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Evidence suggests a potential relationship between gestational weight gain

(GWG) and adverse birth outcomes. However, the role of maternal genetic

polymorphisms remains unclear. This study was conducted to investigate

whether the relationship of GWG with risk of adverse birth outcomes was

modified by methylenetetrahydrofolate reductase (MTHFR) polymorphisms.

A total of 2,967 Chinese pregnant women were included and divided into

insu�cient, su�cient, and excessive groups based on the Institute of Medicine

(IOM) criteria. Polymorphisms of C677T and A1298C in gene MTHFR were

genotyped. Multivariable logistic regression models were introduced after

controlling major confounders. Excessive GWG was found to increase the

odds ratio (OR) for macrosomia [OR = 3.47, 95% confidence interval (CI):

1.86–6.48] and large-for-gestational age (LGA, OR = 3.25, 95% CI: 2.23–4.74),

and decreased the OR for small-for-gestational age (SGA, OR = 0.60, 95% CI:

0.45–0.79). Pregnant women with insu�cient GWG had a higher frequency

of SGA (OR = 1.68, 95% CI: 1.32–2.13) and a lower rate of LGA (OR = 0.51,

95% CI: 0.27–0.96). Interestingly, significant associations of GWG categories in

relation to low birth weight (LBW), macrosomia, and SGA were only suggested

among pregnant women with MTHFR A1298C AA genotype. Among pregnant

women with insu�cient GWG group, an increased risk of 3.96 (95% CI:

1.57–10.01) for LBW was observed among subjects with the A1298C AA

genotype, compared to the AC+CC genotype group. GWG categories are

closely related to LBW, macrosomia, SGA and LGA, and the associations were

modified by the polymorphism of MTHFR A1298C.

KEYWORDS

gestational weight gain, methylenetetrahydrofolate reductase polymorphisms, low

birth weight, macrosomia, small-for-gestational age, large-for-gestational age

Introduction

Excessive weight and obesity have become major public health issues worldwide,

especially for pregnant womenwho are in a special physiological condition. Nearly 31.8%

of US women of reproductive ages are obese (1), and the prevalence of overweight and

obesity for Chinese women aged 18–44 years are 26.4 and 11.0% (2). Gestational weight
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gain (GWG) is a valuable indicator of maternal nutritional

status, reflecting maternal fat storage and maintaining the

growth of the fetus, placenta, and uterus. In 2009, the Institute of

Medicine (IOM) provided specific recommendations regarding

the optimal GWG accounting for pre-pregnancy body mass

index (BMI) categories (3). According to the data from the US

Center for Disease Control, 48% of pregnant women gained

excessive GWG, and 21% gained insufficient GWG (4). In China,

excessive weight gain occurred in 57.9% of pregnant women, and

insufficient weight gain was 12.5% (5). GWG is closely related

to fetal growth restriction, pregnancy complications, fertility,

pregnancy loss, infant mortality, and even childhood obesity.

Accumulated evidence suggests that genetic susceptibility is

an important factor in fat accumulation and lipid metabolisms,

possibly resulting in abnormal GWG for pregnant women.

C677T and A1298C variants in the methylenetetrahydrofolate

reductase (MTHFR) gene known to reduce enzyme function

and ultimately lead to enhanced homocysteine levels were

considered as potential candidates (6). It has been reported

that irregular MTHFR activity can affect body fat storage

via epigenetic mechanisms, as homocysteine plays key roles

in the transfer of methyl groups in the activated methyl

cycle (7). Several studies have investigated the potential

associations of MTHFR C677T and A1298C polymorphisms

with obesity/overweight or other metabolic syndromes (8–10).

For instance, a Chinese study has reported significant weight

gain related to C677T variants (11). A dietary study observed

that MTHFR variants are associated with BMI at baseline,

and obese individuals with C677T CC genotype lost more

weight than the T allele carriers after nutritional intervention

(12). Some researchers speculated that elevated homocysteine

levels induced by MTHFR polymorphisms might affect the

development of overweight/obesity through epigenetic control

of gene expression in fat storage in the body, since methyl

and homocysteine metabolism are closely related to DNA

methylation (13, 14).

There is well-documented evidence on the associations

between GWG and obstetric outcomes in human studies (9).

However, the role of maternal genetic polymorphisms in these

relationships requires further investigation. The present study

aimed to investigate whether the relationship between GWG

and adverse birth outcomes was modified by MTHFR C677T

and A1298C polymorphisms, two loci in geneMTHFR that have

been most widely investigated.

Materials and methods

Study population

This study was conducted at Guangdong Women and

Children Hospital, a large teaching tertiary public hospital in

Guangzhou city, Guangdong province, China. Pregnant women

who delivered at the study hospital between January 2017 and

December 2019 were considered for inclusion, and a total of

4,640 pregnant women were selected according to the following

inclusion criteria: (i) > 18 years old, (ii) had regular prenatal

examinations, (iii) gave a birth to singleton live baby, and (iv)

had complete data on basic information, gestational weight

during pregnancy, the genotype of MTHFR genes, and birth

outcomes. In addition, we excluded women who underwent in

vitro fertilization (n = 636), had multiple pregnancies (n =

340), stillbirths (n = 446), or abortions (n = 251). Finally, a

total of 2,967 mother-infant pairs were included in the present

study. This study protocol was approved by the Medical Ethical

Committees of Guangdong Women and Children Hospital. All

health care procedures were carried out in accordance with

approved guidelines and regulations.

