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The dental implantation in clinical operations often encounters difficulties and challenges of failure in osseointegration, bone
formulation, and remodeling. The resonance frequency (RF) can effectively describe the stability of the implant in physical
experiments or numerical simulations. However, the exact relationship between the design variables of dental implants and RF
of the system is correlated, complicated, and dependent. In this study, an appropriate mathematical model is proposed to
evaluate and predict the implant stability and performance. The model has merits not only in the prediction reliability and
accuracy but also in the compatibility and flexibility, in both experimental data and numerical simulation results. The Kriging
surrogate model is proposed to present the numerical relationship between RF and material parameters of dental implants. The
Latin Hypercube (LH) sampling method as a competent and sophisticated method is applied and combined with the finite
element method (FEM). The methods developed in this paper provide helpful guidance for designers and researchers in the
implantation design and surgical plans.

1. Introduction

The dental implant as a predictable and reliable treatment
has been widely applied in the rehabilitation of edentulous
patients [1]. The implantation fails sometimes caused by
some complicated reasons in oral environment [2]. Fortu-
nately the stability of the implants can be introduced to suc-
cessfully predict such a failure in most cases by numerical
computing or experimental testing [3]. Usually, the stability
of implantation can be concluded in two categories: the pri-
mary and the secondary stability. The former is largely asso-
ciated with osseointegration, while the secondary stability is
highly corresponding with the bone formulation and remod-
eling in the process of healing [4–7]. Bone material quality,
geometry characteristics of implants, and cortical bone can
affect the primary stability [8–12]. The secondary stability
obtains from the bone apposition surrounding the interface
of implants and bone [13, 14]. The quantification of implant

stability offers helpful information to keep reliability in the
individual treatment [15, 16].

The histological examination is one of the traditional
invasive approaches. Noninvasive methods are required for
the observation and measurement of implant stability [17,
18]. The Periotest and the Osstell Mentor system test are
two typical noninvasive methods for the measurement of
implant stability in diagnosis. In the Periotest, the interfacial
damping characteristics between the implant and the sur-
rounding tissue are evaluated [19, 20]. However, the Periotest
is often criticized for its lack of prognostic accuracy and poor
sensitivity.On the contrary, theOsstellMentor system is based
on resonance frequency analysis (RFA), which appears more
competent of assessing the implantation stability [21–25].

The RFA was firstly introduced for dental applications in
1996 and then developed in both experimental and computa-
tional aspects [26–31]. It provides an effective way to study
the relationship between the stiffness of the implant-bone

Hindawi
Applied Bionics and Biomechanics
Volume 2019, Article ID 3768695, 14 pages
https://doi.org/10.1155/2019/3768695

http://orcid.org/0000-0001-7929-4459
http://orcid.org/0000-0003-3609-0258
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3768695


interface and its surrounding local structures during the heal-
ing process [32–34]. In the numerical computation aspect,
RFA can be powerfully implemented by a finite element
method (FEM). FEM is capable of simulating puzzling geom-
etry characteristics, material properties, and also boundary
conditions, which are often tough to deal with in the labora-
tory [35–37]. Furthermore, it is feasible to allow any indepen-
dent control of parameters in the implant system by the FEM.
Then, performing systematic evaluation for each parameter
corresponding to implant stability becomes convenient.

Combining the Latin Hypercube (LH) sampling method
with the FEM develops a competent and appropriate sto-
chastic finite element method. The widespread popularity
of LH has led to the technical development in various
fields, such as the improvement of space filling [38, 39],
optimization of projective properties [40–42], minimization
of least square error, maximization of entropy [43, 44], and
reducing spurious correlations [45]. Meanwhile, LH has
been deeply explored in probabilistic analysis, ranging from
the assessment of reliability [46–49] to coefficient evalua-
tion for polynomial chaos and merging with the surrogate
models [50, 51]. Therefore, the combination of LH and
the FEM is a promising method for the RFA of the dental
implantation research.

Since the exact relationship between the design variables
of dental implants and RF of the system is correlated, compli-
cated, and dependent, traditional regression calculation is
difficult to reach a satisfied accuracy. The Kriging model is
an interpolation method which finds its roots in geostatis-
tics [52]. As one of the most promising spatial correlation
models, the Kriging model is more flexible than the regres-
sion model and not as complicated and time-consuming as
other metamodels [53]. Recently, there is an increasing inter-
est in applying the Kriging model in the industry, mechanical
engineering, and related fields [54–58]. The popularity of
Kriging consists in that Kriging is an accurate interpolating
approximation model [59]. Kriging model is attractive for
its interpolating characteristic, providing predictions with
the same values as the observations and reducing the time
for the expensive analysis. When there are highly nonlinear-
ity in a great number of factors, polynomial regression
modeling becomes insufficient while the Kriging modeling
is an alternative choice in spite of the added complexity [60].

The goal of this study is to propose an appropriate math-
ematical model to evaluate and predict the implant stability
and performance. The model is explored to precisely describe
the exact relationship between RF and design parameters of
dental implants. LH-FEM can reduce the cost of physical
experiments, which are expensive and time-consuming. The
proposed model in this study has the advantages not only
in the prediction reliability and accuracy but also in the com-
patibility and flexibility in experimental data and numerical
simulation results.

This paper consists of four parts. Section 1 provides a
brief overview of the Kriging surrogate model and reso-
nance frequency analysis. Parameters of dental implants
are presented in Section 2. Besides, the implementation of
LH-FEM is also performed in this section. In Section 3,
results are demonstrated and discussed comprehensively. A

short summary is concluded in the last section. The methods
developed in this paper provide useful information and
helpful guidance for implant designers and prosthetic pro-
fessions in the process of implant design and corresponding
surgical plans.

2. LH-FEM for Dental Implants

2.1. Parameters of Dental Implants. The geometrical parame-
ters of dental implants are expressed in Figure 1 and Table 1.
They include height, length, and width of dental implants,
cortical bone, cancellous bone, and ceramic dent. There are
8 parameters (H1, H2, H3, W3, h1, h, w, and d) for dental
implants and 2 parameters (W2 and H4) for ceramic dent.
H, W, and W1 for the cortical bone are 26mm, 16mm,
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Figure 1: Geometry characteristics of the dental implant.

