in

the training set and thus have embeddings). The resulting raw sequence embedding was then

denoised by removing its projection to its first principle component,

εr ¼ ε
ðrawÞ
r � εðrawÞr nnT; ð3Þ

where ν is the first principle component obtained via singular value decomposition.

For sample, cluster, or body site embeddings, the process was instead applied to all k-mers

belonging to all sequences from a specific sample, all sequences from a specific cluster, or

all sequences from all samples from a specific body site, respectively. Note that k-mers with

degenerate bases were removed (bases other than ACGT); thus, some sequences received no

embedding due to no k-mers intersecting with the training k-mer embeddings.

Cosine similarity between embeddings

For an embedding A, its cosine similarity with respect to embedding B is defined as

cosimðA;BÞ ¼
P

i AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i A2

i

P
i B2

i

p : ð4Þ

Lower dimensional projections of the embedding spaces

For visual exploratory analysis of the embedding space, American Gut sample embeddings

were reduced to 2 dimensions via t-SNE. 21 samples (7 samples each from fecal, tongue, and

skin) were randomly chosen to lessen the computational burden. Principal component analy-

sis was not performed beforehand to further reduce the dimensionality of the embedding

space, as typically done. This is because the embedding space is already a lower-dimensional

representation of the original input feature space. Centering and scaling was also not per-

formed. Perplexity was set to 50 and t-SNE was run for 1000 iterations. sequence embeddings

of the 14,520 KEGG 16S sequences were explored in the same manner. For the American gut

data, because the number of total sequences was large (11,838,849), and for 10-mer embed-

dings in general, t-SNE was impractical in terms of time and memory requirements. Thus, to

project American Gut sequence and GreenGenes 10-mer embeddings to 2-dimensions, we

performed independent component analysis.

Consensus sequence analysis

The KEGG sequences were clustered using VSEARCH. Sequences with pairwise identity (as

defined above) with its centroid below 0.8 were omitted from their respective cluster. We

embedded the consensus sequence of each cluster (a consensus embedding), as well as all

sequences belonging to that cluster (a cluster embedding). Then, the pairwise cosine similari-

ties between all consensus and cluster embeddings were calculated.
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Generation of pseudo-OTUs

After generating sequence embeddings of the American Gut data, we randomly sampled

approximately 1,000,000 sequence embeddings across all body sites (tongue, skin, gut) and

used K-means [43] to cluster them into 1000 clusters (1000 pseudo-OTUs). We then obtained

the centroids of these clusters. sequences from each sample were classified into the closest cen-

troid/cluster. Finally, we quantified the number of sequences that were classified into each

cluster and the abundance of each pseudo-OTU.

Classification analysis

American Gut samples with body site (fecal, skin, tongue) labels were split into 90/10 training/

testing sets containing 7526 and 835 samples, respectively. The training set was composed of

6729, 282, and 497 fecal, skin, and tongue samples, whereas the testing set consisted of 749, 31,

and 54 samples, respectively. We performed multinomial classification using the lasso classifier

with sample embeddings, clr-transformed OTUs, their top-256 principal components, or clr-

transformed pseudo-OTUs as features. For training, we performed 10-fold cross validation to

select the optimal value of the regularization parameter λ. We evaluated performance using

the held-out testing set in terms of balanced accuracy, which adjusts for class imbalance by

averaging the three accuracies for each individual body site:

Acc� ¼
1

3

X

bs

pðyðbsÞtrue ¼ yðbsÞpredÞ; ð5Þ

where ytrue is the true label and ypred is the predicated label for only samples from body site bs.

Taxonomic assignment

Taxonomic assignment for both the KEGG and American Gut 16S rRNA amplicon sequences

was conducted using the RDP naïve Bayes classifier [68] implemented in QIIME.

Identification of important k-mers

We obtained the sparse set of lasso regression weights estimated when we performed body site

classification using sample embedding (described above). Each body site (skin, fecal, tongue)

had its own vector of regression coefficients. To obtain k-mer activations, we calculated the

outer product between all k-mer activations and the regression coefficients: αk = εk� β,

where, for a corpus of M k-mers, αk is an M × J matrix of k-mer activations for J body sites, εk
is an M × d matrix of k-mer embeddings, and β is a d × J matrix of regression coefficients.

Each column in αk was ranked, and the top-1000 (arbitrary) k-mer activations for each body

site were selected. For each set of 1000 k-mers, we identified which corresponding American

Gut reads (from samples of a particular body site) contained these k-mers and randomly sam-

pled 25,000 of k-mer-containing sequences from each body site (to ease the computational

burden in the subsequent alignment step). We performed multiple alignment [69] for each set

of 25,000 sequences with relatively strict gap penalties to prevent exceedingly large alignments

(-25 and -10 gap opening and extension penalties, respectively). We finally mapped the posi-

tion of the high-ranking k-mers to the alignments. The position is the range in which the k-

mer spans in the multiple alignment, including the presence of gaps.

Identification of important node activations

We calculated sequence activations for each body site in a similar manner as described above.

To obtain sequence activations, we calculated the outer product between all sequence
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embeddings and the sparse set of lasso regression coefficients: αr = εr� β, where, for a corpus

of R sequences, αr is an R × J matrix of sequence activations for J body sites, εr is an R × d
matrix of sequence embeddings, and β is a d × J matrix of regression coefficients. Then, for

a given sample, we summed each sequence activation αr to obtain a cumulative sum for all

sequence activations through sequence activation αr.

Supporting information

S1 Appendix. Contains additional information regarding the following: (1) expands upon the

results found in the section that described how k-mers associated with Lachnospiraceae genera

were associated with the skin body site and sequence regions by providing additional informa-

tion at the phylum level and for fecal and tongue body sites; (2) compares results to a similar

embedding algorithm, doc2vec; and (3) fully describes the parameter selection procedure and

the results used to justify the selected parameterization.

(PDF)
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