Weight measurements

Maternal pre-pregnancy BMI was calculated as self-reported

pre-pregnancy weight in kilograms divided by the square

of height in meters (kg/m2). According to Chinese BMI

classification, pre-pregnancy BMI were assigned as underweight

(<18.5 kg/m2), normal weight (18.5–23.9 kg/m2), overweight

(24.0–27.9 kg/m2), and obesity (≥28.0 kg/m2), respectively (15).

GWG was defined as the difference between the pre-pregnancy

weight and weight at delivery for pregnant women. The IOM

recommendations were used to classify the GWG group, which

were 12.5–18 kg for pregnant women that were underweight,

11.5–16 kg for normal weight women, 7–11.5 kg for overweight

women, and 5–9 kg for obese women, respectively (3). Based on

IOM criteria, women were divided into an insufficient group

(GWG < the recommended range), a sufficient group (GWG

within the recommended range), and an excessive group (GWG

> the recommended range).

Birth outcome and covariates

Anthropometric information of the newborns was extracted

from the medical records. Once a newborn was born, obstetric

nurses immediately determined and recorded its birth weight

and length. Obstetric nurses abstracted gestational age,

mode of delivery, infant sex, birth weight, length, and head

circumference. In the present study, low birth weight (LBW)

was defined as birth weight <2,500 g, and macrosomia was

considered as birth weight >4,000 g. Based on the population-

based birth weight reference percentiles for Chinese, birth

weight was divided into small-for-gestational age (SGA; birth

weight ≤ the gender-specific 10th percentile for gestational age)

and large-for-gestational age (LGA; birth weight ≥ the gender-

specific 90th percentile for gestational age) (16). Additionally,

data on maternal age, gravidity, parity, education, smoking
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and drinking status, pregnancy complications [gestational

diabetes mellitus (GDM) and hypertensive disorders in

pregnancy (HDP)], and homocysteine were extracted for

potential covariates.

MTHFR genotype

Venous blood samples were collected using vacuum tubes

with potassium salt of ethylenediaminetetraacetic acid and

stored at 4◦C. Genomic DNA was extracted from whole blood

samples using a DNA extraction kit (Magen, Guangzhou, China)

on an automated nucleic acid extraction workstation (Hamilton,

Sweden), according to the manufacturer’s instructions.

MTHFR C677CT and A1298C variants were genotyped using

fluorescence quantitative polymerase chain reaction (PCR),

where each reaction system contained Premix Ex Taq (TakaRa,

Japan), TaqMan-MGB probes, deionized water, and genomic

DNA. For MTHFR C677CT, the forward primer sequence was

5
′

-CTCTTCTACCTGAAGAGCAAGTCC-3
′

, and the reverse

primer sequence was 5
′

-CACTCCAGCATCACTCACTTTGT-

3
′

. For MTHFR A1298C, the forward primer sequence was

5
′

-CCGAAGCAGGGAGCTTTG-3
′

, and the reverse primer

sequence was 5
′

-CGGTGCATGCCTTCACAA-3
′

. Reaction

conditions are 95◦C for 3min to activate fluorescent groups,

following by 40 cycles of amplification (95◦C for 20 s, 58◦C for

20 s, 65◦C for 45 s). The endpoint fluorescence was read and

analyzed by a ViiA 7Dx PCR system (Applied Biosystems, USA).

Statistical analysis

First, general characteristics of our participants were

described. Continuous variables were described as mean ±

standard deviation or median (interquartile range). Categorical

data were described by frequencies (%). The difference between

the 3 GWG groups were compared using parametric or non-

parametric methods for continuous or categorical data.

Multivariable logistic models were applied to assess the

relationship between GWG categories and adverse birth

outcomes, among which, pregnant women in sufficient group

of GWG were considered the reference group. The cases

included pregnant women who gave birth to LBW (n = 144),

macrosomia (n = 49), SGA (n = 432), or LGA (n = 149)

babies, and the controls were those who delivered infants

without the above 4 birth outcomes (n = 2,365). We adjusted

for potential covariates in the regression models based on

previous reports or statistical considerations. The change-in-

effect estimate method was applied to select confounders, in

which covariates that changed themain effect estimates by≥10%

were introduced into the models. The inclusion of potential

confounders in the final linear regression models for LBW

and macrosomia was as follows: maternal age (continuous),

education level (less than high school, high school or equivalent,

and college or above), delivery mode (natural labor or cesarean

section), parity (nulliparous or multiparous), gestational age

at delivery (continuous), HDP (no or yes), GDM (no or

yes), and infant sex (boys or girls). With regard to regression

models for SGA and LGA, gestational age at delivery was

not included in the case of co-linearity. To assess whether

different pre-pregnancy BMI categories affect the observed

associations,WorldHealthOrganization (WHO) criteria of BMI

classification were introduced (BMI for underweight, <18.5;

normal weight, 18.5–24.9 kg/m2; overweight, 25.0–29.9 kg/m2;

and obesity, ≥30.0 kg/m2) and the analyses were repeated (17).