Table 1: Parameters of geometrical properties in FEM.

Definition mm

H1 The height of the bottom part in dental implants 14.2

H2 The height of the middle part in dental implants 2

H3 The height of the top part in dental implants 5

H The height of the cortical bone 26

h1 The height (in the front end) of the thread in
dental implants

0.1

h The distance (in the front end) between the edges
of the thread in dental implants

0.9

W The width of whole FEM 16

W1 The thickness of the cortical bone 1.3

W2 The diameter of the ceramic crown 5.1

W3 The diameter of dental implants 3.1

w The width of teeth in the thread part of dental implants 0.4

H4 The height of the ceramic crown 2

Besides, d represents the degree of the included angle in the front end of
thread and is settled as50∘.
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and 3.1mm, respectively. With the development of material
science, stainless steel, titanium, gold, and even fiber can
reach a biomedical grade and can be applied in dental
implants. For material properties, Young’s modulus, Pois-
son’s ratio, and physical density of dental implants (E1, R1,
and D1), ceramic crown (E2, R2, and D2), cortical bone
(E3, R3, and D3), and cancellous bone (E4, R4, and D4) are
12 input variables in the finite element model. In order to
perform the Latin Hypercube-based finite element method,
the specific intervals of parameters corresponding with mate-
rial properties are given in Table 2.

In terms of the material properties, on the one hand, the
work in this study provides the appropriate and wide inter-
val ranges for the material parameters instead of the certain
and specific values. The specific values of material parame-
ters are included in the interval ranges. On the other hand,
the material properties are analyzed and discussed in the
aspects of stiffness and mass matrix, which are more com-
prehensive to analyze the effects of material properties in
RFs of dental implants.

According to the FEM, (1) all materials are homoge-
neous, isotropic, and linear elastic; (2) the different compo-
nents exhibit different physical properties; the Young’s
modulus and Poisson’s ratio are given as input variables
according to common values in the certain range; (3) perfect
bonding is involved between implant-abutment-screw, abut-
ment-crown, and implant-bone. In the contact pair, the

objective surface and contact surface are supposed to be
bonded. Perfect bonding makes the computation process
avoid the problem of convergence, speeds up the calculation,
and is proper to have the analysis in large deformation and
nonlinear problems; (4) there are no flaws in any compo-
nents; and (5) for the boundary condition in the FEM of
the dental implant system, three surfaces (in the bottom
and left and right sides) of the cortical bone surface are cho-
sen and completely fixed; the displacement in X, Y, and Z
directions of these three surfaces is constrained to be zero.

Besides, in the previous work of Chu et al. in reference
[49], it has been proven that a sufficient number of samples
can guarantee a satisfied accuracy of LH and MCS. Enlarging
the sampling pool can effectively improve the result accuracy
when the number of samples is small; however, when the
amount of samples reaches a certain number, the improve-
ment is not evident. Therefore, the number of samples for
each variable is supposed to be 500 to obtain an appropriate
accuracy while reducing computation costs.

2.2. Latin Hypercube-Based Finite Element Method. A finite
element model of the dental implant system is created as
shown in Figure 2 by ANSYS (Mechanical Parameter
Design Language, Version 14.5, USA). Solid 285 is the cho-
sen finite element, which is a tetrahedron solid element
with 4 nodes in each element, and each node has 3 degrees
of freedom (displacement in X, Y, and Z directions). The

Table 2: Physical properties of materials for FEM.

Material Young’s modulus range (GPa) Poisson’s ratio range Physical density (kg/m3)

Dental implant E1 (100–200) R1 (0.25–0.35) D1 (4000–8000)

Ceramic crown E2 (5–12) R2 (0.25–0.35) D2 (2000–3000)

Cortical bone E3 (10.0–20.0) R3 (0.25–0.35) D3 (1600–2000)

Cancellous bone E4 (0.8–1.5) R4 (0.25–0.35) D4 (1600–2000)

I
J

K

L

Z
X

Y

Figure 2: Finite element model of dental implants.
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tetrahedron shape of Solid 285 is flexible and convenient to
mesh nonlinear and complicated geometry components,
such as thread of dental implants. There are a total of
133961 elements and 22168 nodes. The thread components
of dental implants have been fine meshed. By performing a
finite element (FE) procedure, the RF can be obtained by
solving the eigenvalue problem in the govern equation
through the block Lanczos method.

The study of the relationship between the various cor-
responding parameters of the dental implant system and
the values of RF requires fabrication of a huge sample set
for experiments, which is expensive and time-consuming.
LH as an advanced Monte Carlo method is especially effi-
cient, which divides the sample space into a number of
subspaces, then samples from subspaces, thereby perfectly
avoiding sample clustering or variation in the boundary
[49, 50]. Combing the traditional finite element model of
dental implants with LH is a sophisticated method to over-
come the disadvantages of physical experiments.

The input variables of the finite element model were
assigned using LH sampling to effectively avoid sample repe-
tition or clustering. For each variable, there are five hundred
randomly samples, which are uniformly distributed in the

specific interval range as shown in Table 2. The stochastic
sampling process of the input variable creates a reliable data-
base for FEM computation. The flowchart of LH-FEM in
Figure 3 presents the programing process. The process
marked by blue color represents the deterministic finite ele-
ment model of the dental implant system. The convergence
and accuracy of the deterministic finite element model for
dental implants are verified before the next steps. After the
validation of the deterministic finite element model, the orig-
inal codes are assigned to LH-FEM. The loop of LH-FEM
does not stop until all of the samples are computed by the
finite element model. Then, the results of RF are captured
and stored in the output database, as shown in the right side
of the flowchart in Figure 3 which are marked by red color.

