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Abstract: The populations in the vicinity of surface coal mining activities have a higher risk of
morbidity due to diseases, such as cardiovascular, respiratory and hypertensive diseases, as well
as cancer and diabetes mellitus. Despite the large and historical volume of coal production in
Queensland, the main Australian coal mining state, there is little research on the association of coal
mining exposures with morbidity in non-occupational populations in this region. This study explored
the association of coal production (Gross Raw Output—GRO) with hospitalisations due to six disease
groups in Queensland using a Bayesian spatial hierarchical analysis and considering the spatial
distribution of the Local Government Areas (LGAs). There is a positive association of GRO with
hospitalisations due to circulatory diseases (1.022, 99% CI: 1.002–1.043) and respiratory diseases
(1.031, 95% CI: 1.001–1.062) for the whole of Queensland. A higher risk of circulatory, respiratory
and chronic lower respiratory diseases is found in LGAs in northwest and central Queensland; and a
higher risk of hypertensive diseases, diabetes mellitus and lung cancer is found in LGAs in north,
west, and north and southeast Queensland, respectively. These findings can be used to support public
health strategies to protect communities at risk. Further research is needed to identify the causal links
between coal mining and morbidity in non-occupational populations in Queensland.

Keywords: coal mining; morbidity; Integrated Nested Laplace Approximation (INLA); spatial
regression; area specific risk; cardiovascular diseases; respiratory diseases

1. Introduction

The global demand for energy has determined the growing production and use of
coal in the last 60 years with increasing potential for negative health impacts on people
in the vicinity of expanding coal mining activities. Coal mining emissions are associated
with health effects in multiple body organ systems due to exposure to coal dust and
direct and indirect responses to fine particles [1]. The impacts of particles released from
coal mining on respiratory health have been known for more than a century, especially
in coal miners who have an increased risk of chronic respiratory diseases, lung cancer
and coal mine dust lung disease [2,3]. Coal dust that enters the lungs of occupationally
exposed populations induces an inflammatory response determined by the aggregation
of carbon-laden macrophages and can form nodular lesions within the lung [4]. Coal
mining activities release particulate matter (e.g., PM10 and PM2.5) that can be associated
with diseases of the circulatory and respiratory systems [5,6]; these particles include metals
that are classified as carcinogens [7,8]. Other releases from coal mining include fine particle-
bounded polycyclic aromatic hydrocarbons (PAHs) that have been associated with adverse
effects in respiratory organs [9,10]. The mix of particles released in coal mining activities
can determine diseases in exposed populations because of their ability to reach the smallest
sections of the respiratory system and their potential effect on the endothelium and the
inflammatory response [11,12].
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Increasing research in the last two decades has found that non-occupational popu-
lations in the vicinity of surface coal mining activities are also at higher risk of increased
mortality and morbidity [13,14]. A higher mortality due to cancer and cardiovascular,
kidney, and respiratory diseases has been found in populations in counties with active
open surface coal mines in the United States-USA [15–17]. These populations have in-
creased morbidity associated with coal mining, including higher incidence of cancers of
the colon [18], lung, and breast [3,19], and respiratory diseases [20], diabetes mellitus [21]
and hypertensive diseases [22]. Children in coal mining areas in the United Kingdom have
an increased risk of respiratory diseases and other conditions, such as diseases of the eyes,
ears and skin [23,24]. In addition, studies in the USA and China have found an increased
risk of low-birth-weight outcomes and live births with birth defects in women in coal
mining regions [25–27]. Although most of these studies followed an ecological design, the
higher morbidity in coal mining areas in countries in North America and Europe and China
suggests that populations in regions with large coal mining activities, such as Queensland
in Australia, are at risk of higher incidence of various health conditions associated with
exposures to coal mining releases.

Australia is the fourth biggest coal producer globally with Queensland, the main coal
mining state, having a total output of 1.2 billion tons of coal mined between 2015 and
2020 [28,29]. In this period, 53 mines have been operating in the state, including two of the
largest coal mines worldwide [29,30]. Despite the volume of coal production historically
in Queensland, there is little research on the association of coal mining emissions and
releases with health outcomes in populations in the vicinity of the mines. Some studies
have identified health problems that range from mental and social health conditions to a
deficiency in access to health care [31,32]. However, these studies focused mostly on coal
workers and their families rather than wider exposed populations in coal mining areas,
and the links between coal mining exposures and other diseases, such as cardiovascular
and respiratory diseases, in the general population are not yet known.