Deviation from Hardy–Weinberg expectation (HWE) was

calculated among the control group, and P-value > 0.05

indicated that the two variants were in accordance with HWE.

Co-dominant, dominant, recessive, and additive models were

used to explore the associations between genetic polymorphisms

and adverse birth outcomes. False discovery rate (FDR)

corrections were introduced to adjust the P-values for multiple

corrections. To investigate the potential modification effects

of genetic polymorphisms on the associations between GWG

categories and adverse birth outcomes, study subjects were

divided into non-mutated and mutated groups, considering

the dominating effect of mutated allele as well as for better

statistical power, similar to previous studies (18, 19). The

likelihood ratio test was used to analysis the interaction effect

between GWG categories and genetic polymorphisms on birth

outcomes. Differences in the likelihood scores of the two

models with and without the interaction term of genotypes

and GWG categories were compared. In addition, we further

evaluated the associations of MTHFR polymorphisms and

adverse birth outcomes within the strata of GWG categories.

Generalized additive models were fitted to explore the dose-

response relationship between GWG values and adverse birth

outcomes with spline smoothing function among high-risk

pregnant women withMTHFR A1298C AA genotype.

All analyses were performed using SAS version 9.4 (SAS

Institute, Inc., Cary, NC, USA) and R version 3.3.3 (R

Foundation for Statistical Computing). P-value < 0.05 (two-

tailed) was considered statistically significant.

Results

Study population

Descriptive variables are listed in Table 1. A total of 2,967

mother-infant pairs were selected for analysis. The average of

maternal age was 30.0 ± 3.9 years. For pre-pregnancy BMI,

there were 2014 (67.9%) pregnant women in the normal-

weight group, 585 (19.7%) in the underweight group, 312

(10.5%) in the overweight group, and 56 (1.9%) in the obesity

group. At the time of delivery, the normal-weight group,
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TABLE 1 Basic characteristics of study population according to the IOM guidelines (n = 2,967).

Characteristics Total

(n= 2,967)

Below

(n= 750)

Within

(n= 1,373)

Above

(n= 844)

P-value

Mothers

Maternal age (years) 30.0± 3.9 30.4± 4.1 29.9± 3.8 29.9± 4.1 0.016

Pre-pregnancy BMI (kg/m2) 20.8± 2.8 20.5± 2.5 20.4± 2.6 21.8± 3.1 <0.001

Pre-pregnancy BMI (kg/m2)

Underweight (<18.5) 585 (19.7) 180 (24.0) 319 (23.2) 86 (10.2) <0.001

Normal-weight (18.5–23.9) 2,014 (67.9) 528 (70.4) 933 (68.0) 553 (65.5)

Overweight (24.0–27.9) 312 (10.5) 37 (4.9) 108 (7.9) 167 (19.8)

Obesity (≥28.0) 56 (1.9) 5 (0.7) 13 (0.9) 38 (4.5)

Pregnancy BMI (kg/m2) 26.3± 3.1 24.1± 2.2 25.8± 2.2 29.0± 3.0 <0.001

Pregnancy BMI (kg/m2)

Underweight (<18.5) 2 (0.1) 2 (0.3) 0 (0.0) 0 (0.0) <0.001

Normal-weight (18.5–23.9) 670 (22.6) 372 (49.6) 288 (21.0) 10 (1.2)

Overweight (24.0–27.9) 1,543 (52.0) 353 (47.1) 853 (62.1) 337 (39.9)

Obesity (≥28.0) 752 (25.3) 23 (3.1) 232 (16.9) 497 (58.9)

Education level

<High school 149 (5.0) 32 (4.3) 74 (5.4) 43 (5.1) 0.763

High school 405 (13.7) 105 (14.0) 180 (13.1) 120 (14.2)

≥College 2,413 (81.3) 613 (81.7) 1,119 (81.5) 681 (80.7)

Parity

Nulliparous 1,730 (58.3) 432 (57.6) 810 (59.0) 488 (57.8) 0.777

Multiparous 1,237 (41.7) 318 (42.4) 563 (41.0) 356 (42.2)

Delivery mode

Natural labor 1,885 (63.5) 520 (69.3) 905 (65.9) 460 (54.5) <0.001

Cesarean section 1,082 (36.5) 230 (30.7) 468 (34.1) 384 (45.5)