In order to find the availability of LH-FEM, a param-
eter sampling record (E1) of input variables is presented in
Figure 4. The difference between samples is not regular
because of the stochastic sampling process, which makes
the sampling set including different situations as far as
possible. The probability distribution in statistical mathe-
matics is following a uniform distribution as in Figure 4.
The LH sampling method is successfully implemented in
the whole sampling spaces.
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Figure 3: The flowchart of LH-FEM.
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3. Results and Discussion

3.1. Results of the Deterministic Finite Element Model. RFA
(resonance frequency analysis) as a noninvasive and nonde-
structive technique is proposed to assess the implant stability.
A deterministic finite element model of dental implants is
performed to evaluate the feasibility of this method. The res-
onant displacements of the first five order resonance frequen-
cies are plotted in Figure 5, for the X, Y, and Z directions and
vector sums, respectively. The axes in Figure 5 are the same as
that in Figure 2. The contour results allow visualizing the dis-
placement and mode shape of the dental implant system. The
contours present that the displacement happened in the direc-
tion of Y axis in RFA is a more dominant vector that influ-
ences the whole system in the first-order RFA than others.
While in the second-order RFA, the more important displace-
ment is observed in the direction of X axis. In addition, the
displacement vector sums in the third-order RFA are more
approximated to the displacement in the direction of Z axis.
For the fourth- and fifth- order RFA, the displacements in
vibration modes are more complicated and the natural fre-
quencies are larger than the lower-order vibration modes.
Besides, the largest deformation in the first- and second-
order vibrationmodes happens in the top of the system, which
well agreed with the results in the work of Li et al. [36].

In order to be more convenient, the results of dental
implants are demonstrated independently. Figure 6 presents
the displacement vector sum and Von Mises stress of dental
implants in the first five order RFA. The associated displace-
ment corresponding to the first bending modes of a cantile-
ver beam has been experimentally observed in the literature
[61]. The results of the deterministic finite element model
are consistent with those in experiments of the literature.
The accordance can be confirmed in both the displacement
vector sums and Von Mises stress. The failures and risks
most likely occur at the beginning of the threads and the
junction of implant collar. This fact is in a good agreement
with numerical and experimental investigation [37, 62].
Therefore, the results in this study are validated. The finite
element model of dental implants is feasible and appropriate
for further studies.

In this study, not only the resonant frequencies of den-
tal implants are calculated by the FEM but also the vibra-
tion modes of the dental implants are provided. As the
direct measurement of the vibration performance of dental
implants higher than the third mode is difficult, the displace-
ments of dental implants under the vibration mode in this
numerical study are an important supplement of the experi-
mental measurements. Furthermore, the high mode vibra-
tion is an appropriate reference for the safety and reliability
of the dental implants in the real operating environment.

3.2. Probabilistic Results of LH-FEM. The results of LH-FEM
are a large database, and the effective and useful information
is extracted and presented in Table 3. The maximum, mini-
mum, mean value, and variance of the first five order RFs
are all shown in Table 3. The results of the first-order and
second-order RFs are very close, which is because of the geo-
metrical symmetry in the finite element model. However, the
vibration modes of the first and second orders are different in
Figure 5. In the first-order vibration mode, the dominant dis-
placement happens in the direction of Y axis, while in the
second-order vibration mode, the important displacement
occurs in the direction of Z axis.

Different with the probability distribution of input
variables, the output results of the first five order RFs for den-
tal implants do not have uniform distributions as shown in
Figures 7 and 8. From Figure 7, the results of first- and
second-order RFs are more concentrated in the smaller inter-
val than the third, fourth, and fifth orders, which means the
difference in material property of dental implants causes
a large deviation of RF in higher-order vibration modes.
Besides, in Figures 7 and 8, the probability distribution and
cumulative probability of the first- and second-order RFs
are approximated, but when compared with the third-order
RF, the difference is very evident. These characteristics of
the probabilistic results provide helpful guidance in experi-
mental designs and research.

Furthermore, the primary (first order) RF of LH-FEM is
fluctuated in the interval range from 6100 to 10000Hz
approximately, and the average is 7800Hz. In regard to RFA,
tremendous substantial studies have been accomplished in
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Figure 4: Sample records of Young’s modulus of dental implants by LH ((a) for stochastic sampling record and (b) for probability density
distribution result, respectively).

5Applied Bionics and Biomechanics



experiments and clinical research. In the work of Glauser
et al. [26], the implant stability based on the RFA of dental
implants under an early functional loading is explored.

During a 12-month interval, the average RF ranges from
6100Hz at the 1st month to approximately 6600Hz at the
12th month. Besides, the results of the experiment in the tibia
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Figure 5: Displacement in the first five order RFA (X, Y, and Z axis directions and sum vector).
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of three groups of guinea pigs in a period of 4 weeks [34]
also indicated that the average RF is roughly 5650Hz
amongst the three groups. Compared with these literature
data, the results of LH-FEM are in a reasonable range. There-
fore, the database of LH-FEM for RFA of dental implants is
available and feasible.

The work of this study provides the maximum, mini-
mum, mean values, and the variances of the resonant fre-
quencies of dental implants. The primary (first order)
resonant frequencies of dental implants corresponding to
the implant stability in the literatures fall within the interval

range of LH-FEM, which strongly proves the feasibility of
the proposed model in this study. Besides, the probability
density distribution results of the first five order RFs for den-
tal implants in Figures 7 and 8 provide important informa-
tion corresponding to the safety and reliability of dental
implants’ stability.

3.3. Prediction of the Kriging Surrogate Model. The resonance
frequency is directly attributed to the stiffness matrix and
mass matrix. The material stiffness and the stiffness of
implant-bone interfaces and surrounding tissues have posi-
tive effects on RF, while RF usually has the inverse proportion
to the mass matrix. However, the Young’s modulus of the
cancellous bone is crucially related with the physical density,
and the increase of physical density of cancellous bones
(mass matrix) can contribute to the improvement of the
Young’s modulus (stiffness matrix). On the other hand, can-
cellous bones have a much larger contact area to the dental
implant and can hugely affect the whole dental implant sys-
tem. Therefore, the relationship between RF and parameters
of material properties in the dental implant system is compli-
cated and correlated. It is difficult to be described by a simple
linear interpolation or regression function.

(a) (b)

Figure 6: Results of dental implants in the first five order RFA ((a) displacement vector sums, (b) Von Mises stress of the dental implant).

Table 3: Statistical results of LH-FEM for RFA.