This study explores the association of coal mining exposures with morbidity in pop-
ulations in the Queensland Local Government Areas (LGAs). The analysis considered
the higher concentration of the Queensland population around urban areas and the large
expansion of coal mines in rural and less populated areas by implementing a Bayesian
spatial regression. Spatial regression models incorporate the spatial correlation between
geographical areas to provide robust risk estimates and better quantification of their un-
certainty; an approach increasingly used in epidemiological studies of mortality and
morbidity in Queensland [33–36]. This study estimated the association of coal production
with hospitalisations due to six disease groups in Queensland, using a Bayesian spatial
hierarchical analysis.

2. Materials and Methods

This study was approved by the University of Queensland Research Ethics Committee
(16 November 2016) with ethics approval granted by the Children’s Health Queensland
Hospital and Health Service Human Research Ethics Committee: HREC/16/QRCH/320.
The study followed an ecological design, using the Queensland LGAs as the ecological
units to implement a cross-sectional analysis of LGA-level hospitalisations merged with
surface coal mining coal production in million tons (Mt) and sociodemographic as well as
environmental risk factors per LGA, for the period 1996–2010.

2.1. Data

Hospitalisation data were obtained from the Queensland Hospital Admitted Patient
Data Collection (QHAPDC) that collects data on all admitted patients separated from both
public and licensed private hospitals and private day surgeries in Queensland. Six disease
groups were determined to have a higher incidence in non-occupational populations in
the vicinity of coal mining, from an analysis of studies summarising the evidence on
morbidity associated with coal mining [3,13,14]. These disease groups include: circulatory,
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respiratory, chronic respiratory and hypertensive diseases, as well as lung cancer and
diabetes mellitus [13,22]. The number of hospitalisations for each disease group were
extracted from the data using the International Classification of Diseases (ICD) codes in the
QHAPDC. Each hospitalisation was geocoded to an LGA-map defined elsewhere [37]. In
brief, LGA boundaries in the census years 1996, 2001 and 2006 were assessed to produce
a map with LGA boundaries consistent across the whole study period 1996–2010. Two
2006-LGAs with very small populations and non-overlapping boundaries were collapsed
to overlap the boundaries of a larger 2001-LGA. The LGA-map included 125 LGAs with
an average area of 13,839 km2 (quartile-1: 1443 km2, quartile-3: 16,349 km2). There are
important differences in the age structure of the population composition between the
Queensland LGAs, therefore standardised (i.e., age-adjusted) hospitalisation rates (sHR)
were calculated to account for the potential confounding effect of these differences, using
the indirect standardisation method [38]. The 2001 census data was used for the standard
population following the Australian Bureau of Statistics (ABS) recommendation to use
this as the reference population for demographic statistics until 2018 [39]. Coal production
(i.e., coal gross raw output) in Mt from open surface coal mines was calculated at the
LGA-level using data from the Department of Natural Resources and Mines [40] (details in
Supplementary Materials).

The ecological design of the study involves a potential risk of ecological bias, there-
fore sociodemographic and environmental factors were included to adjust for potential
confounders. Sociodemographic data taken from the ABS included the count of indige-
nous people and people employed in the mining industry and the Index of Socioeconomic
Disadvantage (ISD). The ISD summarises several measures about the economic and social
conditions of the LGAs population, such as household income, people with no qualifica-
tions, or people in low skill occupations [39]. A low score indicates greater socioeconomic
disadvantage in an LGA, relative to the whole of the State. To account for gender dif-
ferences, standardised rates of hospitalisation for each sex were included, as there were
important differences related to the age structure for each sex [41]. Standardised rates of the
indigenous population and mining employees and the sHR for each gender were calculated
using the same method of the sHR, as using a similar standardisation for independent
variables is a validated approach to reduce the risk of ecological bias [42] (standardised
rates of hospitalisation for each sex in the supplementary materials). Population density
was calculated as the total LGA population per area (in km2). The rate of hospitals per
population were calculated using hospital data from the National Health Performance
Authority [43]. The average temperature per LGA for the study period was calculated
using data from the Australian Bureau of Meteorology (BOM) [44]. No multicollinearity
of the independent variables was verified with a variance inflation factor (VIF) test where
collinearity was considered for a VIF ≥ 8 [45].