HDP 132 (4.4) 20 (2.7) 52 (3.8) 60 (7.1) <0.001

GDM 461 (15.5) 199 (26.5) 173 (12.6) 89 (10.5) <0.001

Infant

Males 1,531 (51.6) 373 (49.7) 732 (53.3) 426 (50.5) 0.213

Birthweight (g) 3202.5± 427.9 3056.5± 427.3 3199.6± 395.7 3337.0± 435.9 <0.001

Birth length (cm) 49.5± 1.9 49.0± 2.1 49.5± 1.7 49.9± 1.9 <0.001

Gestational week (weeks) 39.2± 1.4 39.0± 1.6 39.3± 1.3 39.5± 1.3 <0.001

Homocysteine 6.19± 1.15 6.19± 1.12 6.23± 1.19 6.13± 1.10 0.170

Data were shown as Mean± SD or n (%); BMI, body mass index; HDP, hypertensive disorders of pregnancy; GDM, gestational diabetes mellitus; P-values for the differences among GWG

categories were estimated using parametric or non-parametric methods, respectively, for continuous or categorical variables.

underweight group, overweight group, and obesity group had

670 (22.6%), 2 (0.1%), 1,543 (52.0%), and 752 (25.3%) pregnant

women, respectively. When grouped according to the IOM

guidelines, there were 1,373 (46.3%) pregnant women with

GWG within the recommended range, 750 (25.3%) below the

recommended range, and 844 (28.4) above the recommended

range. Underweight and normal-weight women were more

likely to have GWGwithin the IOMguidelines, while overweight

and obese women were more likely to have GWG above the

IOM guidelines (Figure 1). Most mothers were nulliparous (n

= 1,730, 58.3%), and the deliver mode of 1,082 (36.5%) women

was cesarean section. The present study reported that none

of the mothers had a history of smoking or drinking during

pregnancy. Additionally, 132 (4.4%) and 461 (15.5%) mothers

were diagnosed with HDP and GDM, respectively, in this

population. There were 51.6% (n = 1,531) boys and 48.4% (n

= 1,436) girls among the infants. The mean weight, length, and

gestational age at birth were 3202.5± 427.9 g, 49.5± 1.9 cm, and

39.2± 1.4 weeks, respectively.

GWG categories in relation to adverse
birth outcomes

In our study population, the prevalence rates were 4.9% (n

= 144), 1.7% (n = 49), 14.6% (n = 432), and 5.0% (n= 149)
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for LBW, macrosomia, SGA, and LGA, respectively (Table 2).

According to the IOM criteria, 41.0% LBW cases (n = 59),

30.6% macrosomia cases (n = 15), 46.1% SGA cases (n =

199), and 30.2% LGA cases (n = 45) were included in the

sufficient group for GWG, while the insufficient group consisted

of 43.1% LBW cases (n= 62), no macrosomia cases, 36.3% SGA

cases (n= 157), and 8.7% LGA cases (n = 13). After adjusting

for potential confounders, women who had GWG below IOM

guideline were more likely to have SGA [adjusted odds ratio

(OR) = 1.68, 95% confidence interval (CI): 1.32–2.13] and less

likely to have LGA (adjusted OR = 0.51, 95% CI: 0.27–0.96)

than those who had GWG within IOM. There were 16.0% LBW

cases (n = 23), 69.4% macrosomia cases (n = 34), 17.6% SGA

cases (n = 76), and 61.1% LGA cases (n = 91) were included

in the excessive group for GWG. Compared to those in the

sufficient group, pregnant women with GWG above the IOM

recommended range had decreased odds of SGA (adjustedOR=

0.60, 95%CI: 0.45–0.79). In addition, higher risks ofmacrosomia

FIGURE 1

Percentage of pregnant women in each BMI category by IOM

GWG guidelines. Pre-pregnancy BMI were categorized

according to Chinese BMI classification (underweight, <18.5

kg/m2; normal weight, 18.5–23.9 kg/m2; overweight, 24.0–27.9

kg/m2; and obesity, ≥28.0 kg/m2).

(adjusted OR= 3.47, 95% CI: 1.86–6.48) and LGA (adjusted OR

= 3.25, 95% CI: 2.23–4.74) were also observed among pregnant

women in the excessive group. Different pre-pregnancy BMI

categories, according to WHO standards, were introduced to

assess the robustness of our results.

MTHFR polymorphisms in relation to
adverse birth outcomes

The minor allele frequency was 23.3% for MTHFR A1298C

and 28.3% for MTHFR C677T in the control group, and all

polymorphisms were consistent with HWE (P for HWE= 0.266

for A1298C and P for HWE = 0.065 for C677T). Dominant,

recessive, and additivemodels were used to assess the association

between MTHFR polymorphism and the 4 birth outcomes

(Supplementary Tables S1, S2). According to the results from

crude and adjusted regression models, no significant association

was observed between MTHFR A1298C and C677T in relation

to LBW, macrosomia, SGA and LGA (all P > 0.05).