Maximum
(kHz)

Minimum
(kHz)

Mean
(kHz)

Variance
(kHz)

F1 10.0 6.1 7.8 0.7

F2 10.1 6.1 7.9 0.7

F3 28.2 17.2 21.9 4.4

F4 35.7 21.5 27.9 7.9

F5 37.0 22.4 28.8 8.3
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Figure 7: Probability density of the first five order RFs.
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Based on the reliable database of LH-FEM, a huge
amount of samples for parameters of material properties in
the dental implant system and corresponding RF is provided.
By performing the Kriging surrogate model, the numerical
relationship between RF and parameters of material property

is created. The accuracy and convergence of the prediction by
the Kriging surrogate model are demonstrated in Figure 9.
The black spots in Figure 9 are prediction results of the Kri-
ging surrogate model; the mesh surface is the results obtained

(a) (b)

(c) (d)

Figure 9: Prediction results of the Kriging surrogate model ((a), (b), (c), and (d) represent the relationships between E1, E2, and F1; E1, E3,
and F1; E1, E4, and F1; and E1, P2, and F1, respectively).

17.5 8 18.5 19 19.5 20 20.5 21
Young's modulus (GPa) in cortical bone 

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1 order RF
2 order RF
3 order RF

1 order prediction
2 order prediction
3 order prediction

Figure 10: Comparison between deterministic results and
prediction results of RF in the cortical bone.
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Figure 11: Comparison between deterministic results and
prediction results of RF in the cancellous region.
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from LH-FEM. Satisfied level of accuracy is reached by the
Kriging surrogate model. Figure 9 well confirms the pre-
diction accuracy of the proposed Kriging surrogate model
in this study.

In order to have quantitative comparison, the prediction
results of the Kriging surrogate model and the results in the
literature [36] are presented in Figures 10 and 11. In clinical
and experimental observation, RF increases and changes in
the beginning of the first several months and reaches a
certain steady state after a period. In the healing process,
the Young’s modulus of the cortical region and cancellous
region increases. Therefore, the other input variables are
settled as certain values in the Kriging surrogate model;
the Young’s modulus of cortical (E3) and cancellous (E4)
bones are input variables.

From Figure 10, it can be found that in general, according
to the increase of the Young’s modulus cortical region, the
first three order RFs are all amplified in the beginning period
in the results of the literature [36] and the prediction of the
Kriging surrogate model, where β is the ratio of the RF
related to the specific Young’s modulus with the steady RF
in the final phase. Due to the database of LH-FEM, the
first-order and the second-order prediction results are very
close, while the prediction results of the Kriging surrogate
model in the third RF are approximated with the results in
the work of Glauser et al. [26], especially in the beginning
and end parts of the result curve.

Furthermore, the prediction results of RF in the cancel-
lous region by the Kriging surrogate model are also com-
pared with the results in the literature [36] as shown in
Figure 11. A good agreement is achieved when the Young’s
modulus in the cancellous region is large. However, the pre-
diction results of the Kriging surrogate model are larger than
the deterministic results [36] when the Young’s modulus in

the cancellous region is large. The reasons causing this phe-
nomenon can be the original database of LH-FEM, the low
sensitivity of the Kriging surrogate model for the cancellous
region, or computational relative errors of the method
applied in this study. On the other hand, the Kriging surro-
gate model provides continuous result prediction of RF for
the dental implant system, which is more convenient, com-
prehensive, and time-saving for RFA than the traditional
finite element method calculation and clinical test.

In addition, based on the accuracy and reliability of the
Kriging surrogate model prediction, it is also useful in the
analysis process of dental implant stability. However, the
dental stability cannot be directly measured or simulated
with an in vivo or vitro model under specific clinical situa-
tions. The Kriging surrogate model proposed in this study
can play important roles and provide believable prediction
results of RF corresponding with the dental stability. Besides,
the Kriging surrogate model is compatible to combine the
numerical simulation results with clinical and experimental
results in the original database, which makes it a more
sophisticated surrogate model for the dental implant system.

Through LH-FEM proposed in this paper, a series of
meaningful results are obtained for RFA of dental implants.
However, there are still some limitations caused by simplifi-
cation and assumptions involving in the numerical simula-
tion. Firstly, material properties of each component in the
dental implant system are supposed to be homogenous and
isotropic. Secondly, the damping effect is totally neglected
during the RFA, while damping may have a certain extent
influence on the accuracy of RF. Thirdly, the interfaces in
the system are all treated as perfect bonding without consid-
ering the local specialty. In the real operation situation, the
bone-implant interface is a dynamic living surface that
evolves from a debonded interface to a bonded interface. Li
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Figure 12: Comparison between the LH sampling method and MCS ((a) for MCS, (b) for the LH sampling method).
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et al. [60] applied the bonded model to calculate the RF of the
bone-implant interface in a dental implant. The results were
in a quantitative agreement with some experimental mea-
surements, because the bone-implant interface was fully
osseointegrated after several weeks [4, 61]. Despite such sim-
plification in the simulation process, the computational
results in RFA are fairly reasonable, which could be useful
and helpful for implant designers and prosthetic researchers.
Furthermore, the prediction results of the Kriging surrogate
model for RFA of dental implants by LH-FEM are reliable
and believable.

4. Conclusion

In conclusion, the computational model proposed in this
paper is a successful numerical tool for noninvasive RFA in
dental implant research. LH-FEM is appropriate and feasible
to study the influence of the material properties of the
implant medical components on RF. The Kriging surrogate
model is an effective model to precisely describe the relation-
ship between RF and parameters of material property. The
output results of RF from LH-FEM are in the reasonable
and believable range. The prediction results from the Kriging
surrogate model have a good agreement with the published
paper. Based on the database of LH-FEM, the Kriging surro-
gate model is an appropriate and powerful method in RFA of
dental implants.

Appendix

A.1. Kriging Surrogate Model

A surrogate model likes a black box, where the mathematical
relationship between the parameters in the input database
and parameters in the output results is expressed by approx-
imated implicit methods. Usually, the surrogate model can be
classified into two kinds of groups: local and global models.
The response surface method is a typical local model and
can be written in polynomial series as follows [49]:

F β x = β0 + 〠
n

i=1
βixi, A 1

F β x = β0 + 〠
n

i=1
βixi + 〠

n

i=1
〠
n

j=1
βijxixj A 2

Equation (A.1) and equation (A.2) are the local first- and
second-order response surface model, respectively, where F
β x is a deterministic regression model and βi is the cor-
responding regression coefficient.

