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We propose a versatile model with a flexible choice of control for an early-pandemic
outbreak prevention when vaccine/drug is not yet available. At that stage, control is
often limited to non-medical interventions like social distancing and other behavioral
changes. For the SIR optimal control problem, we show that the running cost of control
satisfying mild, practically justified conditions generates an optimal strategy, u(t), t 2 [0,
T], that is sustainable up until some moment t 2 [0, T). However, for any t 2 [t, T], the
function u(t) will decline as t approaches T, which may cause the number of newly infected
people to increase. So, the window from 0 to t is the time for public health officials to
prepare alternative mitigation measures, such as vaccines, testing, antiviral medications,
and others. In addition to theoretical study, we develop a fast and stable computational
method for solving the proposed optimal control problem. The efficiency of the new
method is illustrated with numerical examples of optimal control trajectories for various
cost functions and weights. Simulation results provide a comprehensive demonstration of
the effects of control on the epidemic spread and mitigation expenses, which can serve as
invaluable references for public health officials.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The circulation of infectious diseases, such as COVID-19, is shaped by multiple parameters including control interventions
(Perkins & Espa~na, 2020), environmental factors (Weiss & McMichael, 2004), immunity patterns (O'Driscoll et al., 2021),
superspreading events (Lloyd-Smith, Schreiber, Kopp, & Getz, 2005), and behavior changes (Radin et al., 2021). These factors
impact the early growth dynamics (Szendroi & Csanyi, 2004) and the basic reproduction number (Locatelli, Tr€achsel, &
Rousson, 2021), which quantifies the number of secondary cases per primary case in a completely susceptible population.

Since the first COVID-19 case was detected in December 2019, the disease spread rapidly causing a worldwide pandemic.
While some infected people experience only mild or moderate symptoms, others can get seriously ill and require immediate
medical intervention (Drugs.com, 2022; Li et al., 2020; Tang et al., 2020; Zhao et al., 2020). Among high risk individuals are
elderly people and those with underlying health conditions such as cancer, diabetes, chronic respiratory disease, and others
(CDC Center for Disease Control and Prevention, 2023a). As of April 14, 2024, there have been 775,335,916 confirmed cases of
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COVID-19, including 7,045,569 deaths (WHO World Health Organization, 2023). Important factors contributing to the
alarming rise in COVID-19 cases at the early stage of the pandemic were high reproduction number, a large number of ”silent
spreaders” (especially among young people), and a relatively long incubation period (CDC Center for Disease Control and
Prevention, 2023b). In the absence of vaccines and antiviral treatments in late 2019 and early 2020 (HHS U.S. Department
of Health and Human Services, 2023), mitigation measures such as social distancing (including full or partial lockdowns),
restrictions on travel and mass gatherings, isolation and quarantine of confirmed cases, change from in-person to online
education, and other similar tools emerged as the key ways of control and prevention (Organisation for Economic Co-
operation and Development, 2023; Summer, Aghaee, Martcheva, & Hager, 2023). While these measures proved to be
effective in a short-term, they are hard to sustain in a long run due to their negative impact on mental health coupled with
high social and economic cost. Hence, since the start of COVID-19, balancing pros and cons of early non-medical interventions
has come to the forefront (not only to contain COVID-19, but also to prepare for future epidemic outbreaks) (David Paltiel,
Zheng, & Walensky, 2020; Hadi & Ali, 2020; Igoe et al., 2023; Lee, Chowell, & Castillo-Ch�avez, 2010; Marshall, Barlow, &
Tyson, 2021; Pal Bajiya, Bugalia, Tripathi, & Martcheva, 2022; Panovska-Griffiths et al., 2020; Pazos & Felicioni, 2020; Pei
et al., 2022; Saha et al., 2020, 2022; Saha & Samanta, 2021; Soledad Aronna, Guglielmi, & Moschen, 2020; Svoboda,
Tkadlec, Pavlogiannis, Chatterjee, & Nowak, 2022; Tuncer, Timsina, Nuno, Chowell, & Martcheva, 2022; Vincent et al., 2022).