Modification e�ects of MTHFR

polymorphisms on the association of
GWG with adverse birth outcomes

Modification effects of MTHFR polymorphisms on the

association between GWG categories and birth outcomes

were explored by dividing the study population according to

various genotypes of MTHFR A1298C and C677T. As for the

A1298C polymorphisms, although no interaction effect was

suggested (P for interaction > 0.05), obvious differences were

suggested between genotypes (see Table 3). Increased risks of

LBW (adjusted OR = 2.10, 95% CI: 1.08–4.10) and SGA

(adjusted OR = 1.95, 95% CI: 1.43–2.65) were only observed

among women with the A1298C AA genotype and GWG

below IOM guideline, while no significant association was

found among women with the A1298C AC+CC genotype.

Similarly, a higher risk of macrosomia was only observed

TABLE 2 Associations between adverse birth outcomes and GWG categories according to IOM guidelines.

Adverse birth outcomes Case/control Adjusted ORs and 95% CIs

Below Within Above Below vs. within Above vs. within

LBWa 62/566 59/1,123 23/676 1.44 (0.87–2.39) 0.54 (0.29–1.01)

Macrosomiaa 0/566 15/1,123 34/676 NA 3.47 (1.86–6.48)*

SGAb 157/566 199/1,123 76/676 1.68 (1.32–2.13)* 0.60 (0.45–0.79)*

LGAb 13/566 45/1,123 91/676 0.51 (0.27–0.96)* 3.25 (2.23–4.74)*

aThe models were adjusted for education, maternal age, parity, gestational age at delivery, delivery mode, infant sex, HDP, GDM, and homocysteine.
bThe models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP, GDM, and homocysteine.
*P < 0.05; NA, non-available.
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TABLE 3 Associations of GWG categories and adverse birth outcomes stratified byMTHFR A1298C polymorphisms.

Adverse birth outcomes Case/control Adjust OR (95% CI) P for interactionc

Below Within Above Below vs. within Above vs. within

LBWa

AA 43/326 34/677 13/401 2.10 (1.08–4.10)* 0.55 (0.24–1.25) 0.560

AC+CC 19/240 25/446 10/275 0.80 (0.33–1.96) 0.55 (0.21–1.44)

Macrosomiaa

AA 0/326 9/677 25/401 NA 4.19 (1.89–9.29)* 0.331

AC+CC 0/240 6/446 9/275 NA 2.37 (0.80–6.99)

SGAb

AA 102/326 113/677 42/401 1.95 (1.43–2.65)* 0.60 (0.41–0.87)* 0.635

AC+CC 55/240 86/446 34/275 1.37 (0.93–2.02) 0.57 (0.37–0.88)*

LGAb

AA 6/326 27/677 60/401 0.41 (0.17–1.03) 3.49 (2.15–5.67)* 0.615

AC+CC 7/240 18/446 31/275 0.65 (0.26–1.60) 2.78 (1.51–5.12)*

aThe models were adjusted for education, maternal age, parity, gestational age at delivery, delivery mode, infant sex, HDP, GDM, and homocysteine.
bThe models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP, GDM, and homocysteine.
cP for interaction was assessed by likelihood ratio test.
*P < 0.05; NA, non-available.

TABLE 4 Associations of GWG categories and adverse birth outcomes stratified byMTHFR C677T polymorphisms.

Adverse birth outcomes Case/control Adjust OR (95% CI) P for interactionc

Below Within Above Below vs. within Above vs. within

LBWa

CC 31/298 36/592 13/350 1.01 (0.49–2.05) 0.60 (0.27–1.33) 0.928

CT+TT 31/269 23/531 10/326 2.26 (0.99–5.00) 0.46 (0.16–1.29)

Macrosomiaa

CC 0/298 9/592 18/350 NA 3.32 (1.44–7.68)* 0.600

CT+TT 0/268 6/531 16/326 NA 4.39 (1.63–11.82)*

SGAb

CC 80/298 109/592 41/350 1.54 (1.11–2.15)* 0.58 (0.39–0.85)* 0.894

CT+TT 77/268 90/531 35/326 1.86 (1.31–2.64)* 0.62 (0.41–0.95)*

LGAb

CC 5/298 20/592 46/350 0.44 (0.16–1.20) 3.90 (2.25–6.77)* 0.380

CT+TT 8/268 25/531 45/326 0.60 (0.26–1.38) 2.81 (1.67–4.75)*

aThe models were adjusted for education, maternal age, parity, gestational age at delivery, delivery mode, infant sex, HDP, GDM, and homocysteine.
bThe models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP, GDM, and homocysteine.
cP for interaction was assessed by likelihood ratio test.
*P < 0.05; NA, non-available.

in women with higher GWG and A1298C AA genotype

(adjusted OR = 4.19, 95% CI: 1.89–9.29). With regard to

the decreased odds of LGA in women with insufficient

GWG, no significant association was observed when the

population was stratified by the A1298C and C677T genotypes

(see Table 4). When the population was stratified by IOM

GWG categories, we found pregnant women with insufficient

GWG and A1298C AA genotype had an increased risk of

3.96 (95% CI: 1.57–10.01) for LBW, compared with the

AA+AC group, while no significant association of C677T

polymorphism was observed (Table 5, Supplementary Table S3).