In addition, a global surrogate model generally has global
searching space. Kriging models fit a spatial correlation func-
tion as follows:

G x = F β x + z x , A 3

where z x is assumed to have mean zero and covariance.

In the first-order linear Kriging surrogate model, the pre-
dictor can be expressed as follows [63]:

ŷ x = cTY , A 4

where c = c x ∈ Rm. The relative error is

ŷ x − y x = cTY − y x = cT Fβ + Z − f x Tβ + z

= cTZ − z + FTc − f x
T
β

A 5

In order to make sure the predictor is unbiased, FTc is
equal to f x . The mean squared error of the predictor can
be written as follows:

φ x = E y∧ x − y x 2 = E cTZ − z
2

= σ2 1 + cTRc − 2cTr
A 6

The objective of the optimization program is to have the
minimum value of φ; the constraint is

L c, λ = σ2 1 + cTRc − 2cTr − λT FTc − f A 7

The computation of the gradient of the constraint func-
tion with respect to c can be expressed as follows:

Lc′ c, λ = 2σ2 Rc − r − Fλ A 8

Suppose λ = −λ/2σ2, the following system of equations is

R F

FT 0
c

λ
=

r

f
A 9

The solution can be obtained:

λ = FTR−1F
−1

FTR−1r − f ,

c = R−1 r − Fλ ,
A 10

where R−1 is the inverse matrix of the correlation matrix R.

ŷ x = r − Fλ
T
R−1Y

= rTR−1Y − FTR−1r − f
T

FTR−1F
−1
FTR−1Y

A 11

The generalized least squares solution is

β∗ = FTR−1F
−1
FTR−1Y A 12

Substitute β∗ into the predictor of the Kriging surro-
gate model,
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ŷ x = rTR−1Y − FTR−1r − f
T
β∗ = f Tβ∗ + rTR−1 Y − Fβ∗

= f x Tβ∗ + r x Tγ∗

A 13

Besides, the corresponding maximum likelihood esti-
mate of the variance is written as follows:

σ2 = 1
m

Y − Fβ∗ T Y − Fβ∗ A 14

If the errors are uncorrelated and have different vari-
ances, E eiei = σ2i and E eiej = 0 for i ≠ j. It is logical to
find that R is the diagonal matrix,

R = diag σ2
1

σ2 ,⋯,σ
2
m

σ2 A 15

Besides, the weight matrix W is given as follows:

W = diag σ

σ1
,… , σ

σm
⇔W2 = R−1 A 16

Therefore,

Y =WY =WFβ + e A 17

And, the below equations are satisfied:

E e = 0,
E eeT =WE eeT WT = σ2I

A 18

Replacing F and Y by weighted function, the results
can be depicted as follows:

FTW2F β∗ = FTW2Y ,

σ2 = 1
m

Y − Fβ∗ TW2 Y − Fβ∗
A 19

A.2. Resonance Frequency

Modal analysis is efficient to identify the RF of objects in
the fields of engineering, industry, and medicine. Resonance
happens when a structural system vibrates at its RF with a
tendency to oscillate in higher amplitudes. Since the value
of RF is associated with material stiffness, structural damp-
ing, physical density, and boundary condition, RF can be
employed to symbolize a structural system.

The calculation of RF of a system is essentially a general-
ized eigenvalue problem. The free vibration without damping
is governed by the following equation:

M u + K u = 0 , A 20

where K is the structure stiffness matrix and M is the
structure mass matrix.

For the linear system, free vibrations will be harmonic of
the form:

u = ϕi cos ωit A 21

In the above equation, ϕi is eigenvector representing
the mode shape of the ith natural frequency, ωi is the ith
natural circular frequency, and t is time.

Thus, the free vibration can be presented as follows:

−ω2
i M + K ϕi = 0 A 22

This equality is satisfied if either ϕi = 0 or −ω2
i

M + K equals to zero. Then,

K − ω2 M = 0 A 23

This is an eigenvalue problem which may be solved for
up to n values of ω2 and n eigenvectors ϕi , where n is the
number of degree of freedom.

The eigenvalue and eigenvector problem needs to be
solved for mode-frequency and buckling analyses. It also
has the form as follows:

K ϕi = λi M ϕi , A 24

where λi is an eigenvalue. The block Lanczos method uses
the sparse direct solver to perform Lanczos iterations and
extracts the requested eigenvalues.

Rather than the natural circular frequencies ω , the
natural frequency f is

f i =
ωi

2π A 25

Therefore, the natural frequency f is not only corre-
sponding with structure stiffness matrix K but also be
affected by M structure mass matrix. It is an effective
index to observe the changes or deviation of the structure
geometry and material property.

A.3. Latin Hypercube Sampling Method

The Latin Hypercube sampling method is one kind of
advanced Monte Carlo simulation (MCS). This approach
divides the range of each variable into disjoint intervals of
equal probability, and one value is randomly selected from
each interval. It improves the stability of MCS and keeps
satisfied accuracy and good convergence [49, 50]. Consider
a statistic system described by the function,

Y = F X , X = X1, X2,⋯,Xn , A 26

where X is the random vector and represents the indepen-
dent input random variables. F is the operator and performs
computer simulation, such as finite element computation.

Traditional MCS relies on simple random sampling,
in which realization of X, denoted by xk, k = 1,… ,N , where
N is the amount of samples. In the sample space,
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xki = P−1
Xi

Ui , i = 1,… , n, A 27

where Ui are the uniformly distributed samples on [0, 1] and
P is the cumulative distribution function. Besides, Nataf or
Rosenblatt transformations can be used to produce a set of
uncorrelated random variables from correlated variables.

Latin Hypercube sampling method divides the range of
each vector component into disjoint subsets of equal proba-
bility. Samples of each vector component are captured from
the respective subsets according to equation as follows:

xjki = P−1
Xi

Uij , A 28

where i = 1,… , n and j = 1,… ,m, where n refers to the total
number of vector components or dimensions of the vector
and m is the number of the subset in a design. k is the sub-
script which denotes a specific sample.