In this paper, we consider an optimal control problem for SIR compartmental model (Susceptible / Infectious /

Removed) of early disease transmission. We design a running cost of control with mild, practically justified conditions that
give rise to the optimal control strategy, u(t), which does not exceed its admissible upper bound for the entire duration of the
study period, [0, T]. Our theoretical analysis indicates that at the early stage of an outbreak, the optimal control strategy, u(t),
may be growing until some moment t 2 [0, T). However, for any t 2 [t, T], the function u(t) will decline as t approaches T,
which may cause the number of newly infected people to increase. So, the window from 0 to t is the time for public health
officials to prepare alternative mitigation measures, such as vaccines, testing, antiviral medications, and others. Our theo-
retical findings are illustrated with important numerical examples showing optimal control trajectories for various cost
parameters. To learn the optimal control function u(t), we employed a deep learning based numerical algorithm, where u(t) is
parameterized as a deep neural network (DNN). The implementation, training and testing of all methods were conducted in
Python 3.9.6 with PyTorch 2.1.0 and Torchdiffeq 0.2.3.
2. A strategy for early intervention

At the onset of an emerging epidemic, in the absence of a vaccine and antivirals (HHS U.S. Department of Health and
Human Services, 2023; Saha, Samanta, & Nieto, 2018; Saha & Samanta, 2022; Samanta & G�omez Aíza, 2015), the trans-
mission of individuals between different stages of infection is often described by a classical SIR (Susceptible / Infectious /
Removed) compartmental model (Dutta, Samanta, & Nieto, 2024; Kudryashov, Chmykhov, & Vigdorowitsch, 2021; Ogilvy
Kermack & McKendrick, 1927). For this early and relatively short phase, it is reasonable to infer that natural birth and
death balance one another and, therefore, can be omitted. With the disease death rate varying between age and risk groups
and being hard to estimate early on, the removed class is assumed to combine recovered and deceased people. Finally, due to
the fast dynamic of the initial pre-vaccination stage, we suppose that recovered individuals develop at least a short-term
immunity and don't move back to the susceptible class until the end of the study period. Under these assumptions, the
SIR (Susceptible / Infectious / Removed/Immune þ Deceased) model is given by the following system of ordinary differ-
ential equations:

dS
dt

¼ �b
SðtÞIðtÞ

N
dI
dt

¼ b
SðtÞIðtÞ

N
� gIðtÞ dR

dt
¼ gIðtÞ (2.1)

The primary goal of our study is to look at possible control strategies that can be effectively introduced at the early ascending
stage of an outbreak before more robust mitigation measures, such as vaccines and viral medications, become available. The
most common early mitigation measures, which were broadly used during the recent COVID-19 pandemic, include physical
distancing, enhanced personal hygiene, mask wearing, awareness, and others. Their primary goal is to ”flatten the curve”, that
is, to reduce the daily number of new infections and, as the result, to reduce the number of virus-related deaths. The SIR
model with enforced control, u ¼ u(t), and normalized dependent variables, SðtÞdSðtÞ

N , IðtÞdIðtÞ
N , and RðtÞdRðtÞ

N , takes the
form dx

dt ¼ f ðx;uÞ, where

f1ðx;uÞ d� bð1� uðtÞÞSðtÞIðtÞ
f2ðx;uÞ dbð1� uðtÞÞSðtÞIðtÞ � gIðtÞ
f3ðx;uÞ dgIðtÞ;

(2.2)

and x ¼ [S,I,R]u. In the above, the admissible set for the control function, u ¼ u(t), is assumed to be

U ¼
n
u2L1½0; T �; 0 � uðtÞ<1

o
:
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In Lemma 2.1 below we show that following the introduction of a time-dependent transmission rate, b(t)db(1 � u(t)), the
model dxdt ¼ f ðx;uÞ remains correct in the sense that the trajectories (S(t), I(t), R(t)) starting in a positive octant do not leave the
octant and are defined for all t > 0.

Lemma 2.1. Let u(t) be an admissible control trajectory with x(t) satisfying dx
dt ¼ f ðx;uÞ defined in (2.2) and

ðSð0Þ; Ið0Þ;Rð0ÞÞ2D2dfðz1; z2; z3Þ2R3 : z1 þ z2 þ z3 ¼1; z1; z2; z3 �0g;

the probability simplex in R3. Then (S(t), I(t), R(t)) 2 D2 for all t � 0.Proof. We first notice that the solution to system (2.2)
satisfies

SðtÞ ¼ Sð0Þe
�
Z t

0
bð1� uðsÞÞIðsÞds

(2.3)

IðtÞ ¼ Ið0Þe

Z t

0
ðbð1� uðsÞÞSðsÞ � gÞds

(2.4)