Dose-response relationship between GWG values and 4 adverse

birth outcomes with spline smoothing function among pregnant

women with MTHFR A1298C AA genotype was shown in

Supplementary Figure S2. A negative correlation of GWG was

suggested in relation to LBW and SGA, while a positive

correlation of GWG was indicated in relation to macrosomia

and LGA.
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TABLE 5 Associations ofMTHFR A1298C polymorphisms and adverse birth outcomes stratified by IOM GWG categories.

Adverse birth outcomes A1298C AC+CC genotype A1298C AA genotype

Case/control OR (95% CI) Case/control OR (95% CI)

LBWa

Insufficient group 43/326 1.00 (Reference) 19/240 3.96 (1.57–10.01)*

Sufficient group 34/677 1.00 (Reference) 25/446 0.93 (0.47–1.83)

Excessive group 13/401 1.00 (Reference) 10/275 0.78 (0.25–2.43)

Macrosomiaa

Insufficient group 0/326 1.00 (Reference) 0/240 NA

Sufficient group 9/677 1.00 (Reference) 6/446 1.07 (0.37–3.11)

Excessive group 25/401 1.00 (Reference) 9/275 1.79 (0.79–4.05)

SGAb

Insufficient group 102/326 1.00 (Reference) 55/240 1.35 (0.92–1.97)

Sufficient group 113/677 1.00 (Reference) 86/446 0.90 (0.66–1.23)

Excessive group 42/401 1.00 (Reference) 34/275 0.84 (0.51–1.37)

LGAb

Insufficient group 6/326 1.00 (Reference) 7/240 0.69 (0.22–2.14)

Sufficient group 27/677 1.00 (Reference) 18/446 1.02 (0.55–1.89)

Excessive group 60/401 1.00 (Reference) 31/275 1.30 (0.81–2.08)

aThe models were adjusted for education, maternal age, parity, gestational age at delivery, delivery mode, infant sex, HDP, GDM, and homocysteine.
bThe models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP, GDM, and homocysteine.
*P < 0.05; NA, non-available.

Sensitivity analyses

To assess the robustness of our results, sensitivity analyses

were performed by repeating the analyses according to WHO

criteria of BMI classifications. The obtained results were

similar to the main analyses, and did not drastically change

(Supplementary Tables S4–S7, Supplementary Figure S1).

Discussion

The prevalence of underweight, overweight and obesity for

Chinese women before pregnancy in the present study were

19.7, 10.5, and 1.9%, respectively. Excessive GWG accounted for

28.4% of the participants based on the IOM standards, and the

proportion was 25.3% for insufficient GWG. Compared to those

with normal GWG, pregnant women with insufficient GWG

were more likely to give birth to SGA and less likely to give birth

to LGA babies, whereas pregnant women with excessive GWG

had decreased odds of SGA. Pregnant women in the excessive

group had a higher risk of macrosomia and LGA. Interestingly,

significant associations of GWG categories in relation to LBW,

macrosomia and SGA were only suggested among pregnant

women with the MTHFR A1298C AA genotype. Among

pregnant women with insufficient GWG group, an elevation in

the risk of LBW was observed among subjects with the A1298C

AA genotype compared to the AC+CC genotype group.

Accumulating evidence has suggested that Chinese people

are likely to have higher percentages of body fat (20, 21) and

higher rates of hypertension, type 2 diabetes, and dyslipidemia

than Caucasian people at specific BMI values (22). TheWorking

Group on obesity in China recommended BMI cutoffs of 24.0

kg/m² to define overweight and 28.0 kg/m² to define obesity

(15), supported by evidence from the China Kadoorie Biobank

(23, 24). In the present study, 12.4% women were overweight

and obesity before pregnancy on the basis of Chinese standards,

compared to 8.0% according to WHO criteria. The distributions

were comparable with those of previous studies in Chinese

women of reproductive age (25, 26), but lower than those

in the USA (27) and several European countries (UK, Spain,

Belgium, etc.) (28). Our findings did not support the evidence

that Chinese BMI standards establish better sensitivity and

specificity for identifying adverse birth outcomes than theWHO

criteria because the direction and the strength of the obtained

associations were similar according to these two standards. This

is because of the analogous distributions in the GWG categories.

In our study, 25.3 and 28.4% of the women showed insufficient

and excessive GWG according to Chinese BMI standards, and

the proportions were 26.6 and 26.7% with regard to WHO

criteria. The GWG categories in the present study were different

from other Chinese studies (15.2% < recommended range and

52.1% > recommended range) (26) and the US population

(21.2% < recommended range and 51.0% > recommended

range) (27).
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GWG is mainly attributed to maternal fat accumulation,

fluid expansion, and fetal, placental, and uterine development,

which can partly reflect maternal nutrition and fetal

development. It is reported that GWG is closely related to

a majority of neonatal risks including fetal growth restriction,

premature birth, GDM, HDP, and infant mortality, as well as

with long-term offspring metabolic health outcomes (29). In

the present study, excessive GWG was found to increase the

OR for macrosomia and LGA, and decreased the OR for SGA,

consistent with the previous studies. For instance, Gou et al.

explored the associations of GWG categories with adverse

birth weight in a Chinese population of pregnant women with

GDM (n = 1,523) and demonstrated that excessive GWG could

significantly increase a 2.20- and 2.06-fold risk, respectively,

for macrosomia and LGA, and decrease the risk of SGA by

51.0% (30). Zhao et al. analyzed the data from 1,617 pregnant

women and concluded that excessive GWG was associated

with macrosomia and LGA, but no significant association

was observed between excessive GWG and SGA risk (26).