Besides, Uij are uniformly distributed samples on ξj, ξj′ ,

ξj =
j − 1
m

,

ξj′=
j
m
,

xjki = P−1
Xi

Uij

A 29

By the Latin Hypercube sampling method, the ranges of
all random input variables are all divided into intervals with
equal probability, the efficiency of sampling is improved,
and the disadvantage of clustering points is well overcome,
as presented in Figure 12.

In Figure 12, the data are the examples to compare
the efficiency of the Latin Hypercube sampling method
and Monte Carlo method. Actually, it can be seen as the
example of sampling space of parameters in the model of
dental implants.

Data Availability

The original data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. Capek, A. Simunek, R. Slezak, and L. Dzan, “Influence of
the orientation of the Osstell® transducer during measurement
of dental implant stability using resonance frequency analysis:
a numerical approach,” Medical Engineering and Physics,
vol. 31, no. 7, pp. 764–769, 2009.

[2] S. Wang, G. R. Liu, K. C. Hoang, and Y. Guo, “Identifiable
range of osseointegration of dental implants through reso-
nance frequency analysis,” Medical Engineering and Physics,
vol. 32, no. 10, pp. 1094–1106, 2010.

[3] F. Genna, “On the effects of cyclic transversal forces on
osseointegrated dental implants: experimental and finite

element shakedown analyses,” Computer Methods in Biome-
chanics and Biomedical Engineering, vol. 6, no. 2, pp. 141–
152, 2003.

[4] M. A. Pérez, P. Moreo, J. M. García-Aznar, and M. Doblaré,
“Computational simulation of dental implant osseointegration
through resonance frequency analysis,” Journal of Biomechan-
ics, vol. 41, no. 2, pp. 316–325, 2008.

[5] C. Rungsiyakull, Q. Li, G. Sun, W. Li, and M. V. Swain,
“Surface morphology optimization for osseointegration of
coated implants,” Biomaterials, vol. 31, no. 27, pp. 7196–
7204, 2010.

[6] W. Schulte and D. Lukas, “Periotest to monitor osseointe-
gration and to check the occlusion in oral implantology,”
The Journal of Oral Implantology, vol. 19, no. 1, pp. 23–
32, 1993.

[7] M. Bischof, R. Nedir, S. Szmukler-Moncler, J. P. Bernard, and
J. Samson, “Implant stability measurement of delayed and
immediately loaded implants during healing,” Clinical Oral
Implants Research, vol. 15, no. 5, pp. 529–539, 2004.

[8] I. Miyamoto, Y. Tsuboi, E. Wada, H. Suwa, and T. Iizuka,
“Influence of cortical bone thickness and implant length on
implant stability at the time of surgery—clinical, prospective,
biomechanical, and imaging study,” Bone, vol. 37, no. 6,
pp. 776–780, 2005.

[9] J. T. Hsu, Y. W. Shen, C. W. Kuo, R. T. Wang, L. J. Fuh, and
H. L. Huang, “Impacts of 3D bone-to-implant contact and
implant diameter on primary stability of dental implant,” Jour-
nal of the Formosan Medical Association, vol. 116, no. 8,
pp. 582–590, 2017.

[10] M. Atsumi, S. H. Park, and H. L. Wang, “Methods used to
assess implant stability: current status,” International Journal
of Oral & Maxillofacial Implants, vol. 22, no. 5, pp. 743–754,
2007.

[11] E. Nkenke, M. Hahn, K. Weinzierl, M. Radespiel-Tröger,
F. W. Neukam, and K. Engelke, “Implant stability and histo-
morphometry: a correlation study in human cadavers using
stepped cylinder implants,” Clinical Oral Implants Research,
vol. 14, no. 5, pp. 601–609, 2003.

[12] N. Meredith, D. Alleyne, and P. Cawley, “Quantitative deter-
mination of the stability of the implant-tissue interface using
resonance frequency analysis,” Clinical Oral Implants
Research, vol. 7, no. 3, pp. 261–267, 1996.

[13] A. J. Wirth, J. Goldhahn, C. Flaig, P. Arbenz, R. Müller, and
G. H. van Lenthe, “Implant stability is affected by local bone
microstructural quality,” Bone, vol. 49, no. 3, pp. 473–478,
2011.

[14] C. Aparicio, N. P. Lang, and B. Rangert, “Validity and clinical
significance of biomechanical testing of implant/bone inter-
face,” Clinical Oral Implants Research, vol. 17, no. S2, pp. 2–
7, 2006.

[15] D. S. Kim, W. J. Lee, S. C. Choi et al., “Comparison of dental
implant stabilities by impact response and resonance frequen-
cies using artificial bone,” Medical Engineering and Physics,
vol. 36, no. 6, pp. 715–720, 2014.

[16] D. Lin, Q. Li, W. Li, and M. Swain, “Bone remodeling induced
by dental implants of functionally graded materials,” Journal
of Biomedical Materials Research Part B: Applied Biomaterials,
vol. 92, no. 2, 2010.

[17] M. A. Huwiler, B. E. Pjetursson, D. D. Bosshardt, G. E. Salvi,
and N. P. Lang, “Resonance frequency analysis in relation to
jawbone characteristics and during early healing of implant

12 Applied Bionics and Biomechanics



installation,” Clinical Oral Implants Research, vol. 18, no. 3,
pp. 275–280, 2007.

[18] Y. Ito, D. Sato, S. Yoneda, D. Ito, H. Kondo, and S. Kasugai,
“Relevance of resonance frequency analysis to evaluate dental
implant stability: simulation and histomorphometrical animal
experiments,” Clinical Oral Implants Research, vol. 19, no. 1,
pp. 9–14, 2008.

[19] S. Lachmann, B. Jäger, D. Axmann, G. Gomez-Roman,
M. Groten, and H. Weber, “Resonance frequency analysis
and damping capacity assessment. Part 1: an in vitro study
on measurement reliability and a method of comparison in
the determination of primary dental implant stability,”Clinical
Oral Implants Research, vol. 17, no. 1, pp. 75–79, 2006.