2.2. Analysis

A Bayesian hierarchical regression model was used to estimate the hospitalisation
risk for each disease group, considering the spatial distribution of the Queensland LGAs.
Bayesian spatial models can reduce the estimated variance between geographical areas
with small populations and make it easier to assess the prediction of uncertainty based
on maximum likelihood and are a robust approach for spatial analyses of Queensland
geographical areas [46,47]. The model was fit with the R-INLA package that uses the
Integrated Nested Laplace Approximation (INLA) [48]. This is an efficient alternative to
computationally and time intensive simulations using Markov Chain Monte Carlo methods
to produce robust regression estimates in analyses of spatially auto correlated data [49].

For the i-th LGA, the age-adjusted count of hospitalisations was modelled as

yi ∼ Poisson(λi)
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where the mean λi is defined in terms of a rate ρi for the population of each LGA. To
map the risk of hospitalisation for each LGA, the linear predictor was defined on the
logarithmic scale

ηi = log(ρi) = α + si + ui (Disease mapping model)

where α is the intercept and the parameters s and u represent the spatial structure and the
unstructured component (i.e., random effects) according to the Besag-York-Mollie (BYM)
specification [47]. The spatial structure was defined as an adjacency matrix with a queen
specification (i.e., all neighbours with sharing boundaries), an optimal specification tested
in spatial analyses of Queensland LGAs [37].

To estimate the association of the sHR for each disease group with coal production,
adjusting for sociodemographic and environmental covariates, the linear predictor was
defined as

ηi = log(ρi) = α + βcpCPi + βxXxi + si + ui (Ecological model)

where CP is the surface coal mining coal production in Mt and X represents the vector of so-
ciodemographic and environmental covariates with their respective regression coefficients
βx. All predictors were scaled for computational efficiency and ease of interpretation.

Bayesian analyses incorporate priors for estimating parameters and for drawing
statistical conclusions. A prior distribution assigns a probability to the value of a parameter
to be estimated [50]. As the BYM model incorporates priors on the log of the structured and
unstructured effect precisions (s and u), a sensitivity analysis was done to compare the effect
of the prior on the regression estimates. Two non-informative priors previously assessed in
analyses of Queensland geographical areas [46] and the default R-INLA non-informative
prior [50] were compared. This analysis identified the prior that produced the best-fit model
for each disease group using the deviance information criterion (DIC) for comparison
(details in Supplementary Material). Important associations were highlighted when the
regression coefficient’s credible intervals (95% CI) did not cross the null value of 1. The LGA-
specific posterior means were used to map the LGA-specific risk of hospitalisation (residual
relative risk of hospitalisation for each LGA compared to the whole of Queensland). Finally,
the LGA-specific risk of hospitalisation estimated in the ecological model was assessed
only in the LGAs with coal mining activities. The maps were drawn with the R-package
T-map [51].

3. Results

The study cohort consisted of 2,705,245 hospitalisations across the 15-year (1996–2010)
study period (1,206,635 hospitalisations in females and 1,498,610 in males). Table 1 shows
the summary statistics of the standardised hospitalisation rate for each disease group.

Table 1. Summary statistics of the hospitalisations for each disease group.

Disease Group ICD-10 Code Mean SD Min Max

Diseases circulatory system I00–199 10,030 29,344 52 277,180
Diseases respiratory system J00–J99 7499 20,702 79 199,305
Hypertensive diseases I10–I16 208 499 0 4793
Chronic lower respiratory diseases J40–J47 2267 6449 17 63,423
Diabetes mellitus E08–E13 1201 3280 3 31,082
Cancer of bronchus and lung C34 438 1283 0 12,192

SD: Standard deviation. ICD-10: International Classification of Diseases 10th version.

There were 16 LGAs with coal mining activities in both central east and southeast
Queensland (Figure 1), with an average coal production of 19.77 Mt in the study period.
The summary statistics for coal production and the sociodemographic and environmental
covariates are shown in Table 2.
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Figure 1. LGA-specific risk of hospitalisation (relative to the whole of Queensland) in the disease 
mapping and ecological models, and relative risk of hospitalisation estimated in the ecological 
model for the LGAs with coal mining activities only (coal mining LGAs). 
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Figure 1. LGA-specific risk of hospitalisation (relative to the whole of Queensland) in the disease
mapping and ecological models, and relative risk of hospitalisation estimated in the ecological model
for the LGAs with coal mining activities only (coal mining LGAs).
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Table 2. Descriptive summary statistics of the predictors.

