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Abstract

Background: Adhesion dependent mechanisms are increasingly recognized to be important for a wide range of
biological processes, diseases and therapeutics. This has led to a rising demand of pharmaceutical modulators.
However, most currently available adhesion assays are time consuming and/or lack sensitivity and reproducibility or
depend on specialized and expensive equipment often only available at screening facilities. Thus, rapid and
economical high-content screening approaches are urgently needed.

Results: We established a fully open source high-content screening method for identifying modulators of adhesion.
We successfully used this method to detect small molecules that are able to influence cell adhesion and cell
spreading of Swiss-3T3 fibroblasts in general and/or specifically counteract Nogo-A-A20-induced inhibition of
adhesion and cell spreading. The tricyclic anti-depressant clomipramine hydrochloride was shown to not only inhibit
Nogo-A-A20-induced cell spreading inhibition in 3T3 fibroblasts but also to promote growth and counteract neurite
outgrowth inhibition in highly purified primary neurons isolated from rat cerebellum.

Conclusions: We have developed and validated a high content screening approach that can be used in any
ordinarily equipped cell biology laboratory employing exclusively freely available open-source software in order to find
novel modulators of adhesion and cell spreading. The versatility and adjustability of the whole screening method will
enable not only centers specialized in high-throughput screens but most importantly also labs not routinely employing
screens in their daily work routine to investigate the effects of a wide range of different compounds or siRNAs on
adhesion and adhesion-modulating molecules.
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Introduction

Cell adhesion is known to play a major role in a wide number
of processes during development and adulthood, ranging from
tissue formation and homeostasis up to regenerative events
such as wound closure and inflammatory cell infiltration after
injury. Likewise a growing number of diseases such as cancer
or chronic inflammation but also of therapeutic interventions
such as stem cell transplantations has been identified to rely on
adhesion-based events such as migration.

Even though cell-substrate adhesion modulating proteins are
classically described to be important for cell migration it
becomes increasingly apparent that these molecules can have
a wide range of additional functions [1-3]. Vice versa,
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numerous proteins identified earlier as being involved in
adhesion- or migration-unrelated cellular events are
increasingly being recognized to also modulate cell attachment,
spreading or migratory behavior of cells [4-6]. This principle is
nicely demonstrated by the membrane protein Nogo-A which —
next to its well established role as a neurite outgrowth inhibitor
and repressor of synaptic plasticity [7] — plays a crucial role for
adhesion, cell motility and migration in vitro as well as in vivo.
While an increase in motility and migration was detected upon
treatment of cells with anti-Nogo-A antibodies as well as in
cells from Nogo-A null mice [8], Nogo-A was also shown to
promote tangential migration of early-born interneurons from
the medial ganglionic eminence [9] and to support neuroblast
progression along the rostral migratory stream [10]. Just
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recently the functional A20-domain of Nogo-A was also
demonstrated to inhibit cell spreading, adhesion and migration
of mouse vascular endothelial cells in vitro [11]. Furthermore
Nogo-A was hypothesized to play a role in cerebellar granule
cell migration during early postnatal layering of the cerebellar
cortex [12].

The importance of adhesion dependent mechanisms in
biological processes, diseases and for therapeutics has led to a
rising demand of pharmaceutical modulators. However,
adhesion is complex; the protein interaction network enabling
cell — substrate interactions via integrins and the actin
cytoskeleton has been suggested to comprise 180 potential
signaling nodes [13]. In order to detect compounds able to
modulate such a complex network, high throughput methods
are essential. However, high-throughput screening facilities are
not always available to laboratories and are often rather
expensive.

We developed a high content screening approach that can
be used in any cell biology laboratory possessing a fluorescent
microscope equipped with a fast, automated sampling table to
find novel modulators of adhesion and cell spreading. The
method is based exclusively on freely available open-source
software. We utilized this approach to screen a library of 1040
small compounds, most of which are admitted for neurological
indications (NINDS library), for their effects on adhesion and
cell morphology of fibroblasts. We identified nine compounds
that reduced cell spreading and one compound (Clomipramine)
that counteracted spreading inhibition elicited by Nogo-A's
functional A20-domain. Clomipramine was shown to also
promote neurite outgrowth in primary cultured cerebellar
neurons, suggesting a more general mechanism of action on
cell spreading and neurite outgrowth in two different cell types.

Results and Discussion

Screening Assay Design

To study the effects of a library of chemical compounds on
cell adhesion we developed a low-cost screening approach
using only freely available software and equipment available in
most biological laboratories.

Figure 1 depicts the major steps of the screen: First, 96-well
plates were coated with the desired substrates/proteins
overnight at 4°C. On the next day, compound stocks were
diluted and transferred to the 96-well plates. 3T3 fibroblasts
were added to the wells and incubated at 37°C (Fig.1A). After
one hour cells were fixed with paraformaldehyde and stained
with fluorescently labeled Phalloidin (F-actin marker) as well as
DAPI (nuclear marker) (Fig.1B; Fig.2C-E). All plates were
imaged using an imageXpress Micro HCS MD1 inverted
epifluorescent microscope. 24 images were acquired per well
and channel using the 10x objective. To ensure an even
distribution of the cells we decided to follow an imaging layout
as depicted in Figure 1C. Only images that were neither in the
center nor close to the border of the well were acquired. Next,
all images were renamed in an automated batch process
(“ReNamer” freeware) to incorporate well-specific meta-tags
such as coating condition, plate number or well position (Fig.
1D). Using a custom developed processing pipeline within the
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CellProfiler software package, cell bodies and cell nuclei
were detected, measured for features such as ‘cytoplasm area’
(total cell size minus nuclear area) or cell shape and stored in a
database with its corresponding meta-tags (Figure 1E; Figure
3). While a first visualization of the raw data can be obtained in
CellAnalyst, this software package was mainly used to
implement machine learning algorithms into the processing
pipeline to discriminate spread from unspread cells (Figure 1F;
Figure 3). The data from both CellProfiler as well as
CellAnalyst were then fed into KNIME. Within this software
package we designed a complex data analysis pipeline that
automatically imports, normalizes and visualizes the data
(Figure 1G; Figure S3). Furthermore it provides a visual output
of the data and allows for hit selection of effective compounds.
Cell spreading is analyzed. A detailed description of the data
normalization and hit selection procedure can be found below
(Figure 4). In a final step of this pipeline, all sorted and
normalized data, as well as hit lists are exported to comma-
separated value (*.csv) files that can be imported into a
spreadsheet software of one’s choice or directly plotted in
statistical software such as GraphPad PRISM. All hits were
validated in follow up experiments with 6 instead of 3
replicates. Successful candidates of interest were finally tested
in dose response assays to check for concentrations of highest
functional activity as well as possible toxicity effects at higher
doses (Figure 1TH).