[20] S. Lachmann, J. Yves Laval, B. Jäger et al., “Resonance fre-
quency analysis and damping capacity assessment. Part 2:
peri-implant bone loss follow-up. An in vitro study with the
Periotest and Osstell instruments,” Clinical Oral Implants
Research, vol. 17, no. 1, pp. 80–84, 2006.

[21] H. M. Huang, L. C. Pan, S. Y. Lee, C. L. Chiu, K. H. Fan, and
K. N. Ho, “Assessing the implant/bone interface by using
natural frequency analysis,” Oral Surgery, Oral Medicine, Oral
Pathology, Oral Radiology, and Endodontics, vol. 90, no. 3,
pp. 285–291, 2000.

[22] V. Pattijn, C. van Lierde, G. van der Perre, I. Naert, and
J. Vander Sloten, “The resonance frequencies and mode shapes
of dental implants: rigid body behaviour versus bending
behaviour. A numerical approach,” Journal of Biomechanics,
vol. 39, no. 5, pp. 939–947, 2006.

[23] R. Harirforoush, S. Arzanpour, and B. Chehroudi, “The effects
of implant angulation on the resonance frequency of a dental
implant,” Medical Engineering & Physics, vol. 36, no. 8,
pp. 1024–1032, 2014.

[24] T. F. Tözüm, I. Turkyilmaz, N. Yamalik, E. Karabulut, and
K. Eratalay, “Analysis of the potential association of implant
stability, laboratory, and image-based measures used to assess
osteotomy sites: early versus delayed loading,” Journal of Peri-
odontology, vol. 78, no. 9, pp. 1675–1682, 2007.

[25] H. Schliephake, A. Sewing, and A. Aref, “Resonance frequency
measurements of implant stability in the dog mandible: exper-
imental comparison with histomorphometric data,” Interna-
tional Journal of Oral and Maxillofacial Surgery, vol. 35,
no. 10, pp. 941–946, 2006.

[26] R. Glauser, L. Sennerby, N. Meredith et al., “Resonance fre-
quency analysis of implants subjected to immediate or early
functional occlusal loading. Successful vs. failing implants,”
Clinical Oral Implants Research, vol. 15, no. 4, pp. 428–434,
2004.

[27] H. Y. Chou, J. J. Jagodnik, and S. Müftü, “Predictions of bone
remodeling around dental implant systems,” Journal of Biome-
chanics, vol. 41, no. 6, pp. 1365–1373, 2008.

[28] J. Li, H. Li, L. Shi et al., “A mathematical model for simulating
the bone remodeling process under mechanical stimulus,”
Dental Materials, vol. 23, no. 9, pp. 1073–1078, 2007.

[29] D. Lin, Q. Li, W. Li, S. Zhou, and M. V. Swain, “Design
optimization of functionally graded dental implant for bone
remodeling,” Composites Part B: Engineering, vol. 40, no. 7,
pp. 668–675, 2009.

[30] U. Aksoy, K. Eratalay, and T. F. Tözüm, “The possible associ-
ation among bone density values, resonance frequency mea-
surements, tactile sense, and histomorphometric evaluations
of dental implant osteotomy sites: a preliminary study,”
Implant Dentistry, vol. 18, no. 4, pp. 316–325, 2009.

[31] Y. Nakatsuchi, A. Tsuchikane, and A. Nomura, “The vibra-
tional mode of the tibia and assessment of bone union in
experimental fracture healing using the impulse response
method,” Medical Engineering & Physics, vol. 18, no. 7,
pp. 575–583, 1996.

[32] T. Iida, H. Mukohyama, T. Inoue et al., “Modal analysis of the
maxillary dentition in cleft lip and palate patients before and
after bone grafting,” Journal of Medical and Dental Sciences,
vol. 48, no. 3, pp. 87–94, 2001.

[33] A. N. Natali, P. G. Pavan, E. Schileo, and K. R. Williams, “A
numerical approach to resonance frequency analysis for the
investigation of oral implant osseointegration,” Journal of Oral
Rehabilitation, vol. 33, no. 9, pp. 674–681, 2006.

[34] E. De Smet, S. V. Jaecques, J. J. Jansen, F. Walboomers,
J. Vander Sloten, and I. E. Naert, “Effect of strain at low-
frequency loading on peri-implant bone (re) modelling: a
guinea-pig experimental study,” Clinical Oral Implants
Research, vol. 19, no. 8, pp. 733–739, 2008.

[35] B. Deng, K. B. Tan, G. R. Liu, and Y. Lu, “Influence of osseoin-
tegration degree and pattern on resonance frequency in the
assessment of dental implant stability using finite element
analysis,” International Journal of Oral & Maxillofacial
Implants, vol. 23, no. 6, 2008.

[36] W. Li, D. Lin, C. Rungsiyakull, S. Zhou, M. Swain, and Q. Li,
“Finite element based bone remodeling and resonance fre-
quency analysis for osseointegration assessment of dental
implants,” Finite Elements in Analysis and Design, vol. 47,
no. 8, pp. 898–905, 2011.

[37] M. A. Pérez, “Life prediction of different commercial dental
implants as influence by uncertainties in their fatigue material
properties and loading conditions,” Computer Methods and
Programs in Biomedicine, vol. 108, no. 3, pp. 1277–1286, 2012.

[38] K. Burrage, P. Burrage, D. Donovan, and B. Thompson, “Pop-
ulations of models, experimental designs and coverage of
parameter space by Latin hypercube and orthogonal sam-
pling,” Procedia Computer Science, vol. 51, pp. 1762–1771,
2015.

[39] T. M. Cioppa and T. W. Lucas, “Efficient nearly orthogonal
and space-filling Latin hypercubes,” Technometrics, vol. 49,
no. 1, pp. 45–55, 2007.

[40] V. R. Joseph and Y. Hung, “Orthogonal-maximin Latin hyper-
cube designs,” Statistica Sinica, vol. 1, pp. 171–186, 2008.