RðtÞ ¼ Rð0Þ þ g

Z t

0
IðsÞds (2.5)

Therefore, S(t), I(t) � 0 for all t � 0 due to (2.3) and (2.4), respectively, where the latter further implies R(t) � 0 due to (2.5).
Moreover, since (S(t)þ I(t)þ R(t))0 ¼ 0 for all t due to the dynamics (2.2), we know S(t)þ I(t)þ R(t)¼ 1 for all t� 0. Combining
these facts, we conclude that (S(t), I(t), R(t)) 2 D2 for all t � 0. ,

One can easily see that model (2.2) yields

dI
dt

¼
�
b

g
ð1�uðtÞÞSðtÞ � 1

�
gIðtÞ; (2.6)

where b/g is the basic reproduction number. Clearly, if bS(0)/g < 1, then the virus is contained (even though it can still benefit
frommitigation measures that would further reduce the daily number of new infections). It also implies that an obvious way
of controlling the disease, should bS(0)/g be greater than 1, is to choose u(t) such that 0<bS(t)(1 � u(t))/g ≪ 1. That is,
1>uðtÞ[1� g

SðtÞb. However, all things considered, if the basic reproduction number, b/g, is large, this kind of control may not
be feasible. Indeed, while the right interventions at the onset of the disease save lives and protect the health of the population,
they come with social, psychological, and economic costs. Therefore, policymakers have a difficult task of balancing the
benefits to public health and the negative outcomes of their preventive measures. Mathematically, this comes down to
solving the optimal control problem, where the main goal is to reduce the daily number of new infections, b(1 � u(t))S(t)I(t),
while also minimizing the cost of preventive measures, l c(u(t)). This gives rise to the following objective functional:

Jðx;uÞ :¼
Z T

0
fðbð1�uðtÞÞSðtÞIðtÞ þ l cðuðtÞÞ g dt; l>0:

According to (2.2), this J(x, u) can be written as

Jðx;uÞ ¼ Sð0Þ � SðTÞ þ l

Z T

0
cðuðtÞÞ dt; l>0: (2.7)

Evidently, the choice of the cost, c(u(t)), has a major impact on the resulting control strategy. It is important to define c ¼ c(u)
and the corresponding Lagrangian, denoted below as L(x, u; p, q), in such a way that the optimal solution, u ¼ u(t), is guar-
anteed to take values between 0 and 1. In other words, it should never be a feasible strategy for u ¼ u(t) to become negative,
and the cost of control, c(u(t)), should get extremely high as u(t) approaches 1 (unless the regularization parameter, l, is very
small).

For various epidemic models, a very common choice of c(u(t)) is c(u(t)) ¼ u2(t) (Pal Bajiya et al., 2022; Tuncer et al., 2022),
which is often implemented in conjunction with the forwardebackward sweep numerical algorithm for the computation of
optimal control u ¼ u(t) (Lenhart & Workman, 2007). However, as pointed out in (Pal Bajiya et al., 2022; Tuncer et al., 2022),
there are some drawbacks of setting c(u(t)) to u2(t). Indeed, since this function has a finite penalty at u(t) ¼ 1, an explicit
constraint u(t) � 1 must be enforced. Without this constraint, it is easy to get u(t) > 1 (especially for small values of l), which
results in unrealistic strategy leading to S0(t) > 0. And even with the constraint u(t) � 1, the optimal control function often
reaches the nonviable ”ultimate” level, u(t) ¼ 1, for the better part of the study period.

To avoid the above scenario, in our theoretical and numerical analysis, we consider c ¼ c(u) such that limu/1�cðuÞ ¼ ∞.
This important requirement, along with the assumption that the cost, c ¼ c(u), is twice continuously differentiable in its
997
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domain containing [0, 1), with d2c
du2 >0, c(0) ¼ 0, c0(u) > 0 for u � 0, c0(u) < 0 for u < 0, allows us to design an optimal control

problem leading to u(t) < 1 during the entire study period, [0, T]. For numerical simulations, we employ and compare 4
different cost functions for the optimal control strategy

c1ðuÞ ¼ �lnð1�u2Þ; c2ðuÞ ¼ �ulnð1�uÞ; c3ðuÞ ¼ �ðuþ lnð1�uÞÞ; and c4ðuÞ ¼ u2:

All these functions, except for c4(u), have infinite penalty at u(t) ¼ 1, and the function c4(u) ¼ u2 is used for comparison.
3. Properties of optimal control

Inwhat follows, we prove ourmain theoretical result, Theorem 3.1, that hasmajor practical implications. Namely, we show
that beginning with some moment, t 2 [0, T), the optimal control strategy, u ¼ u(t), introduced in the previous section, is
declining, whichmay cause the number of newly infected people to increase. So, the window from 0 to t is the time for public
health officials to prepare alternative mitigation measures, such as vaccines, testing, antiviral medications, and others.