Assay Optimization and Validation

In order to ensure robustness of the assay we tested for
different 3T3 cell lines, numbers of cells, numbers of replicates,
fixation times as well as for DMSO toxicity and an optimized
staining protocol. We furthermore tested the assay using both
positive and negative controls for cell spreading (Figure 2,
Table 7). While in general any cell type can be used with this
protocol to study cell spreading, we were especially interested
in 3T3 fibroblasts. Established in 1962 by Todaro and Green
[14] the 3T3 cell line has rapidly become a standard fibroblast
cell line in research. In the field of axonal regeneration it has
played an important role in understanding the basic signaling
mechanisms of the neurite outgrowth-inhibiting myelin protein
Nogo-A. If incubated with the Nogo-A-A20 fragment, spreading
and adhesion of 3T3 cells as well as neurons was reduced
significantly (Figure 2A,C,D) [15]. Interestingly, in contrast to
the Nogo-66 domain of Nogo-A, Nogo-A-A20 seems to signal
independently of the Nogo receptor 1 (NgR1) since NgR1 is not
expressed in 3T3 fibroblasts [15].

We first optimized the cell type for our spreading assay by
comparing Swiss 3T3 cells to a second frequently used line,
NIH-3T3 cells. While the latter cell type is easier to transfect,
cell size after plating for 1 hour is about 25% smaller for
NIH-3T3 as compared to Swiss 3T3 cells. Furthermore,
responsiveness to anti-adhesive Nogo-A-A20 protein of NIH
3T3 in comparison to Swiss 3T3 cells was about 4-fold lower in
NIH-3T3 than in Swiss 3T3 (Figure 2A). To increase the
possible range of spreading-modulation and to reduce the
amount of Nogo-A-A20 peptide needed, we decided to use
Swiss 3T3 cells for our experiments. Figure 2C shows a
representative picture of Swiss 3T3 cells plated on plastic (ctrl)
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Figure 1. High Content Screen (HCS) for cell spreading of 3T3 fibroblasts. The major steps of the screen are illustrated: (A)
Swiss 3T3 cells are incubated with different compounds in 96-well plates on two different substrates (yellow/red). Each column
contains the same compound. The outer wells are left empty. (B) After 1h incubation at 37°C/5% CO,, cells are fixed with 4%
paraformaldehyde in isotonic phosphate buffer and stained with DAPI (nuclei) and Phalloidin (F-actin). (C) 24 images are acquired
per channel from each well using the 10x objective. No images are taken in the center or at the border of the well. (D) Image file
names are being padded with meta-tags containing location and treatment information. (E) Using a custom developed software
pipeline in Cell Profiler, cell bodies and cell nuclei are automatically detected. Phenotypic features are extracted and stored in an
SQLite database, annotated with its corresponding meta-tags and linked to its compressed image files. (F) The SQLite database
can be imported into Cell Analyst. Machine learning algorithms can be used to detect the most prominent cell features that are
changed in a certain condition. Furthermore, it allows for an automated categorization of cells by their phenotypes (e.g. spread vs.
unspread cells). (G) A data analysis pipeline was constructed in KNIME to automatically import, normalize and visualize the data.
Scatter plots/matrices allow for outlier removals and hit selections. Pivot tables of normalized data / hit lists are generated and
exported into .csv files for direct import into statistical analysis software. (H) All hits were validated in dose-response assays with 6
instead of 3 replicates.

doi: 10.1371/journal.pone.0078212.g001
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Figure 2. Assay optimization and validation. To ensure assay reliability different cell culture conditions were tested: (A) Cell
type. Graph shows cell area after one hour of cell spreading on control vs. Nogo-A-A20 substrate for two different 3T3 fibroblast
lines (red dotted lines mark IC;, of Nogo-A-A20). (B) Positive control. ROCK inhibitor (Y-27632) dose-response curve for 3T3 cell
spreading on control (plastic) vs. Nogo-A-A20 substrate (10 pmol/cm?). (C/ID/E) Representative pictures of cells incubated with
either 0.1% DMSO (ctrl), 10 pmol/cm? Nogo-A-A20 (inhibitory substrate) or 5uM Y-27632 (positive control). (F/G) Cell Number. The
amount of imaged, well separated cells (cells without contact to neighboring cells) per total cells plated is shown in (F) while the
number of cells characterized as spread per total cells plated is shown in (G). (H) DMSO toxicity. A dose-response curve for
increasing DMSO concentrations on cell size (cytoplasm area) is plotted. All experiments were performed at least in triplicate (n=3).
For all graphs: standard errors of the means are shown. Statistical analysis was performed in GraphPad Prism 6 using an ordinary
One-Way ANOVA test followed by a Tukey multiple comparison test or by using an unpaired Student’s t-test; p-values: ns>0.05;
*<0.05, **<0.005, ***<0.0005, ****<0.00005 .

doi: 10.1371/journal.pone.0078212.g002
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Figure 3. Data acquisition and feature extraction. A “High Content Screening” data acquisition pipeline was developed using
the Cell Profiler software package: (A) Primary object recognition. DAPI stained cell nuclei (I) are detected and classified as
primary objects (ll). Nuclei touching the border, as well as nuclei outside the typical diameter range are excluded from the analysis
(IN. (B) Secondary and tertiary object recognition. Cell borders are detected in the Phalloidin channel (l) through a propagation
function, that uses the DAPI nuclei (primary objects) as seeds to propagate outwards to the region of highest intensity (cell border).
Again, cells touching the border of the image are excluded from analysis (ll). Tertiary objects (cytoplasm) are generated by
subtracting primary from secondary objects (lll). (C) Neighbor analysis and filtering of separated cells. The amount of cell-cell
interactions is measured by analyzing each cell’s fraction of membrane in contact with other cells (l) as well as the number of
contacting neighbors (Il). A filter is applied to extract all “separated cells” (no contact with other cells) (lll). (D) Feature extraction and
machine learning. All separated cells are subjected to a multi-parameter feature extraction. The information as well as compressed
images of all channels is stored in an SQLite library and imported into Cell Analyst. Here, machine learning algorithms are
generated to automatically discriminate spread (S) from unspread (U) cells. Thereby, the algorithms are built on a subset of cells
that are categorized manually. The plot displays the typical cross-validation accuracy of a 3-class classifier (using 20 rules) applied
to such a subset. - Magnification: Calibration bars in A(l) are applicable to all images of A-C and correspond to 50um.

doi: 10.1371/journal.pone.0078212.g003

and Nogo-A-A20 substrate. Cells show a greatly reduced The small, soluble GTPase RHOA is known to mediate the
spreading phenotype characterized by reduced cytoplasm- inhibitory effects of Nogo-A on neurite outgrowth and cell
areas and cell rounding. spreading [7,16]. The rho-associated protein kinase (ROCK)
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Figure 4. Data normalization and hit selection. A data analysis pipeline was developed using the KNIME software package. The
steps of data normalization and hit selection are shown: (A) Data normalization using virtual row shuffling. A schematic
representation of the data normalization procedure is shown for the three lower and upper plates of each experimental stack (9
plates total). First, a percentage of control (POC) normalization is used to normalize each plate to its corresponding DSMO control
on ctrl substrate (1). Next, a virtual row shuffling algorithm is applied to allow for median averaging (B-Scoring): Hereby, rows are
virtually being “shuffled” with corresponding rows from other plates of the experiment. It is made sure, that each row's position on a
virtual plate corresponds to its position on the original plate. Furthermore, only rows from plates in comparable stack positions are
being mixed to prevent stack position effects to influence normalization (2). Finally, normalized data are reverse-shuffled to their
original layout and subjected to hit selection (3). (B-D) Representative heatmaps (cytoplasm areas, increasing from green via black
to red) are shown for raw data (B), POC normalized data (C) and B-Score normalized data (D). (E) Hit Selection. Hits are selected
manually from scatter matrices generated in KNIME. Any compound, selected as hit in either plot is being marked yellow in all plots
of the scatter matrix. All hits are automatically exported into hit lists for further analysis. Black arrowheads mark positive control
(ROCK inhibitor Y-27632) on ctrl (left) and Nogo-A-A20 substrate (right).

doi: 10.1371/journal.pone.0078212.g004
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Table 1. Assay Optimization.