In addition, our study suggested that pregnant women with

inadequate GWG had a higher frequency of SGA (adjusted

OR = 1.68, 95% CI: 1.32–2.13) and a lower rate of LGA

(adjusted OR = 0.51, 95% CI: 0.27–0.96). Similar conclusions

were also reported in studies conducted in China (26), Japan

(31), and Norway (32). Our conclusions were supported by a

meta-analysis that included more than 1 million pregnancies.

Excessive GWG was related to a lower risk of SGA (OR =

0.66), and higher risks of LGA (OR = 1.85) and macrosomia

(OR = 1.95), while insufficient GWG was correlated with a

higher risk of SGA (OR = 1.53) and a lower risk of LGA (OR =

0.59) (33). Similar to our findings, the relationship between the

GWG categories and LBW risk was not statistically significant

in this meta-analysis. However, Zhao et al. (26) and Hung et

al. (34) reported that insufficient GWG increased the LBW

risk. Considering the crucial role of the gestational week on

fetal growth, SGA and LGA are thought to be more valuable

outcomes compared to LBW and macrosomia, calculated by

crude birthweight.

MTHFR is a crucial enzyme that catalyzes the conversion

of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate,

an important enzymatic process in folate metabolism and the

remethylation of homocysteine to methionine. Two common

single nucleotide polymorphisms, C677T and A1298C, are

known to affect the enzyme function and homocysteine

metabolism and have shown potential clinical significance.

C677T causes an alanine to valine substitution, resulting in

the thermolability of MTHFR. The specific enzyme activity

in C677T homozygous mutated subjects decreased to 30%

compared to that in heterozygous subjects (∼65%) and

non-mutated controls (100%) (35). Similarly, the A1298C

polymorphism encodes glutamate to alanine substitution,

leading to a decrease in enzyme activity to a lesser extent

(36). Increased plasma homocysteine levels have been associated

with the C677T polymorphism alone and in combination with

the A1298C mutation (37, 38). In addition to maintaining a

normal range of folate and homocysteine levels, the MTHFR

enzyme is important in many biological reactions, including

DNA synthesis, cell growth, implantation and invasion of

the embryo, especially in fetal growth during pregnancy (39).

Recent observations have indicated that MTHFR variants are

independent risk factors for adverse birth outcomes. For

instance, Tiwari et al. in an Indian population found that

pregnant women with MTHFR C677T mutated subjects have

an increased risk for preterm delivery, negative pregnancy

outcomes, and LBW (40). Mo et al. conducted a study on two

Chinese populations, indicating that the frequency of MTHFR

A1298C CC genotype was significantly different between a

group with adverse birth outcomes and healthy controls (41).

However, other studies had reported contrary conclusions

(42, 43), consistent with our findings. The present study

suggested null associations between MTHFR polymorphisms

and adverse birth outcomes, neither in crude models nor fully

adjusted models. The inconsistent conclusions could be ascribed

to the relatively low-frequency distribution of homozygous

mutation of MTHFR C677T and A1298C and the small

sample size in our study. In addition, this might be due to

the small difference of homocysteine levels across genotypes.

In our study, homocysteine concentrations among MTHFR

C677T homozygous mutated subjects were comparable with

heterozygous subjects (TT: 6.31 ± 1.23 µmol/L vs. CT: 6.32

± 1.19 µmol/L), slightly higher than non-mutated participants

(CC: 6.07 ± 1.10 µmol/L) (P < 0.001). With regard to A1298C

mutation, consistent with a previous study (37), no significant

elevation in homocysteine concentrations was observed, even

for homozygous mutant subjects (CC: 6.10 ± 0.95 µmol/L vs.

AC: 6.18± 1.20µmol/L vs. AA: 6.20± 1.14µmol/L, P= 0.559).

Homocysteine is crucial for the transfer of methyl groups

in the activated methyl cycle. Genetic and animal studies had

provided clues that homocysteine might regulate the expression

of genes involved in body fat storage and lipid metabolisms

via epigenetic mechanisms (13, 14). Recent evidence from

human studies has indicated a potential relationship between

MTHFR polymorphisms and obesity/overweight. According

to the results of a meta-analysis of 38,317 participants,

a strong relationship was suggested between homocysteine

concentrations and obesity via the effect of MTHFR C677T

polymorphism (TT vs. CC: OR= 1.13, 95% CI= 1.03–1.24) (8).