Predictor Mean SD Min Max

Coal production (Mt) 19.8 79.9 0 694
Index Socioeconomic Disadvantage 957.7 69.6 472.1 1048.9
Average temperature (◦C) 22.2 2.0 16.4 26.2
Population density * 53.7 170.0 0.004 1313.1
Rate of hospitals per population 0.5 0.9 0 6.4
Standardised rate of indigenous population ** 78.2 133.4 0 743.5
Standardised rate of mining employees ** 23.2 49.2 0 248

* LGA population per area (in Km2). ** per 1000 people. SD: Standard deviation.

Table 3 shows the exponentiated posterior mean of the spatial regression estimates in
the ecological model for each disease group. A positive association of coal production with
the sHR was found for circulatory diseases (1.022, 99% CI: 1.002–1.043) and respiratory
diseases (1.031, 95% CI: 1.001–1.062). On the original scale, the regression coefficients mean
that each Mt of coal mined was associated with an increase of 81.7 and 82.4 hospitalisations
per 1000 people in the study period, for circulatory and respiratory diseases respectively.

The spatial distribution of the LGA-specific risk of hospitalisation is shown in Figure 1.
A higher risk of hospitalisation in LGAs grouped in northern, southern and central Queens-
land was more evident for diabetes mellitus and circulatory diseases and cancer of the
bronchus and lung respectively. There were important differences in the spatial distribution
of the risk of hospitalisation for all disease groups between the disease mapping model
compared with the ecological model. Once the association of coal production and sociode-
mographic factors were taken into account (i.e., ecological model), LGAs with a higher
risk of hospitalisations were found in northwest and central Queensland for circulatory,
respiratory and chronic lower respiratory diseases, and in north and southeast Queensland
for cancer of the bronchus and lung, respectively. A higher risk of hospitalisation for
hypertensive diseases and diabetes mellitus was identified in LGAs in North and West
Queensland, respectively.

The LGA-specific risk of hospitalisation estimated in the ecological model, only for
the LGAs with coal mining activities is shown in Figure 1 under the coal mining LGAs
maps. Most coal mining LGAs are found in central and southeast Queensland. The
coal mining LGAs with an increased risk of hospitalisation were: 7 (44%) for circulatory
diseases, 9 (56%) for respiratory diseases, 11 (69%) for chronic lower respiratory diseases,
9 (56%) for hypertensive diseases, 8 (50%) for lung cancer and 8 (50%) for diabetes mellitus.
Duaringa and Emerald had an increased risk of hospitalisations for all disease groups
while an increased risk of hospitalisations for all disease groups except one was found
in Banana (except diabetes mellitus), Bauhinia (except diabetes mellitus), and Ipswich
(except hypertensive diseases). All other coal mining LGAs had an increased risk of
hospitalisation for four or less disease groups. Four coal mining LGAs had an increased
risk of hospitalisation for only one disease group: Wambo (lung cancer), Rosalie (chronic
lower respiratory diseases), Peak Downs (respiratory diseases), and Belyando (hypertensive
diseases), and Nebo had no risk of hospitalisations for any of the disease groups (the LGA-
specific risk of hospitalisation in the ecological model for each disease group is shown in
the Supplementary Material).
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Table 3. Regression coefficients in the ecological model for each disease group.

Diseases Circulatory System Diseases Respiratory System

Posterior Mean *
(95% CI) SD Posterior Mean

(95% CI) SD

Intercept 0.354 (0.349–0.359) 1.005 Intercept 0.324 (0.319–0.329) 1.008
Coal production 1.022 (1.002–1.043) 1.008 Coal production 1.031 (1.001–1.062) 1.015
Index of Social Disadvantage 0.999 (0.969–1.03) 1.012 Index of Social Disadvantage 0.99 (0.944–1.039) 1.025
Standardised rate of
indigenous population 0.982 (0.949–1.017) 1.014 Standardised rate of

indigenous population 0.942 (0.887–0.999) 1.031

Population density 0.998 (0.982–1.013) 1.006 Population density 1.003 (0.977–1.031) 1.014
Rate of hospitals per population 1.01 (0.986–1.034) 1.009 Rate of hospitals per population 1.022 (0.993–1.051) 1.015
Average temperature 1.006 (0.971–1.043) 1.014 Average temperature 0.988 (0.924–1.058) 1.035
Standardised rate of
hospitalisation-females 1.132 (1.097–1.168) 1.012 Standardised rate of