Optimized Condition

Cell type Swiss-3T3 fibroblasts
Replicate number 3

Cell number 2,500 per well
Fixation time 1h

Nogo-A-A20 coating 10pmol per cm?

DMSO concentration no toxicity effects up to 0.5%
Staining Phalloidin: 1:2000; DAPI: 1:10000

doi: 10.1371/journal.pone.0078212.t001

inhibitor Y-27632 was therefore used as a positive control. It
specifically enhanced cell spreading at low concentrations
(500nM) on inhibitory Nogo-A-A20 substrate, but higher
concentrations also significantly increased spreading on the
control plastic substrate, arguing for a basal activation of the
RHOA-ROCK pathway in spreading 3T3 cells and an increased
activation after stimulation with Nogo-A-A20 as described
before (Figure 2B; [16-18]). We decided to include the ROCK
inhibitor at a concentration of 5uM in the screen to act as a
strong positive control for cell spreading. A representative
picture of this drugs’ effect at this concentration is shown in
Figure 2E. Next, we tested for an optimal number of cells to
plate per well. While 2500 cells per well yielded about 350
separated, individual cells (not touching any neighboring cells)
per 24 images acquired for analysis, increasing numbers led to
only a small increase in separated cells due to the increased
exclusion of cells touching their neighbors (Figure 2F/G). To
ensure enough room for enhanced spreading phenotypes and
to reduce the number of cells needed for the screen, we
decided to plate 2500 cells per well. To test for toxicity effects
of Dimethyl Sulfoxide (DMSO) — the solvent of many compound
stocks —spreading of Swiss 3T3 cells was tested in the
presence of 0.1 up to 2% DMSO. Concentrations of 1% and
above seemed to be toxic (decreased spreading), but 0.1%
and 0.5% DMSO showed no inhibitory effect on cell spreading
(Figure 2H). In the screen we used compounds at a
concentration of 2uM in 0.2% DMSO, as well as compounds at
a concentration of 5uyM in 0.5% DMSO. The high DMSO
concentration was used as a control for reduced spreading; the
screen was thus successfully validated with controls for
enhanced as well as decreased spreading. Finally, the “strictly
standardized mean difference” (SSMD), denoted as 3, was
used for statistical evaluation of the screen’s reliability [19].
With the ROCK inhibitor acting as the positive control and 0.2%
DMSO as the negative control (no change in cell spreading),
SSMD values of B>7 were consistently achieved for changes in
“cytoplasm area” (three separate experiments; plate layout:
Figure 1; assay conditions: Table 7). Following the
interpretation guidelines proposed by [19] an SSMD value
above 7 — even in assays with strong positive controls —
demonstrates an “excellent” assay quality.
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Data Acquisition and Feature Extraction

After the spreading assay had successfully been developed
in a 96 well-plate format, a major challenge remained: the
development of a powerful but flexible data acquisition and
analysis pipeline. To enable use and adaptation for differing
biological questions and laboratories, we decided to build a
pipeline based on the following criteria: 1) software must be
free of costs, 2) software must have a graphical user interface,
3) pipeline must be editable to be adaptable to each laboratory
according to its needs, 4) software has to support the reduction
in pipetting steps through an intelligent data normalization
algorithm.

After careful evaluation we decided to construct the pipeline
within two software packages that allowed us to meet all of the
criteria listed. The Cell Profiler/Analyst software package was
used to construct the data acquisition pipeline, while KNIME
was used to build the data integration, normalization and
analysis pipeline.

Figure 3 highlights the most important steps during data
acquisition. To ensure a consistently working analysis and to
prevent object recognition artifacts we first applied an
illumination correction and a “rescale intensity function”. The
corrected images were then used to detect all nuclei (DAPI
channel) and classify them as primary objects (Figure 3A).
Nuclei touching the border, as well as ‘nuclei’ outside of the
typical diameter (mostly staining artifacts) range were
excluded. Next, we applied an Otsu thresholding algorithm to
the phalloidin-channel images taking into account the minimum
and maximum values in the image and log-transforming the
image before calculating the threshold. In this way,
thresholding is reliably performed independent of the image
area covered by cells. To prevent a misdetection of clumped
cells as single cells, we furthermore installed a propagation
function, that uses the DAPI nuclei (primary objects) to detect
cell borders by propagating outwards to the region of highest
intensity (Figure 3B). Again, cells touching the border of the
image were excluded from the analysis. By subtracting the
primary (areas of nuclei) from the secondary objects (total cell
areas), we generated the tertiary objects (cytoplasm areas) to
be used in the subsequent analysis (Figure 3B). In this way we
were able to focus on the cytoplasmic area without diluting the
measurements with the nuclear area that is unchanged in both,
the spread and the unspread condition. As a result, differences
between rounded and flattened cells were increased enabling
us to resolve smaller changes. In a next step we made sure
that only single cells were being used for analysis, since cell
aggregation leads to unpredictable effects on the cells’
phenotypes. For that, a module was implemented to measure
the number of each cells’ neighboring cells (Figure 3C). Also,
the percentages of the cells’ membranes in contact with
neighboring cells were measured. We decided to set a cutoff of
0 for both measurements to ensure analysis of only single
cells. Importantly however, the cutoff may easily be adapted to
ones’ choice. The single or “separated cells” — as we termed
them — were filtered out (Figure 3C) using this cutoff and
subjected to an extensive feature extraction for attributes such
as area, compactness or perimeter length (Figure 3D). Finally,
several export modules were implemented to export all
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measurements to comma separated value (csv) files as well as
a SQLite database. Furthermore, images of all channels as
well as all primary and secondary objects were exported as
compressed Jpeg image files and linked to the database.

Machine Learning: Guided Phenotype Discrimination

We aimed to develop a method that can automatically
perform cellular size or shape change analyses automatically
using machine learning algorithms  for  phenotype
discrimination. Such a process also enables to answer the
question of what features are mainly characterizing a given
phenotype observed.

We used the CellProfiler Analyst software package that is
able to directly access the SQLite database as exported from
the CellProfiler Pipeline.

Using the classifier module, 100 cells were randomly picked
from the experiment and categorized using personal judgment
to be either spread or unspread (Figure 3D). With a maximum
number of 20 rules, the classifier was then trained to
discriminate these two categories based on their features as
extracted in CellProfiler. As expected, the most promising
discriminator for cell spreading was found to be the cytoplasm
area which was used as a direct read out for cell spreading in
the further analysis. Instead of a “digital” yes or no to cell
spreading, the “analog” analysis of cell area allowed the
detection of much smaller changes in cell spreading.
Nevertheless, the data obtained in CellProfiler Analyst was fully
comparable to the one from manual evaluation using light
microscopy.