Theorem 3.1. Assume that u ¼ u(t) is an optimal control trajectory for the objective functional (2.7) constrained by the
system dx

dt ¼ f ðx;uÞ defined in (2.2) and by the inequality u(t) � 0 for all t 2 [0, T]. Let c ¼ c(u) be twice continuously

differentiable in its domain containing [0, 1), with d2c
du2 >0, c(0)¼ 0, c0(u) > 0 for u� 0, c0(u) < 0 for u < 0, and limu/1�cðuÞ ¼∞.

Then there is t 2 [0, T) such that for any t 2 [t, T], the derivative, u0(t), exists and u0(t) � 0.

Proof. Without loss of generality, we assume S(t), I(t) > 0 (since otherwise it is clear that u0(t) ¼ 0). Given the constraints
dx
dt ¼ f ðx;uÞ and u(t) � 0 for all t 2 [0, T], the optimal control problem results in the following Lagrangian

Lðx;u; p; qÞ ¼ Sð0Þ � SðTÞ þ
Z T

0
flcðuðtÞÞ � pðtÞ,ðx0 ðtÞ � f ðxðtÞ;uðtÞÞÞ � qðtÞuðtÞgdt

�pð0Þ,ðxð0Þ � x0Þ; pðtÞ ¼ ½p1ðtÞ; p2ðtÞ; p3ðtÞ�u:

(3.1)

Then the KarusheKuhneTucker (KKT) conditions are as follows

ðC1Þ lc
0 ðuÞ þ p,vuf ðx;uÞ � q ¼ 0 (3.2)

ðC2Þ p0 ¼ �vxf ðx;uÞup; pðTÞ ¼ ½�1;0; 0�u (3.3)

ðC3Þ x0 ¼ f ðx;uÞ; xð0Þ ¼ x0 (3.4)

ðC4Þ qðtÞ � 0; uðtÞ � 0; qðtÞuðtÞ ¼ 0; ct2½0; T �: (3.5)

From (C1) we conclude that lc0(u) � q ¼ �p , vuf(x, u) ¼ �bSI(p1 � p2), which is differentiable and hence continuous since all
terms on the right-hand side are so due to (C2) and (C3). Furthermore, since p1(T)¼�1 < 0¼ p2(T) and S(t), I(t) > 0, there exist
t1, t2 2 [0, T) such that p1(t) < p2(t) for all t 2 [t1, T) and p1(t) < 0 for all t 2 [t2, T). Let t ¼ max(t1, t2), then

p1ðtÞ<0 and lc0ðuðtÞÞ � qðtÞ ¼ �bSðtÞIðtÞðp1ðtÞ� p2ðtÞÞ>0 ct2½t; T�: (3.6)

Now we restrict our discussion to [t, T]. If c0(u(t)) ¼ 0 for some t, then u(t) ¼ 0 by the property of c, and hence q(t) ¼ bS(t)
I(t)(p1(t) � p2(t)) < 0 which contradicts to (C4). Therefore c0(u(t)) > 0 for all t by the assumptions on c and 0 < u(t) < 1, where
the latter also implies q(t) ¼ 0 for all t due to (C4). In summary, over [t, T], we have

lc0ðuðtÞÞ þ bSðtÞIðtÞðp1ðtÞ� p2ðtÞÞ ¼ 0:

Then by implicit function theorem we know u0 exists and

u0ðtÞ ¼ �b½SðtÞIðtÞðp1ðtÞ � p2ðtÞÞ�0
lc00 ðuðtÞÞ for all t2½t; T�: (3.7)

Taking into consideration (2.2) and (C2), for all t 2 [t, T], one has p3(t) ¼ 0 and

8<
:

_p1 ¼ �b ðp2 � p1Þð1� uÞI
_p2 ¼ �b ðp2 � p1Þð1� uÞSþ gp2
p1ðTÞ ¼ �1; p2ðTÞ ¼ 0:

(3.8)

From system (3.8), one concludes
998
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_p2 � _p1 ¼ b ðp2 � p1Þð1�uÞðI� SÞ þ g p2: (3.9)

Combining (2.2) and (3.9), one can rewrite ½SðtÞIðtÞðp1ðtÞ � p2ðtÞÞ�0 as follows

½SðtÞIðtÞðp1ðtÞ � p2ðtÞÞ�0 ¼ b ðp2 � p1Þð1� uÞðI � SÞSI þ gp2SI
þðp2 � p1Þ

n
� bð1� uÞSI2 þ bð1� uÞS2I � gSI

�o
¼ fb ðp2 � p1Þð1� uÞðI � SÞ þ gp2 þ b ðp2 � p1Þ

� ð1� uÞðS� IÞ � gðp2 � p1ÞgSI ¼ gp1SI:

According to (3.6) and (3.7), this yields for all t 2 [t, T],

u0ðtÞ ¼ �b½SðtÞIðtÞðp1ðtÞ � p2ðtÞÞ�0
lc00 ðuðtÞÞ ¼ bgSðtÞIðtÞp1ðtÞ

lc00 ðuðtÞÞ <0: (3.10)

This completes the proof. ,

Remark 3.2. As it follows from (3.10), the impact of u(t) scaling down towards the end of the early stage of the outbreak will
depend on the weight, l. If the wight on control is relatively high (see Figs. 3 and 4 in Section 5), then the decline in u(t) for
t � t can be substantial, which will result in a notable surge in the daily number of infected individuals, IðtÞ, for t � t. On the
other hand, if the weight, l, is small (as in Fig. 5), then by the time t ¼ t the epidemic is effectively contained. Hence the
decline in u(t) for t � t is negligible and the daily number of infected people, IðtÞ, remains very low for t � t.

Note that cost functional (2.7) aims to minimize the cumulative number of cases during the early phase of the disease, i.e.,
for t 2 [0, T]. However, it does not guarantee that on any given day, the number of infected individuals in the optimally
controlled environment is less than the number of infected individuals in the same environment but with no control. As our
experiments below illustrate, when the weight on control, l, is relatively high, towards the end of the study period in a
controlled environment the daily number of infected humans, IðtÞ, can potentially bypass the corresponding IðtÞ in the
environment with no control (see Figs. 3 and 4 in Section 5).

The objective functional (2.7) is set to minimize the cumulative number of infections, S(0) � S(T), while keeping the
negative impact of mitigation measures at bay. This is achieved, for the most part, by reducing the daily number of new
infections but also, apparently, by delaying some infections. On the bright side, IðtÞ in the controlled environments gets
bigger than IðtÞ in the uncontrolled case only when t is approaching T. It is reasonable to assume that at this time additional
intervention measures become available that will gradually replace the initial set of controls.

In the running cost, rather thanminimizing the daily number of new infections, one can alsominimize the daily number of
infected individuals. This gives rise to the following objective functional

~Jðx;uÞ :¼
Z T

0
fIðtÞ þ l cðuðtÞÞg dt ¼ RðTÞ � Rð0Þ

g
þ l

Z T

0
cðuðtÞÞ dt: (3.11)

That is, instead of maximizing S(T), this functional aims to minimize R(T). Using the similar argument as above, one can show
that this optimal control strategy, ~uðtÞ, will also be decreasing starting with some point ~t2½0;TÞ.

4. Numerical algorithm for learning control

To learn the optimal control function, u : ½0;T �/R, which is guaranteed to take values in [0, 1) according to Theorem 3.1
above, we employ a deep learning based numerical algorithm. This algorithm can be easily modified to the case of vector-
valued controls. At the first step, we parameterize u as a deep neural network (DNN), denoted by uq, with parameters
q2Rm. In our experiments, we chose a simple fully connected network with both input and output layer dimension 1
(because in our setting, the input is time t2 [0, T] and the output is a scalar). We set uq to have 4 hidden layers and each layer
is of size 10. Specifically, the function uq is defined by

uqðtÞ ¼ wu
5 sðW4z4 þ b4Þ þ b5; where zlþ1 ¼ sðWlzl þ blÞ for l ¼ 0;1;2;3
and z0dt2R. Here s(z)d tanh(z) is the activation function that applies to the argument componentwisely, and q ¼ (w5,W4,
W3,W2,W1,W0, b5, b4, b3, b2, b1, b0) is a column vector that contains all the components of these variables, wherew52R10,W4;