hospitalisation-females 1.161 (1.07–1.258) 1.042

Standardised rate of
hospitalisation-males 1.183 (1.15–1.217) 1.011 Standardised rate of

hospitalisation-males 1.344 (1.247–1.447) 1.039

Standardised rate of
mining employees 0.965 (0.942–0.988) 1.009 Standardised rate of

mining employees 0.968 (0.935–1.002) 1.018

Hypertensive diseases Chronic lower respiratory diseases

Posterior mean
(95% CI) SD Posterior mean

(95% CI) SD

Intercept 0.012 (0.011–0.012) 1.021 Intercept 0.099 (0.097–0.1) 1.009
Coal production 1.039 (0.977–1.106) 1.032 Coal production 1.025 (0.996–1.054) 1.014
Index of Social Disadvantage 0.982 (0.887–1.087) 1.053 Index of Social Disadvantage 0.965 (0.923–1.009) 1.023
Standardised rate of
indigenous population 0.919 (0.818–1.033) 1.061 Standardised rate of

indigenous population 0.944 (0.896–0.994) 1.026

Population density 0.995 (0.946–1.047) 1.026 Population density 1.007 (0.985–1.03) 1.011
Rate of hospitals per population 1.058 (0.977–1.142) 1.041 Rate of hospitals per population 1.021 (0.988–1.054) 1.017
Average temperature 0.978 (0.86–1.114) 1.068 Average temperature 0.989 (0.937–1.044) 1.028
Standardised rate of
hospitalisation-females 1.559 (1.397–1.741) 1.058 Standardised rate of

hospitalisation-females 1.18 (1.134–1.228) 1.020

Standardised rate of
hospitalisation-males 1.263 (1.133–1.409) 1.057 Standardised rate of

hospitalisation-males 1.34 (1.285–1.397) 1.021

Standardised rate of
mining employees 0.969 (0.898–1.044) 1.039 Standardised rate of

mining employees 0.971 (0.939–1.003) 1.017

Diabetes mellitus Cancer of bronchus and lung

Posterior mean
(95% CI) SD Posterior mean

(95% CI) SD

Intercept 0.047 (0.046–0.048) 1.011 Intercept 0.015 (0.014–0.015) 1.012
Coal production 1.032 (0.999–1.065) 1.016 Coal production 1.001 (0.977–1.026) 1.013
Index of Social Disadvantage 0.966 (0.922–1.011) 1.024 Index of Social Disadvantage 0.987 (0.959–1.016) 1.015
Standardised rate of
indigenous population 0.881 (0.823–0.943) 1.035 Standardised rate of

indigenous population 0.977 (0.937–1.017) 1.021

Population density 1.002 (0.979–1.025) 1.012 Population density 0.992 (0.985–0.999) 1.004
Rate of hospitals per population 1.005 (0.96–1.05) 1.023 Rate of hospitals per population 0.969 (0.922–1.016) 1.025
Average temperature 1.013 (0.958–1.071) 1.028 Average temperature 1.003 (0.981–1.026) 1.011
Standardised rate of
hospitalisation -females 1.276 (1.214–1.341) 1.026 Standardised rate of

hospitalisation -females 1.232 (1.194–1.27) 1.016

Standardised rate of
hospitalisation -males 1.323 (1.269–1.38) 1.022 Standardised rate of

hospitalisation -males 1.327 (1.3–1.354) 1.010

Standardised rate of
mining employees 0.949 (0.913–0.986) 1.020 Standardised rate of

mining employees 0.981 (0.951–1.012) 1.016

Notes. * denotes coefficients have been exponentiated, CI: Credible Interval. SD: Standard deviation.

4. Discussion

This study found a positive though small association of coal production with the stan-
dardised rate of hospitalisation due to circulatory and respiratory diseases in Queensland.
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The spatial Bayesian analysis allowed the identification of multiple LGAs with a higher
risk of hospitalisation due to these diseases in north and southeast Queensland. We also
identified specific LGAs with a higher risk of cancer of the bronchus and lung, hypertensive
diseases and diabetes mellitus, grouped in north and southeast, north, and west regions
of the state, respectively. However, we did not find evidence of an association between
coal production and hypertensive and chronic lower respiratory diseases, diabetes mellitus
or cancer of the bronchus and lung for the whole of Queensland. Duaringa and Emerald
were identified as the LGAs with coal mining activities (coal mining LGAs) that presented
a higher risk of hospitalisations for all disease groups and Nebo was the only coal mining
LGA without an increased risk of hospitalisation for any disease group—although these
associations in Nebo were not strong (credible intervals < 95%).