Furthermore, a phenotypic discrimination using machine
learning algorithms provides another advantage: Instead of
solely analyzing compounds for their effects on cell spreading
(area), it is possible to quickly apply an unbiased morphological
analysis able to detect changes in cell characteristics such as
roundness, compactness, solidity, eccentricity and all other
features extracted in the CellProfiler pipeline (Figure 3D).

Data Normalization

One of the most important determinants for a successful
pharmacological screen is its’ statistical robustness. While
robustness can be enhanced through an increased number of
replicates or a randomized plate layout, a successful screen
needs to balance robustness with work-load and costs. Since
our aim was to develop a screen for lab environments without
access to automated liquid handling stations, a reduction in
manual labor was considered a high priority. We developed a
plate setup that enabled us to use multi-channel pipettes for
almost all steps throughout the protocol, thus reducing manual
labor and error rates through prevention of single-well pipetting
steps.

As demonstrated in supporting Figure S1C and described in
more detail in the method section, the outer rows of all assay
plates were left empty. No cells were plated, but they were
filled with medium and DMSO to ensure a homogeneous
environment for all wells used in the experiment. While cells in
the upper three rows were used for controls (ctrl; 3 replicates),
the lower three rows were coated with the experimental
substrate (Nogo-A-A20 protein; 3 replicates).

PLOS ONE | www.plosone.org
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A multi-channel pipette allowed us to transfer 9 different
compounds + 1 DMSO control directly from the stock plate via
a pre-dilution plate into the final assay plate. (Figure S71)

While this plate setup certainly reduces manual labor it
comes with a trade-off: missing randomization increases the
impact of intra- and inter-plate effects requiring an intensive
normalization.

We decided to implement two normalization steps into the
analysis pipeline by using the KNIME software package. First,
a percentage of control (POC) normalization removed inter-
plate differences by normalizing the data of each plate to the
plate’s corresponding DMSO control on ctrl substrate. Next, we
decided to use median averaging (B-Score) algorithms on each
plate to reduce intra-plate effects (Figure 4B).

The B-Score, analogous to the Z-Score, assumes that most
compounds are inactive and can serve as controls. Compared
to the Z-Score however, it uses an index of dispersion that is
more resistant to the presence of outliers and more robust to
differences in measurement error distributions of the
compounds [20].

While the POC normalization was quickly implemented, B-
Scoring implementation proved to be challenging since the
plate layout contradicts the B-Scorings’ basic assumption of
having only few single wells with “hits” (compounds modulating
spreading). Instead, each hit was present at least three times
on each plate. On top of that, spreading was reduced on half of
the plate due to the Nogo-A-A20 coating.

To nevertheless allow B-Scoring normalization, we
developed the strategy of “virtual row shuffling” using a pipeline
built within KNIME (Figure S3). Figure 4A illustrates the basic
concept of this method: After POC normalization, rows are
being virtually “shuffled” with corresponding rows from other
plates of the experiment. It is made sure, that each row's
position on a virtual plate corresponds to its position on the
original plate. Furthermore, only rows from plates in
comparable stack positions are being mixed to prevent stack
position effects to influence normalization (each experimental
stack consisted of 9 plates in the order of plate 1-9 from bottom
to top).

The resulting virtual plates contain each compound only
once. Also, the same coating is present throughout the whole
plate (Figure 4A). The B-Scoring algorithm can thus be applied
to correct for row and column effects. After successful
implementation of this technique in the analysis pipeline, the
normalized data was shuffled back (‘reverse-shuffling”) to its
original plate layout and visualized using the heat maps module
in KNIME (Figure 4B-D). As visible in Figure 4D, normalization
effectively reduces plate position effects on cytoplasm area.
Also apparent is the normalization of coated and uncoated
conditions to a common baseline. This allows not only for an
easier hit selection but also provides a fast insight into how
effective a certain compound is in modulating spreading in the
coated vs. uncoated conditions.

Hit Selection and Data Export

While the whole data analysis pipeline was developed to run
in a fully automated manner, we also decided also to
implement a tool that would allow for a fast and very efficient
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semi-manual hit selection. We implemented interactive scatter
plots as well as scatter matrices into the pipeline. Figure 4E
shows an example of a scatter matrix that automatically is
constructed from plate and sample identifiers, the cytoplasm
areas, as well as the number of cells for one of our
experiments. Here, the plot of cytoplasm area vs. plate/sample
identifier, clearly demonstrates the stability of the baseline. Hits
can be selected individually or in groups and are marked in
orange. Black arrowheads show the effect of the positive
control (Rock inhibitor Y-27632) in control (left) and Nogo-A-
A20 (right) conditions. Alternatively, hits can also be selected
from the “cytoplasm area vs. cytoplasm area” or “cell numbers
vs. cell numbers” plots.

All normalized measurements as well as hit lists are finally
exported into comma separated value files to be read into a
spreadsheet software of one's choice. We furthermore
implemented an automated pivot table module to prepare data
for statistical software such as GraphPad Prism. Without any
changes the data can be copied into such software to plot data
graphs and perform statistical analyses with the push of a
button.

Adaptation of pipeline to other experimental setups or
analysis methods

While the described pipeline was built to analyze the effects
of compounds on fibroblast spreading and to plot the mean
areas of the cytoplasms, it is easily adaptable to other
experimental setups or analysis methods. An example is given
for siRNA based screens in supporting Figure S2: Here,
instead of using compounds, 3T3 cells are treated with the
transfection/nucleofection marker siGlo, a non-RISC engaging
molecule that localizes to the nucleus to provide visual
indication of successful siRNA transfection/nucleofection. Only
cells positive for siGlo are to be analyzed. To achieve this, the
pipeline is modified as depicted (Figure S2). After primary
(DAPI) and secondary (Phalloidin) object recognition (Figure
S2A/B), the siGlo channel is read in using a second primary
object recognition module. A manual threshold is applied to
exclude background signals and staining artifacts (Figure
S2C/D). Finally, cells are not only analyzed for contacts to
neighbors but also for co-localization with siGlo. Only
separated, co-localized cells are finally filtered out to be used
for analysis (Figure 2E). The modified CellProfiler pipeline
can be downloaded as supporting File S4.