W3;W2;W12R10�10,W02R10�1, b52R, b4;b3;b2;b1;b02R10, and all vectors are considered as column vectors. The numberm
is the dimension of q (i.e., the total number of components in q), which is m ¼ 471 in our case. Introduce the notation
[(q)d J(x, uq), where J is defined in (2.7) and x follows the dynamics (2.2) with the given initial state x(0)¼ (S(0), I(0), R(0)). To
find the optimal uq, we essentially need to compute Vq[(q) for any q and apply the gradient descent to update q. In our al-
gorithm, we employ the neural ordinary differential equation (NODE) method (Chen, Rubanova, Bettencourt, & Duvenaud,
2018) which computes Vq[(q) in the following way. First, with the given q, one solves the ODE forward in time:
999
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_xðtÞ ¼ f ðxðtÞ; uqðtÞÞ; t2½0; T�; (4.1)

with initial value x(0) ¼ x and f(x, u) defined in (2.2). Second, one solves the augmented adjoint equation backward in time:
0

ð _pðtÞ; _aðtÞÞ ¼ �ðpðtÞ vxf ðxðtÞ; uqðtÞÞ; pðtÞ vuf ðxðtÞ;uqðtÞÞ vquqðtÞÞ; t2½0; T�; (4.2)

with terminal value (p(T), x(T)) ¼ (�Vh(x(T)), 0). Here x, p, a are all row vectors at each time t. Then it can be shown that

Vq[(q)¼ a(0) (Chen et al., 2018). The algorithm is summarized in Algorithm 1 below. The implementation, training and testing
were conducted in Python 3.9.6 with PyTorch 2.1.0 and Torchdiffeq 0.2.3. We initialize the parameter q using Xavier
initialization built in the PyTorch package.

Algorithm 1. Neural ODE method to solve the optimal control problem of u

Require: Cost function c and weight l > 0. Network structure uq. Initial guess q.
Ensure: Optimal control uq with trained q.
repeat
Solve x forward in time using (4.1).
Solve (p, a) backward in time using (4.2).
q )q � ma(0).

until converged.
A few details about the performance of Algorithm 1 and our numerical simulations.

C In our experiments, we try 4 different cost functions, c ¼ c(u). Details and discussion will be given in Section 5;
C The weight, l, scales the cost function, c ¼ c(u), and can be critical to the optimal control solution. In Section 5, we

conduct empirical study on different values of l;
C One can apply any numerical integrator (e.g., Euler, mid-point, Runge-Kutta) to solve (4.1) and (4.2). We used the 4th

order Runge-Kutta method (rk4) built in the PyTorch package;
C One can either solve (p, a) as in (4.2) or solve x jointly backward in time to avoid saving x(t) obtained forward in (4.1) in

the memory;
C In Algorithm 1, one can choose the step size m > 0 and terminate the algorithm after a prescribed number of iterations,

K. We used Adam (Kingma et al., 2015) with deterministic gradient and set these parameters as m¼ 0.001 and K¼ 1, 000
and other parameters as default. The results appear to be stable for values around them;

C Since the control problem is not convex in (x, u), it is not guaranteed that our solution is the global minimizer. This is,
unfortunately, a common issue in solving optimal control problems. Nevertheless, in all experiments, the numerical
solutions obtained by our method appear to satisfy the constraint u(t)2 [0, 1) for all t2 [0, T] and du(t)/dt < 0 starting
with some t 2 [0, T);

C In the above Algorithm, we followed the idea of neural ODE (Chen et al., 2018) and set a(t) to be the auxiliary variable in
order to compute the gradient of the loss function [(q) with respect to q. Specifically, by solving the augmented adjoint
dynamics (4.2) backward in time, one can show that a(0)¼ Vq[(q), which allows to find the (local) minimizer of the loss
function [(q) by the gradient descent method. More details about the derivation can be found in (Chen et al., 2018).
5. Numerical results and discussion

In this section, we apply the deep learning based numerical algorithm to solve the optimal control problem (2.7) subject to
SIR model (2.2) with the following four cost functions:

c1ðuÞ ¼ �0:830071 lnð1� u2Þ
c2ðuÞ ¼ �0:672850ulnð1� uÞ
c3ðuÞ ¼ �u� lnð1� uÞ
c4ðuÞ ¼ 1:424546u2:

The weight 0.830071 in c1 is chosen to minimize the distance

Z 1

0
wðzÞjc1ðzÞ � c3ðzÞj2 dz; wðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
;

(the same for c2, c4). Doing so makes ci's close in thew-weighted 2-norm sense. See the comparison of these cost functions in
Fig. 1.
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Fig. 1. Comparison of different cost functions c.
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In our experiments, we consider l as 0.1, 0.05, 0.01, and 10�7. For l¼ 0.1, the environment is close to no control as shown in
Fig. 2, since the penalty on control is weighted highly. All values of l larger than 0.1 resulted in a similar behavior and hence
they were omitted here.

As l gradually decreases, we see that controls start to make impact as they become cheaper to implement. For example, as
shown in Fig. 3, when l ¼ 0.05, we observe that c1(u), c2(u), and c3(u) generate similar control strategies that effectively
suppress the cumulative number of infected people (or equivalently maximize S(T)).

We note that all three controls, c1(u), c2(u), and c3(u), make a considerable positive impact on how the epidemic unfolds.
Even though IðtÞ in the controlled environment is still growing (see Table 1), the daily number of infected people remains low
for a long time. However, as expected from our theoretical analysis, for all three cost functions, c1(u), c2(u), and c3(u), and
l ¼ 0.05, the corresponding control strategies, u(t), begin to decrease after some point.

Thus, towards the end of the study period in a controlled environment the daily number of infected humans, IðtÞ, bypasses
the corresponding IðtÞ in the environment with no control.

As mention in Remark 3.4, the objective functional (2.7) is set to minimize the cumulative number of infections, Sð0Þ�
SðTÞ, which it does successfully as it is evident from Table 2. This is achieved, for the most part, by reducing the daily number
of new infections but also, apparently, by delaying some infections.

As one can clearly see from Fig. 3 and Tables 1 and 2, the cost of the optimal control strategy, u(t), corresponding to c4, is
still very high for l¼ 0.05, and this control does not defeat the outbreak. The reason for this control being different from c1(u),
c2(u), and c3(u) can be understood from Fig. 1, which shows that the cost, c4(u), is greater than the cost of all other controls
between u ¼ 0.2 and u ¼ 0.8.
Fig. 2. Weight l ¼ 0.1.
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Fig. 3. Weight l ¼ 0.05.
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When l reaches 0.01, the scale on the cost function is small and all optimal control strategies, u(t), corresponding to cost
functions c1(u), c2(u), c3(u), and c4(u) appear to suppress infections more aggressively, as illustrated in Fig. 4. The actual values
of IðtÞ are shown in Table 3. The total numbers of infected people up to day t, Sð0Þ� SðtÞ, for all four control functions, c1(u),
c2(u), c3(u), and c4(u), are presented in Table 4.

As l continues to decrease, we see similar behavior as in Fig. 4 except that u(t) become larger and the infections are further
suppressed. For example, when l¼ 10�7, the cost is very lightly weighted and hence one can impose greater control as shown
in Fig. 5.

Again, the behavior of c4(u) is different. Asmentioned above, this control requires an explicit constraint, u(t)2 [0,1]. If not,
it is easy to get u(t) > 1 (especially for small l), which is not realistic because it makes S0(t) > 0. With the constraint enforced,
u(t), corresponding to c4(u), is likely slipping into a local minimum.

As illustrated in Fig. 5, by the time u(t) begins to decrease, the epidemic is effectively under control. Hence, as it follows
from (3.10), the decline in u(t) for t � t is negligible and the daily number of infected people, IðtÞ, remains very low for t � t.

For all numerical experiments presented in this section, we let the entire population, N be 107 people with Ið0Þ ¼ 200,
Rð0Þ ¼ 0, and Sð0Þ ¼ N� 200.
Fig. 4. Weight l ¼ 0.01.
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Fig. 5. Weight l ¼ 10�7.