The higher risk of circulatory and respiratory hospitalisations associated with coal
mining in Queensland found in this study concurs with previous research that has identified
an increased risk of morbidity in coal mining areas in America and Europe. Coal production
has been associated with a higher risk of hypertension and chronic obstructive pulmonary
disease (COPD) in people in coal mining counties in the USA [22] and increased medical
consultations due to respiratory symptoms and asthma were estimated in children living
near open cast mines in the United Kingdom [24]. Although our analysis found an increased
risk of hospitalisation for circulatory and respiratory diseases in the whole of Queensland,
the differences between LGAs could be identified in the random effects estimates (i.e.,
LGA-specific risk). The identification of the health risk associated with coal mining for
specific geographical areas has been done in some studies in the USA [17,19,52] but very few
studies have investigated these associations in non-occupational exposed populations in
Australia, oraddressed larger areas or single communities rather than all of Queensland’s
geographical districts [53–56]. We found important differences between all six disease
groups across the coal mining LGAs, with two of these (Duaringa and Emerald) having an
increased risk of hospitalisation for all disease groups, although one coal mining LGA with
one of the highest levels of coal production (Nebo) had no increased risk of hospitalisation
for any of the diseases studied.

These differences can be related to the distribution of sociodemographic risk factors
with important determinants of morbidity associated with coal mining, such as socioe-
conomic status being less defined in the Queensland LGAs compared to district areas in
other coal mining regions, such as the USA [57]. There are very small differences in the
socioeconomic disadvantage between all LGAs and especially the coal mining LGAs (with
less than 10% difference between quartiles 1 and 4 of the ISD). The size and population
density of the Queensland LGAs also have significant variations, with a ratio smaller/larger
LGA = 1.2 × 10−4 and most of the population in LGAs near urban centres and or close
to coastal regions. An important characteristic of the Bayesian spatial models used in
this study is the identification of the risk variability between LGAs. This can support the
design and implementation of public health strategies to protect exposed populations and
to improve the characterisation of health impacts required for the coal mining industry
sector [58,59]. However, analyses in smaller geographical areas would be required to
increase the spatial resolution of the estimates to identify specific communities at risk.

The higher risk of morbidity associated with coal mining in Queensland, particularly
for circulatory and respiratory diseases, can be associated with the higher levels of air
pollutants in Australian coal mining areas, especially particle matter [6,60]. Fine particle
matter (PM2.5) can deposit in the smallest sections of the respiratory system causing alveolar
damage and can access the blood circulation to be uptaken by the vascular endothelium
which can lead to endothelial dysfunction, both of which are mechanisms associated with
respiratory and cardiovascular disease [5]. High levels of PM2.5 are also linked to an
altered inflammatory response associated with higher blood levels of cytokines, such as
interleukin-6, interleukin-8 and tumour necrosis factor alpha that induce cellular necrosis or
apoptosis and affect the transcription of genes [11,12]. Queensland has the second highest
average ambient levels of particulate matter associated with coal mining in Australia [61]
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which can be linked to the higher risk of circulatory and respiratory diseases identified in
our analysis.

Other airborne contaminants including toxic metals can be associated with these dis-
eases in populations in coal mining areas. According to the National Pollutant Inventory,
Queensland has the highest loads of selenium (Se), arsenic (As) and volatile organic com-
pounds (VOCs) from coal mining in Australia and the second highest loads of nitrogen
dioxides, lead (Pb) and sulphur dioxide (SO2) [61]. Exposure to As through contami-
nated water is associated with lung dysfunction and respiratory disorders in children
and adults [62–64], and higher blood and cellular levels of VOC metabolites and Se have
been associated with endothelial dysfunction, a key determinant of circulatory diseases,
in epidemiological and in-vitro studies [65,66]. Multiple studies have demonstrated the
association of Pb exposures with respiratory symptoms and diseases, such as asthma and
respiratory infections [67–69], and increased levels of clinical and serological markers of
circulatory diseases [70,71]. The higher coal production levels associated with the increased
risk of respiratory and circulatory diseases found in this study can be associated with
higher levels of air pollutants, including PM2.5 and SO2, toxic metals and VOCs that play an
important role in the development of these diseases. The proximity to coal mining activities
could be associated with other overlapping paths of exposure, such as dust from blasting
and traffic and transportation. This can help explain the potential links of coal mining
releases with these diseases in Queensland, and their spatial trend with an increased risk of
hospitalisation in several coal mining LGAs in central Queensland.