Next to the possibility of adapting the pipeline to general
changes in the experimental design, data analysis is also
highly customizable. An example is shown in supporting
Figure S2F-G. Instead of plotting the mean areas of the
cytoplasms, an object based analysis can be used to plot cell
areas in bins of defined sizes (Figure S2G) or, by using
statistical software such as GraphPad Prism, as cumulative
frequency distributions (Figure S2H). The object based
analysis of two independent experiments on control as well as
Nogo-A-A20 substrates showed almost identical distribution
profiles of cell areas, indicating a reliably working pipeline.
(Figure S2F-G)

PLOS ONE | www.plosone.org

High Content Screen for Cell Spreading & Adhesion

NINDS-Il Compound Screen Reveals Modulators of Cell
Spreading in Swiss-3T3 Cells Plated on Nogo-A-A20 vs.
Control Substrates

The established protocol was applied to a medium-
throughput screen using the “National Institute of Neurological
Disorders and Stroke” (NINDS-Il) compound library that
contains 1040 compounds of which three quarters are FDA
approved [21]. Using the screen we initially identified 10
“negative hits”, i.e. compounds that reduce spreading (Table
2). There was no selectivity with regard to the control or Nogo-
A substrate. We also found 5 “positive hits”, i.e. compounds
increasing spreading on control and/or Nogo-A substrate
(Table 3). All compounds scored as hits as well as 2 randomly
picked compounds that did not show an effect in the screen
(Table 4) were further validated using dose response assays. 9
out of 10 compounds initially scored to possess spreading
reducing effects on both, Nogo-A-A20 as well as control
substrate were validated. 5 of these 9 compounds, showed a
dose dependency in the validation experiments (Figure 5A).
Literature research revealed several modes of actions in five of
the nine compounds that are known to influence cell spreading.
Three compounds have been described to disrupt microtubule
polymerization (Mebendazole, 4'-Demethylepipodophyllotoxin
and Podofilox [22,23]) — a process known to be detrimental for
cell spreading [24]. Two other compounds either inhibit
prostaglandin synthesis via COX-2 (Piroxicam [25]) or via
disruption of B1-integrin-ligand binding (Pristimerin [26]). Both
processes are known to be implicated in interfering with cell
spreading [26,27]. While this further demonstrates that the
screen is working reliably, it is important to bear in mind that
reduction in cell area can also be the result of toxicity. An
example for this could be Pyrithione Zinc, a DNA synthesis
inhibitor that scored as a negative hit but is known to be
cytotoxic in 3T3 cells at the concentrations tested [28]. In our
experience a good first indication for a toxic effect of a
compound is given by its dose response profile. While
spreading reducing compounds often reach a plateau phase
with increasing concentrations (as seen in Figure 5A for
Pristimerin, 4°-Demethylepipodophyllotoxin and Podofilox)
before becoming toxic eventually, purely toxic compounds (as
seen in Figure 5A for Pyrithione Zinc) do not show this biphasic
effect. For  the three validated negative hits
Tetrachloroisophtalonitrile, Tannic Acid and Gaboxadol further
tests will be needed to discriminate between toxicity and cell
spreading inhibition.

By testing the 5 “positive hits” in dose response assays we
were able to validate 2 compounds (Figure 5B). Acriflavinium,
however, exhibited a strong autofluorescence (Figure 5B) that
led to the misdetection of a seemingly bigger cell area. This
caveat can be controlled for by always cross comparing the
screening data with the raw images (which can easily be done
using Cell Analyst as described earlier). Interestingly
Clomipramine, a tricyclic antidepressant, was the only
compound identified in the screen able to reduce Nogo-A-
A20’s effect on adhesion of Swiss-3T3 cells without affecting
cell adhesion on the control substrate. Via dose response
assays this specificity was further validated (Figure 5B). By
using concentrations of up to 10uM we were in line with
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previous in vitro studies [29-38]. Additionally, 10uM is the
therapeutic concentration often present in brain and plasma for
tricyclic antidepressants [39].

Clomipramine diminishes Nogo-A-A20-induced cell
spreading and neurite outgrowth inhibition in highly
purified Cerebellar Granule Neurons

We isolated highly purified cerebellar granule neurons from
P7 Wistar rats and plated them on Nogo-A-A20/poly-L-lysine
(PLL) or on a PLL control substrate for 24h. In the absence of
clomipramine, outgrowth on Nogo-A was only 60% of that on
PLL (Figure 5C/D). Clomipramine at 0.1 - 2 uM strongly
stimulated outgrowth, interestingly on both substrates. Values
at 2 uM were almost similar on PLL or on the Nogo-A
substrate, suggesting that, in addition to a strong growth
stimulatory effect, Clomipramine also counteracted the growth
inhibition of Nogo-A-A20. Similarly, the drug promoted neuronal
adhesion to the Nogo-A substrate (at higher concentrations),
without affecting adhesion to PLL (Figure 5E). D).
Clomipramine is known to inhibit the reuptake of serotonin and
norepinephrine but also to target a variety of other molecules
[40]. A direct correlation between functional effects and
underlying signaling events is, therefore, difficult.

Conclusions

We developed a freely available, open source high content
screening method to investigate cell spreading on different
substrates in the presence of hundreds to thousands of
compounds. This method was validated and used to detect
small molecules that are able to influence cell adhesion and
cell spreading of Swiss-3T3 cells in general and/or selectively
modulate cell spreading and adhesion on Nogo-A-A20.

Several known compounds, including drugs which interfered
with microtubule assembly, were found in the NINDS-II library
to inhibit fibroblast spreading, while a tricyclic antidepressant,
Clomipramine hydrochloride, enhanced spreading of 3T3 cells
on the inhibitory substrate Nogo-A-A20 and cerebellar neuron
fiber growth on PLL and Nogo-A-A20.

Importantly, except for an automated sampling fluorescent
microscope, only routine lab equipment was employed in this
assay. However, this screening method can be scaled up by
using automated liquid handling systems to high throughput
dimensions.

Common alternative methods for investigating cell adhesion
and spreading mostly require the researcher to manually
acquire and analyze images of cells. This procedure is not only
very slow and thus unsuitable for investigating high numbers of
compounds, but also prone to human error. Other widely used
methods for scoring adhesion are solely based on counting
adherent cells before and after treatment. This is usually
achieved by either labeling cells with a dye before counting
them using a light microscope/plate reader or by measuring the
absorbance of solubilized cells using a spectrophotometer [41].
While this approach is much faster compared to manually
scoring of spread and unspread cells, it still lacks sensitivity.
Subtle effects on adhesion, often resulting in changes of cell
area, cannot be resolved. Consequently, the information
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Table 3. NINDS Screen - Positive Hits.

High Content Screen for Cell Spreading & Adhesion

Compound Molecular FormularTherapy Source Normalized Area Validated?
ACRIFLAVINIUM anti-infective (Human African trypanosomiasis, fungal

C14H14CIN3 . . . . . . synthetic 9.22 YES *
HYDROCHLORIDE infections), intercalating agent, anti-cancer activity
CACODYLIC ACID C2H7As02 anti-eczema, dermatologic, herbicide synthetic 5.81 NO
SIBUTRAMINE anorexiant, antidepressant, uptake inhibitor (5HT, i

C17H27CI2N . . . synthetic 4.39 NO
HYDROCHLORIDE norepinephrine, dopamine)
COTININE C10H12N20 antidepressant, nootropic and anti-psychotic-like effects Nicotiana tabacum 3.62 NO
CLOMIPRAMINE

C19H24CI2N2 antidepressant synthetic 2.73 YES **
HYDROCHLORIDE
FOSCARNET SODIUM CNa305P antiviral synthetic 2.63 NO
doi: 10.1371/journal.pone.0078212.t003
Table 4. NINDS Screen — inactive control compounds.
Compound Molecular FormularTherapy Source Normalized Area Validated?
TRYPTOPHAN C11H12N202 antidepressant, nutrient; LD50(rat) 1634 mg/kg ip many plants, animal protein 0.19 YES
PROMETHAZINE

C17H21CIN2S antihistaminic, sedative synthetic 0.59 YES

HYDROCHLORIDE

doi: 10.1371/journal.pone.0078212.t004

obtained via the classic methods is mostly of qualitative instead
of quantitative nature. Instead of subjectively classifying by eye
whether a cell is spread or unspread or whether it is attached
or not attached, the herein presented screening method allows
for a detailed and standardized analysis of cell area and a wide
range of additional phenotypic characteristics.