Table 1
Number of infected people IðtÞ versus day t for l ¼ 0.05

Day No control c1 c2 c3 c4

0 200 200 200 200 200
10 1626 423 423 407 1600
20 12542 889 891 824 12341
30 92164 1856 1882 1660 90714
40 643531 3898 4004 3370 634826
50 2358721 8104 8348 6785 2344806
60 2852657 16674 17093 13546 2858895
70 1722500 34405 35574 27592 1731405
80 834814 69687 72449 57021 839919
90 373748 137590 143188 118394 376160
100 164980 276638 282921 245423 166065
110 71628 567049 572008 479114 72103
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We use T ¼ 120, which mimics a 4-months time frame. This value of T allows us to realistically assume that individuals
recovered from COVID-19 still have immunity and stay in the removed class, R, for the entire duration of the study period.
Furthermore, we take b¼ 0.3 and g¼ 0.1 days�1, which correspond to the reproduction number,R ¼ 3, and the recovery rate
of 10 days.
Table 2
Total number of infected people up to day t, N� SðtÞ, for l ¼ 0.05

Day No control c1 c2 c3 c4

0 200 200 200 200 200
10 2339 734 731 709 2303
20 18723 1835 1843 1724 18425
30 138618 4154 4182 3786 136445
40 993903 9034 9212 7991 980029
50 4179153 19132 19626 16404 4146211
60 7574716 39793 40813 33135 7557842
70 8800810 82846 85337 67540 8795738
80 9181982 169453 175482 138477 9180310
90 9316270 339228 352155 285376 9315647
100 9367572 682997 703593 592907 9367317
110 9388987 1389004 1413628 1187340 9388880
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Table 3
Number of infected people IðtÞ versus day t for l ¼ 0.01

Day No control c1 c2 c3 c4

0 200 200 200 200 200
10 1626 335 340 333 339
20 12542 559 575 550 567
30 92164 932 973 912 951
40 643531 1563 1660 1522 1599
50 2358721 2616 2829 2542 2649
60 2852657 4380 4818 4245 4431
70 1722500 7447 8269 7155 7587
80 834814 12778 14502 12221 13336
90 373748 22520 26401 21821 25197
100 164980 43921 50317 42319 52546
110 71628 95049 97855 87251 117329

Table 4
Total number of infected people up to day t, N� SðtÞ, for l ¼ 0.01

Day No control c1 c2 c3 c4

0 200 200 200 200 200
10 2339 604 612 600 615
20 18723 1276 1304 1261 1289
30 138618 2394 2474 2358 2437
40 993903 4287 4485 4189 4369
50 4179153 7424 7899 7250 7554
60 7574716 12685 13704 12335 12865
70 8800810 21705 23742 20996 22079
80 9181982 37149 41310 35740 38214
90 9316270 64362 73392 62132 68915
100 9367572 118524 135484 114391 134473
110 9388987 236989 256274 222679 281497
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6. Conclusions

In our study, we combine theoretical analysis with rigorous numerical exploration of an optimal control problem for the
early stage of an infectious disease outbreak. We design an objective functional aimed at minimizing the cumulative number
of cases. The running cost of control, satisfying mild, problem-specific, conditions generates an optimal control tragectory,
u(t), that stays inside its admissible set for any t 2 [0, T]. For the optimal control problem, restricted by SIR compartmental
model (Susceptible / Infectious / Removed) of disease transmission, we show that the optimal control strategy, u(t), may
be growing until somemoment t2 [0, T). However, for any t2 [t, T], the derivative, dudt , becomes negative and u(t) declines as
t approaches T possibly causing the number of newly infected people to go up. So, thewindow from0 to t is the time for public
health officials to prepare alternative mitigationmeasures, such as vaccines, testing, and antiviral medications, and to plan for
the deployment of rescue equipments like ventilators and beds.

The impact of u(t) decreasing towards the end of the early stage depends on the weight, l. If l is relatively large, then the
decline in u(t) for t � t

̄
may be significant, which can result in a considerable surge in the daily number of infected in-

dividuals, IðtÞ, for t� t. On the other hand, if l is small, then by the time t¼ t the epidemic is effectively under control. Hence,
as it follows from (3.10), the decline in u(t) for t � t is negligible and the daily number of infected people, IðtÞ, remains very
low for t � t.

Our theoretical findings are illustrated with important numerical examples showing optimal control strategies for various
cost functions and weights. Simulation results provide a comprehensive demonstration of the effects of control on the
epidemic spread and mitigation expenses, which can serve as invaluable references for public health officials. The important
next step is to consider the case of vector-valued controls that, on top of early non-medical interventions (such as social
distancing, restrictions on travel and mass gatherings, isolation and quarantine of confirmed cases), include treatment with
antivirals and the optimal vaccination strategy.
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