Renzo et al. conducted a dietary study in an Italy population,

and observed that participants with C677T CT or TT genotype

had higher body weight, BMI, waist, abdomen, hip, waist/hip,

fat and lean at baseline, and the ratio of total body lean to

total body fat was significantly lower in mutated genotype

group after dietary intervention (12). Furthermore, a genetic

study by Terruzzi et al. suggested that DNA hypomethylation

owing to the lower efficiency of polymorphic MTHFR enzymes

could regulate the proliferation and differentiation of myoblasts,
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promoting muscle growth and increasing muscle mass (44).

Considering the alteration effect of MTHFR polymorphisms on

fat storage and lipid metabolisms, we hypothesized thatMTHFR

polymorphisms possess a potential modification effect on the

association between GWG and adverse birth outcomes.

Surprisingly, according to our results, it was A1298C, not

the C677T polymorphism, which showed modification effect

on the association between GWG categories and adverse birth

outcomes, as A1298C does not result in either a thermolabile

protein or severely change homocysteine levels in the blood.

Significant associations of insufficient GWG in relation to LBW

and SGA and excessive GWG in relation to macrosomia were

merely observed among pregnant women with A1298C AA

genotype. These findings were further supported by the results

of the subgroup analysis by the GWG category. Among pregnant

women with insufficient GWG, an increased risk of LBW was

suggested for A1298C non-mutated women compared to the

mutated group, although null associations were indicated for

SGA and macrosomia. It could be interpreted that A1298C non-

mutated pregnant womenweremore susceptible to adverse birth

outcomes than the mutant participants. Relevant functional

studies on the A1298C polymorphism are scarce. The risk

effect of the A1298C non-mutated genotype may be ascribed

to the influence of the C677T polymorphisms. The MTHFR

A1298C and C677T polymorphisms show a high degree of

linkage disequilibrium (45). According to our data, there were,

respectively, 43.2% C677T CT and 15.1% TT genotypes among

A1298C AA subjects; and the percentages were 36.9 and

0.6% among A1298C AC subjects and 2.2 and 0.0% among

A1298C CC subjects. A1298C non-mutated pregnant women

were more likely to be homozygous or heterozygous mutant

for the C677T polymorphism. Thus, A1298C non-mutated

pregnant women might be at risk of the harmful effect of

C677T mutated polymorphism, which has been reported to be

related to a variety of adverse birth outcomes. However, in

the present study, neither a direct effect nor a modification

effect of the C677T polymorphism was indicated according

to our analysis. Therefore, the above speculation should be

further verified in human studies, along with the functional

effect of the A1298C polymorphism. Our findings were similar

to those of a previous cohort study (n = 2,034) by Said

et al., who observed a significant reduction in the risk of

severe fetal growth restriction among nulliparous women

with the MTHFR A1298C homozygous polymorphism (46).

In contrast, Chedraui et al. found that A1298C homozygous

polymorphism was correlated with higher neck and mid-arm

circumference and a higher risk of preeclampsia, which might

affect birth outcomes (47). However, it should be noted that

our findings may be due to chance regarding the relatively

small sample size when stratified by genotypes. Further studies

conducted in larger populations are required to confirm

our conclusions.

Our work has several strengths. A total of 2,967 pregnant

women in a Chinese population were included, and the

potential association between GWG categories and adverse birth

outcomes were explored by adjusting for major confounders.

We assessed whether the Chinese BMI standards establish

better sensitivity and specificity for identifying adverse birth

outcomes than the WHO criteria in a Chinese population. In

addition, we investigated, for the first time, whether MTHFR

polymorphism modify the effect of maternal GWG categories

on adverse birth outcomes. However, this study had several

limitations. First, as our research had a retrospective design,

we could not judge the causality of the observed associations.

Therefore, future prospective studies are required. Second, self-

reported maternal pre-pregnancy BMI was applied to calculate

GWG, raising possible measurement misclassifications. Third,

potential confounders such as diet, physical activity, and other

genetic factors were not controlled in our analysis models,

which might have affected the reliability of our results. In

addition, effects of other SNPs in gene MTHFR, especially

for those SNPs in 3
′

or 5
′

near gene, promoter, untranslated

regions and exons, had not been studied, which might also

influence the study associations. Future studies should focus the

modification effects of more variants in gene MTHFR. Finally,

all subjects were from Han population, and most of them had

a high education level (81.3% of college or above). Therefore,

the generalizability of our findings to other populations might

be limited.

Conclusion

In summary, our research provides evidence of a potential

association between GWG categories, MTHFR polymorphisms,

and adverse birth outcomes. Women with insufficient GWG

had a significantly increased risk of SGA and decreased

risk of LGA. Pregnant women with excessive GWG were

less likely to give birth to SGA infants and had higher

risks of macrosomia and LGA. In addition, a modification

effect of the A1298C polymorphism has been suggested.

The A1298C non-mutated genotype is considered a risk

factor for adverse birth outcome among pregnant women

with insufficient GWG. Our findings contribute to a better

understanding of the health effects of GWG and MTHFR

polymorphisms on birth outcomes. However, further

prospective studies with larger sample size are required to

confirm these findings.
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