We abdicated commercially available screening software
solutions such as Metamorph (Molecular Devices) or Cellomics
(Thermo Scientific), since these — due to their high purchasing
costs — are mostly only available in industry laboratories or in
specialized academic screening centers, offering fee-based
services that can be very expensive and thus not ideal for
many cell biology labs on a regular basis. Furthermore,
commercially available analysis software packages are often
limited in their adaptability, mostly unable to implement
machine learning algorithms or requiring the use of an
expensive screening microscope instead of being compatible to
much cheaper and more widely distributed microscopes set-
ups with programmable robotic stages.

A variety of possible applications of the presented screening
method are easily conceivable. Adjustable parameters include
a wide range of possible cell types, the use of different
adhesion modulating substrates or the adaptation of the multi-
parameter readout criteria. Furthermore, we demonstrated the
possibility to use this method for screening siRNA instead of
compound libraries.

In summary, we successfully developed and validated a
highly customizable, versatile and cost effective screening
pipeline to study cell adhesion and cell spreading without the
need of expensive and specialized screening equipment.
These methods will enable laboratories not routinely employing
screens in their daily work to investigate the effects of a wide

PLOS ONE | www.plosone.org

11

range of different compounds or siRNAs on adhesion,
spreading and cytoskeleton-modulating molecules.

Materials and Methods

Ethics Statement

All experiments involving animals were performed with the
approval of and in strict accordance with the guidelines of the
Zurich Cantonal Veterinary Office. All efforts were made to
minimize animal suffering and to reduce the number of animals
required.

Assay Development

Cultivation of Swiss-3T3 Cells. Swiss-3T3 (ATCC) and
NIH-3T3 cells (ATCC) were maintained in DMEM (61965-026,
Invitrogen) supplemented with 10% newborn calf serum
(Invitrogen) and cultured in a 95% humidified incubator at 37°C
with 5% CO,.

New Swiss-3T3 cells were taken into culture regularly (every
5-10 passages) to prevent phenotypic changes in between
cells used for experiments.

Protein purification. His-/T7-tagged Nogo-A-A20 protein
containing amino acids 544-725 of rat Nogo-A was purified as
described previously [15]. Briefly, BL21/DE3 E. coli were
transformed with the pET28 expression vector (Novagen)
containing the sequence of the recombinant protein and
cultured at 37°C until an OD of 0.8 AU. 1 M IPTG was added
for 2 h at 30°C to induce protein expression. After cell lysis with
BugBuster Protein Extraction Reagent (Novagen) the fusion
protein was purified using Co*-Talon Metal Affinity Resin
(Takara Bio Inc.).
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Figure 5. Hit validation and neurite outgrowth assay. Nine of the strongest negative hits (inhibitors of cell spreading) as well as
2 of the strongest positive hits (enhancers of cell spreading) validated in dose-response assays are shown (6 replicates per
condition): (A) Validated negative hits. Of ten compounds tested, nine were validated to significantly decrease cell spreading. For
these, the cytoplasm area is plotted against the compound concentration. (B) Validated positive hits. Of five compounds tested, two
were initially validated to significantly enhance cell spreading. Further evaluation excluded Acriflavinium but not Clomipramine for its
autofluorescence since it showed to interfere with the secondary object recognition (representative pictures). (C-E) Neurite
Outgrowth Assay. Clomipramine was further tested for its effects on neurite outgrowth in a pure culture of cerebellar granule
neurons (CGNs; postnatal day 7). Neurite outgrowth (D), as well as cell adhesion (E) was analyzed in dose-response assays on
control as well as Nogo-A-A20 substrates. Representative images of CGNs with and without 2uM Clomipramine on these two
substrates are shown in (C). All experiments were performed at least in triplicate. For all graphs: standard errors of the means are
shown, N= 6 (A,B) or 3 (D,E), respectively, Statistical analysis was performed in GraphPad Prism 6 using an ordinary One-Way
ANOVA test followed by a Tukey multiple comparison test; p-values: ns>0.05; *<0.05, **<0.005, ***<0.0005, ****<0.00005 .

doi: 10.1371/journal.pone.0078212.g005
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Compound Library and Preparation of Stock Plates. The
NINDS-II compound library was provided through a grant from
The British Medical Research Council and consists of 1040
compounds of which three quarters are FDA approved [21]. It
was originally compiled by MicroSource Discovery Systems for
the National Institute of Neurological Disorders and Stroke
(NINDS), the Huntington’s Disease Society of America (HDSA),
the Amyotrophic Lateral Sclerosis (ALS) Association, and the
Hereditary Disease Foundation (HDF) [21]. The library was
shipped in thirteen 96-well plates, each containing 80
compounds with a total volume of 20ul and a stock
concentration of 1mM in DMSO. The plates were stored at
-80°C and were protected from light at all times possible. To
reduce degradation the compounds were aliquoted into three
384-well plates (“mother plates”) with 6ul per well. The plate
layout and pipetting scheme is depicted in supporting Figure
S1. Briefly, each row contained 9 wells of distinct compounds
and 3 wells of DMSO ctrls. This way, one row was used to
provide compounds for one final assay plate (“baby plate”). All
nine rows of each 384-well mother plate thus provided
compounds for nine final assay plates that were screened in
one experiment.

Spreading Assay. The NINDS compounds were screened
on Swiss-3T3 fibroblasts for their influence on cell-spreading.
The assay was divided into 13 sub-experiments each testing
80 compounds, giving rise to 1040 tested compounds. Each
sub-experiment consisted of nine 96-well assay plates, each of
which testing 9 different compounds (Figure S17).

Each sub-experiment was performed as follows: The day
before the assay, five 90% confluent 10cm dishes of Swiss-3T3
cells were split 1:2 using 0.05% Trypsin giving rise to 10 dishes
of about 90% confluency the next day. In addition, an overnight
Nogo-A-A20 coating was performed on the nine 96-well assay
plates. Three rows were incubated/coated with 50ul of 100nM
Nogo-A-A20 (rows E-G), and three rows (rows B-D) were
incubated with 1x PBS to serve as controls (Fig.S71C). The
coating was done on ice using pre-cooled 1x PBS to dilute the
Nogo-A-A20 stock solution. To reduce human error electronic
multichannel pipettes (Rainin, inc. USA) were used for liquid
handling throughout the experiments. The plates were
immediately incubated overnight at 4°C and washed three
times with 1x PBS shortly before the experiment.

Pre-dilutions (“daughter plates®) of the compounds were
prepared shortly before usage in the experiment yielding 5x
stocks for the final assay plates. 20ul of each pre-dilution was
then transferred into the final assay plates (“baby plates”). The
final compound concentration was increased from 2 to 5uM in
sub-experiment 8-13 to test for a possible increase in hits by
varying compound concentrations.