Whereas we found multiple coal mining LGAs with a higher risk of circulatory and
respiratory diseases, the specific-LGAs analysis also identified a higher risk of chronic lower
respiratory diseases, diabetes mellitus and cancer of the bronchus and lung in coal mining
LGAs in central and southeast Queensland. The association of coal mining with lung cancer
has been identified in multiple studies of occupational and non-occupational exposed
populations [3,13,72]. Exposure to particulate matter released in open-pit coal mines has
been associated with chromosomal damage and genetic instability which are determinants
of a higher risk of cancer in communities in coal mining areas [73]. Risk assessment
studies have also estimated an increased risk of cancer in general populations exposed
to coal mining, mediated by PM10-and Pm2.5-bound trace metals and polycyclic aromatic
hydrocarbons, via ingestion, inhalation and or dermal absorption [9,74]. In addition,
chronic respiratory diseases, such as COPD, have been associated with chronic exposure
to coal mining in other coal mining regions [22] and long-term exposure to NO2, one of
the biggest coal mining emissions in Queensland [61,75]. Other metals emissions with a
high intensity associated with coal mining in Queensland, especially As, are associated
with an increased risk of diabetes mellitus and metabolic syndrome [76] which concurs
with previous research that identified a higher risk of metabolic diseases in other coal
mining regions [21]. The above studies support the possibility that the increased risk of
hospitalisation for multiple diseases groups in Queensland found in this study could be
associated with releases from coal mining activities.

Limitations

The limitations of the data determined our design of an ecological study where
hospitalisation counts were aggregated at the LGA level. This implies a risk of ecological
bias (i.e., analysis of data at the group level can produce spurious associations). To reduce
this risk of bias, in addition to adjusting for sociodemographic and environmental factors,
the covariates expressed as rates used the same standardisation as the dependent variable,
and the Bayesian spatial regressions incorporated a mixed effects model, both of which
are approaches that can reduce the risk of ecological bias [77,78]. However, although
this analysis estimated a statistical association of coal production with circulatory and
respiratory diseases in Queensland, our findings do not provide a measure of causality
between coal mining exposures and these diseases. Further research with data at the
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individual level is required to identify the causal relationship between coal mining and
these diseases in Queensland.

Whereas the Bayesian spatial approach could identify the spatial distribution of
morbidity risk for all disease groups, it did not address statistical associations potentially
changing over time as we implemented an aggregated time series analysis considering the
small number of hospitalisations per year for some of the disease groups (e.g., hypertensive
and chronic lower respiratory diseases, cancer of the bronchus and lung and diabetes
mellitus). This allowed having a larger number of hospitalisations in each geographical
area to increase the robustness of the estimates, but we could not identify temporal trends
of hospitalisations. In addition, we did not include periodic changes in the production of
coal because data on coal production across the study period were limited and have some
inconsistencies if measured for different time periods. Further research including temporal
changes in hospitalisations and coal production is required to identify the potential effect
of periodic variations in coal production on hospitalisations in Queensland.

5. Conclusions

A higher production of coal from surface coal mining was associated with a small
increase in the risk of hospitalisation for circulatory and respiratory diseases in Queensland,
after taking sociodemographic and environmental factors into account. Local Government
Areas with coal mining activities in central Queensland were identified to have a higher risk
of hospitalisation for these diseases as well as chronic lower respiratory diseases, diabetes
mellitus and cancer of the bronchus and lung. A Bayesian spatial regression analysis was
used to estimate the risk in specific geographical areas which can be an important tool
to support public health strategies to protect at-risk populations and strengthening the
assessment of health impacts of coal mining. Further research on individual responses
to coal mining exposures and higher spatial and temporal resolution level is necessary
to investigate the causal links between coal mining and morbidity in non-occupational
exposed populations in Queensland.
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