[41] P. Zhang, P. Breitkopf, C. Knopf-Lenoir, and W. Zhang,
“Diffuse response surface model based on moving Latin
hypercube patterns for reliability-based design optimization
of ultrahigh strength steel NC milling parameters,” Structural
and Multidisciplinary Optimization, vol. 44, no. 5, pp. 613–
628, 2011.

[42] M. Liefvendahl and R. Stocki, “A study on algorithms for opti-
mization of Latin hypercubes,” Journal of Statistical Planning
and Inference, vol. 136, no. 9, pp. 3231–3247, 2006.

[43] M. D. Shields and J. Zhang, “The generalization of Latin
hypercube sampling,” Reliability Engineering & System Safety,
vol. 148, pp. 96–108, 2016.

[44] J. S. Park, “Optimal Latin-hypercube designs for computer
experiments,” Journal of Statistical Planning and Inference,
vol. 39, no. 1, pp. 95–111, 1994.

[45] M. Vořechovský and D. Novák, “Correlation control in small-
sample Monte Carlo type simulations I: a simulated annealing
approach,” Probabilistic Engineering Mechanics, vol. 24, no. 3,
pp. 452–462, 2009.

13Applied Bionics and Biomechanics



[46] R. Stocki, “A method to improve design reliability using opti-
mal Latin hypercube sampling,” Computer Assisted Mechanics
and Engineering Sciences, vol. 12, no. 4, p. 393, 2005.

[47] D. M. Ghiocel and R. G. Ghanem, “Stochastic finite-element
analysis of seismic soil–structure interaction,” Journal of Engi-
neering Mechanics, vol. 128, no. 1, pp. 66–77, 2002.

[48] Z. Shu and P. Jirutitijaroen, “Latin hypercube sampling tech-
niques for power systems reliability analysis with renewable
energy sources,” IEEE Transactions on Power Systems,
vol. 26, no. 4, pp. 2066–2073, 2011.

[49] L. Chu, E. S. De Cursi, A. El Hami, and M. Eid, “Application of
Latin hypercube sampling based kriging surrogate models in
reliability assessment,” Science Journal of Applied Mathematics
and Statistics, vol. 3, no. 6, pp. 263–274, 2015.

[50] L. Chu, E. S. De Cursi, A. El Hami, and M. Eid, “Reliability
based optimization with metaheuristic algorithms and Latin
hypercube sampling based surrogate models,” Applied and
Computational Mathematics, vol. 4, no. 6, pp. 462–468,
2015.

[51] R. Sheikholeslami and S. Razavi, “Progressive Latin hypercube
sampling: an efficient approach for robust sampling-based
analysis of environmental models,” Environmental Modelling
& Software, vol. 93, pp. 109–126, 2017.

[52] G. Matheron, “Principles of geostatistics,” Economic Geology,
vol. 58, no. 8, pp. 1246–1266, 1963.

[53] N. Lelièvre, P. Beaurepaire, C. Mattrand, and N. Gayton,
“AK-MCSi: a Kriging-based method to deal with small failure
probabilities and time-consuming models,” Structural Safety,
vol. 73, pp. 1–11, 2018.

[54] G. Rennen, “Subset selection from large datasets for kriging
modeling,” Structural and Multidisciplinary Optimization,
vol. 38, no. 6, pp. 545–569, 2009.

[55] G. Pistone and G. Vicario, “Comparing and generating Latin
hypercube designs in Kriging models,” AStA Advances in Sta-
tistical Analysis, vol. 94, no. 4, pp. 353–366, 2010.

[56] O. Sen, N. J. Gaul, K. K. Choi, G. Jacobs, and H. S. Udaykumar,
“Evaluation of kriging based surrogate models constructed
from mesoscale computations of shock interaction with parti-
cles,” Journal of Computational Physics, vol. 336, pp. 235–260,
2017.

[57] S. Dubreuil, N. Bartoli, C. Gogu, T. Lefebvre, and J. M.
Colomer, “Extreme value oriented random field discretization
based on an hybrid polynomial chaos expansion — Kriging
approach,” Computer Methods in AppliedMechanics and Engi-
neering, vol. 332, pp. 540–571, 2018.

[58] A. Cousin, H. Maatouk, and D. Rullière, “Kriging of financial
term-structures,” European Journal of Operational Research,
vol. 255, no. 2, pp. 631–648, 2016.

[59] T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K.
Allen, “Metamodels for computer-based engineering design:
survey and recommendations,” Engineering With Computers,
vol. 17, no. 2, pp. 129–150, 2001.

[60] Y. F. Li, S. H. Ng, M. Xie, and T. N. Goh, “A systematic com-
parison of metamodeling techniques for simulation optimiza-
tion in decision support systems,” Applied Soft Computing,
vol. 10, no. 4, pp. 1257–1273, 2010.

[61] H. M. Huang, K. Y. Cheng, C. F. Chen, K. L. Ou, C. T. Lin, and
S. Y. Lee, “Design of a stability-detecting device for dental
implants,” Proceedings of the Institution of Mechanical Engi-
neers, Part H: Journal of Engineering in Medicine, vol. 219,
no. 3, pp. 203–211, 2005.

[62] D. Flanagan, H. Ilies, P. McCullough, and S. McQuoid, “Mea-
surement of the fatigue life of mini dental implants: a pilot
study,” Journal of Oral Implantology, vol. 34, no. 1, pp. 7–11,
2008.

[63] S. N. Lophaven, H. B. Nielsen, and J. Sondergaard, DACE-A
MATLAB Kriging Toolbox, Technical University of Denmark,
2002.

14 Applied Bionics and Biomechanics


	Kriging Surrogate Model for Resonance Frequency Analysis of Dental Implants by a Latin Hypercube-Based Finite Element Method
	1. Introduction
	2. LH-FEM for Dental Implants
	2.1. Parameters of Dental Implants
	2.2. Latin Hypercube-Based Finite Element Method

	3. Results and Discussion
	3.1. Results of the Deterministic Finite Element Model
	3.2. Probabilistic Results of LH-FEM
	3.3. Prediction of the Kriging Surrogate Model

	4. Conclusion
	Appendix
	A.1. Kriging Surrogate Model
	A.2. Resonance Frequency
	A.3. Latin Hypercube Sampling Method
	Data Availability
	Conflicts of Interest