Cells were prepared as follows: Ten 90% confluent 10cm
plates were washed with 5ml of pre-warmed 37°C 1x PBS and
5ml of 1x PBS-EDTA was added for 15 minutes at 37°C to
detach the cells. The cells were resuspended, pelleted at 700g
for 6 minutes and counted using a hematocytometer. 80ul
containing 2000 cells were plated per well and mixed with 20ul
of the 5x compound stocks.

From sub-experiment 7 on, the Rock inhibitor Y27632
(Sigma, YO0503-1MG) was added as a positive control in
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column 10. 100ul of media were added into all empty wells of
the plate to reduce intra-plate effects and ensure an evenly
humidified environment. The plates were immediately placed in
the 37°C incubator in an ordered stack with plate 1 on top.

Fixation. After 1h, the cells were fixed for 20 minutes with
100ul of prewarmed 8% PFA in phosphate buffered saline
(PBS). Cells were fixed in the order of plating to ensure equal
incubation times and washed three times using 50ul PBS.

Immunocytochemistry. Cells were blocked for 1 hour at
room temperature using 100ul per well of PBS containing 0.3%
triton X-100, 0.004% fish skin gelatin (Invitrogen) and 2%
normal goat serum. The blocking buffer was exchanged
against 50ul of fresh buffer containing DAPI (1:10,000,
Invitrogen) and A488-coupled Phalloidin (1:2000, Invitrogen).
Plates were incubated overnight at 4°C, washed two times
using 1xPBS and stored at 4°C under protection from light until
further use.

Fluorescence imaging. The plates were imaged using an
ImageXpress Micro HCS MD1 inverted epifluorescent
microscope (Molecular Devices). 24 images were acquired per
well. No images were taken in the center or close to the border
of the well to ensure an even distribution of cells.
Approximately 1h20min was needed to image one plate. The z-
value and exposure time was readjusted between each plate to
adjust for plate-to-plate variation with respect to different plate
heights and staining efficiencies.

Neurite Outgrowth Assay. Cerebellar granule neurons
from P7 Wistar rats were purified as described in [42]. Briefly,
freshly isolated P7 rat cerebelli were dissociated using 1%
trypsin. The resulting cell suspension was layered on top of a
35% / 60% percoll gradient and was centrifuged for 12min at
2000g. The interphase between the two percoll layers,
containing the cerebellar granule neurons was carefully
removed and preplated for 1h in a 100mm dish (TPP). The
non-adherent fraction containing mostly cerebella granule
neurons was collected and 100,000 cells were plated per well
of a 4-well dish (Greiner) coated with 30ng/cm? Poly-L-Lysine
(PLL) with or without varying concentrations of Nogo-A-
Delta-20.

After 24h of incubation at 37°C and 5% CO,, the cells were
fixed using 4% PFA and stained with anti-B3Ill-Tubulin and
DAPI. Images of the neurons were acquired at 10x
magnification in an automated fashion using a modified
Axioskop 2 microscope (Zeiss). The numbers of attached cells
as well as the mean neurite lengths (total outgrowth divided by
number of cells) were quantified using MetaMorph (Molecular
Devices). Each experiment was performed in triplicate and the
data were normalized to control and plotted as average + SEM.

Bioinformatics

All Analysis steps were performed using freely available
software packages and custom designed streamlined pipelines.
All setting files and pipelines can be downloaded from the
supporting information section to be modified for personal use.
Software packages are available from sources as stated below.

File preparation. To prepare files for the analysis pipeline,
all acquired images were renamed using the freely available
ReNamer Utility (http://www.heise.de/download/
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renamer-1151787.html) in batch mode. In this step also all
meta data tags to be used in later analysis were incorporated in
the file name. The settings file for the batch renaming process
is provided as supporting File S1.

Image normalization. To guarantee consistent and reliable
object recognitions throughout the experiments and within each
field of view, images were analyzed using the following custom
build pipeline (supporting File S2) in the freely available
CellProfiler 2.0 software (www.cellprofiler.org):

First, all phalloidin images were averaged to detect uneven
illuminations throughout the field of view. This illumination
function was then applied to every image to correct for shading.
Next, a “rescale intensity” function was applied to rescale the
intensity of the DAPI images by setting the brightest pixel in the
picture to 1 and the darkest pixel to 0. This allowed for a
reliable fixed thresholding detection of the nuclei in later
analysis steps. The corrected images were exported into a new
folder to be used in the subsequent pipeline.

Object detection and data acquisition. A second pipeline
was designed for object recognition and data acquisition. First,
corresponding images of both channels were read in and
matched using the corresponding wavelength identifiers
(w1=DAPI, w2=phalloidin). Metadata tags were extracted and
stored in a database.

Next, DAPI stained nuclei were detected as primary objects.
Too small objects as well as nuclei touching the border of the
image were set to be eliminated from the analysis. The primary
objects were then used to help detect the outlines of the cells in
the phalloidin stained images. Hereby, the primary objects
were set as starting points in the phalloidin image to propagate
the signal towards the edge of the cell (area of highest
intensity). In a third step of object recognition, the area of the
cytoplasm was calculated by subtracting the primary object
(nuclei area) from the secondary object (whole cell area).

To exclude effects of cell-cell interactions on cell
morphology, each cell was analyzed for the number of touching
neighbors. Only fully separated cells (no contacts to
neighboring cells) were kept for further analysis. All other cells
were excluded.

Finally, every object was analyzed for its phenotypic
properties such as cell size (area), circularity or granularity. All
measurements were written into an output excel file as well as
an SQLite database. Images including outlines of separated
cells were exported into a new folder and linked to the
database.

The time scale to run the two pipelines on one sub-
experiment of 81 compounds was about 35 hours on an Intel
Xeon E5-2687W workstation with 64GB of RAM. However,
since the CellProfiler software package is currently only
supporting a single core, analysis speed is similar in cheaper
workstations with fewer cores. If speed however is an issue,
analysis can be performed on several PCs, in a local cluster or
- using the command line modus of CellProfiler — on a super
computer cluster such as “Brutus” at the Swiss Federal Institute
of Technology.

Database access. To access the database and to retrieve
and visualize the information generated from the assays, the
software package CellProfiler Analyst (www.cellprofiler.org)
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was used. First impressions of compound effects on cell
morphology were obtained from non-normalized plate-specific
heat maps of the selected values that have been stored in the
database. Images of each plate position as well as the outlines
of the analyzed cells were visualized via selecting the specific
well in the heat maps. In a similar way thumbnail montages of
all 24 images per well can be generated, allowing a quick and
easy visual output of all images.

Phenotype classification using machine learning
algorithms. For an unbiased phenotypic classification of
spread vs. unspread cells, a machine-learning algorithm was
implemented using the CellProfiler Analyst software package.
100 cells were randomly fetched from each experiment, and
manually sorted into either category: 1=spread or 2=unspread.
Using machine learning algorithms, 20 rules were automatically
generated, tested and weighed to automatically sort the cells
by characteristics such as cell area, eccentricity or solidity.
Classification accuracy was tested against the accuracy of a
random classifier. Classification for one experiment required
approximately 30 seconds of processing time. All classification
data (spread cells, unspread cells and total cells) were stored
in a database and exported into an excel-readable format.

While CellProfiler Analyst provided basic functionality to
access and interpretate the data obtained, a more refined
analysis was necessary to merge data, remove oultliers,
normalize data sets and select hits. For that a data handling
pipeline (supporting File S3) was constructed using the open
source software package Knime (www.knime.org) with the
following plugins/extensions:

KNIME XLS Support 2.7.0.0035863
(org.knime.features.ext.poi.feature.group;  KNIME  GmbH,
Konstanz, Germany); KNIME JFreeChart 2.7.0.0036050
(org.knime.features.ext.jfreechart.feature.group; KNIME GmbH,
Konstanz, Germany); KNIME Itemset Mining 2.7.0.0035863
(org.knime.features.ext.itemset.feature.group; KNIME GmbH,
Konstanz, Germany); KNIME HCS Tools 1.1.0.201209111420
(de.mpicbg.tds.knime.hcstools.feature.feature.group; Max
Planck Institute of Molecular Cell Biology and Genetics (MPI-
CBG))

Data merging and outlier removal. In a first step, data files
from CellProfiler and CellProfiler Analyst were imported and
merged with spreadsheets containing different annotations
(annotation files can be found in supporting File S3). The data
was grouped by its well identifiers and averaged. Plate viewer
tools were installed throughout the pipeline to allow
visualization of the data at each step. A scatter plot of the
mean cell area per well enabled to identify and manually select
outliers for removal.

Data normalization. Next, data was normalized in two
steps. First, plate to plate variations were reduced using a
percentage of control normalization (POC): values of each well
were normalized to the corresponding average value of all
control wells within the plate that did not contain any Nogo-A-
A20 coating. In a second step, a B-Scoring normalization
(median averaging) was applied to correct for row and column
effects. To allow B-score normalization of triplicates/ multiple
substrates within one experimental plate, a row shuffling
technique was developed. Rows without substrate were
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matched with corresponding rows from other plates. The same
was done for substrate (Nogo-A-A20) coated rows. After row
shuffling, B-score normalizations were performed on these new
virtual plate configurations that had the same coating for all
wells and did not contain any replicates that would interfere
with the B-Score normalization. The rows were then shuffled
back to their original plate configurations and the results
visualized in a heat map using a plate viewer tool.

Hit selection. A scatter plot module was implemented into
the KNIME pipeline to allow for visualization of the normalized
data. Potential hits were selected manually by highlighting and
were exported into an excel readable format. To allow easy
data plotting in statistical software such as Graph Pad Prism, a
pivot table was generated and exported. Finally, also the
complete list of all normalized values was exported as a raw list
as well as a pivot table.

Final data presentation and statistics. Pivot tables
containing the normalized data generated in KNIME were
imported into GraphPad Prism 6 software (http:/
www.graphpad.com/scientific-software/prism/). Column graphs
with standard errors of the mean (SEM) were plotted.

Supporting Information

Figure S1. Plate layout and pipetting scheme. To allow for
compound screening in the absence of expensive liquid
handling robots, a pipetting scheme and plate layout was
developed that reduces pipetting steps by using multi-channel
pipettes. (A) Grandmother plate (stock plate). Most compound
libraries are delivered with a plate layout as depicted in (A).
Each number refers to a specific compound while N refers to
the negative control (e.g. DMSO). The NINDS library used
followed this layout with 13 plates a 80 compounds (20ul, 1TmM
stocks in DMSO). (B) Mother plates. Using multi-channel
pipettes, stocks are transferred in a row to row fashion (column
to row for the blue labeled wells) into 384-well plates (“mother
plates”; small volume reservoirs). Depending on the amount of
positive controls required, controls are added to the mother
plate. For 80 compounds to be tested in one experiment (9 final
assay plates) we added one positive control (green well).
Alternatively positive controls can be added for each plate. (C)
Baby plates. Each row of the mother plate provides compounds
for one final assay plate (“baby plate”). First, compounds are
diluted in “daughter plates” (not shown). Then, they are
transferred to baby plates. Every compound is being measured
in triplicate on two different substrates (e.g. Nogo-A-A20 vs.
control). If no substrate is to be used, the amount of tested
compounds per plate can be doubled.

(TIF)

Figure S2. Screening pipeline adaptation (e.g. for siRNA
screens). Spreading assay of 3T3 cells nucleofected with
siRNA. Only cells positive for siGlo (nucleofection marker) are
analyzed. Next to an image based analysis of the mean areas,
object based analyses using binning as well as frequency
distribution plots can be employed.: (A/B) 1° and 2° object
recognition as described in Figure 3. (A) Phalloidin channel; (B)
Nuclei and cytoplasm outlines identified; (C/D) Primary object
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recognition of nucleofection marker. (C) SiGlow signals are
detected as 1° objects following the same principles as for
DAPI stained nuclei. (D) Outlines for detected siGlow objects
(green). A size threshold is applied to exclude small punctuated
background signals (arrow heads). (E) Filtering of “separated”
cells colocalizing with nucleofection marker. A neighbor
analysis (as depicted in Figure 3) combined with a relate-object
function is being used to identify and filter out “separated”
siGlo-positive cells (red outlines). (F-H) Analysis of cytoplasm
area. The KNIME pipeline was modified to allow not only for an
image based (F) but also an object based analysis of the mean
areas (G/H). (G) Using a binning analysis module, all objects
can be categorized in bins according to their cytoplasm areas.
The amount of cells (in %) is plotted against the bins (10%
intervals). (H) Object data can additionally be imported into
statistical software such as GraphPad Prism 6 to allow for
plotting of cumulative frequency distributions. The relative
frequency (in %) is plotted against the cumulated cytoplasm
area (in um?). - Magnification: Calibration bars (50um) in A are
also applicable to B-E.

(TIF)

Figure S3. KNIME Pipeline for data normalization, hit
selection and analysis. An analysis pipeline was developed in
KNIME to allow for data processing. The major steps in the
pipeline are annotated and color-coded including steps such as
data import, outlier removal, data normalization, visualization,
hit selection, pivoting and data export. A high resolution version
of this file can be found in supporting File S3.

(TIF)

File S1. ReNamer presets file. Settings file to batch rename
images and to incorporate meta tags.
(RNP)

File S2. CellProfiler pipeline 1. Pipeline as shown in Figure 3
(consisting of 2 parts: “Additional file 2A.cp” and “Additional file
2B.cp”) - to be imported into CellProfiler software package.
(21P)

File S3. KNIME pipeline. Pipeline as shown in Figure 3 - to be
imported into KNIME software package. Zip folder includes a
folder named “Additional file 3 which contains the “KNIME
Pipeline — overview.pdf’ (High resolution image of KNIME
pipeline), the “KNIME Pipeline.zip” (Pipeline files for import into
KNIME), the “Node 11 — Layout.xls” (Annotation file to be
loaded into KNIME node 11), the “Shuffle Annotations.xls”
(Annotation file for reshuffling).

(21P)

File S4. CellProfiler pipeline 2. Pipeline as shown in Figure 2
- to be imported into CellProfiler software package.

(CP)
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