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A B S T R A C T   

Understanding the biological roles of all genes only through experimental methods is challenging. A computa
tional approach with reliable interpretability is needed to infer the function of genes, particularly for non-coding 
RNAs. We have analyzed genomic features that are present across both coding and non-coding genes like 
transcription factor (TF) and cofactor ChIP-seq (823), histone modifications ChIP-seq (n = 621), cap analysis 
gene expression (CAGE) tags (n = 255), and DNase hypersensitivity profiles (n = 255) to predict ontology-based 
functions of genes. Our approach for gene function prediction was reliable (>90% balanced accuracy) for 486 
gene-sets. PubMed abstract mining and CRISPR screens supported the inferred association of genes with bio
logical functions, for which our method had high accuracy. Further analysis revealed that TF-binding patterns at 
promoters have high predictive strength for multiple functions. TF-binding patterns at the promoter add an 
unexplored dimension of explainable regulatory aspects of genes and their functions. Therefore, we performed a 
comprehensive analysis for the functional-specificity of TF-binding patterns at promoters and used them for 
clustering functions to reveal many latent groups of gene-sets involved in common major cellular processes. We 
also showed how our approach could be used to infer the functions of non-coding genes using the CRISPR screens 
of coding genes, which were validated using a long non-coding RNA CRISPR screen. Thus our results demon
strated the generality of our approach by using gene-sets from CRISPR screens. Overall, our approach opens an 
avenue for predicting the involvement of non-coding genes in various functions.   

1. Introduction 

A biochemical pathway in a cell includes the role of both coding and 
non-coding RNA (ncRNA). The functional role of ncRNA is prominently 
in the trans or cis-regulation of the coding genes whose products are the 
backbone of biochemical pathways [1]. The ncRNAs have various mo
lecular mechanisms through which they exert their functions in myriad 
biological and cellular functions at multiple regulatory levels, making it 
harder to study their functions experimentally [2,3]. Moreover, unlike 
protein-coding genes, the sequences of non-coding genes are most often 
not conserved across species, and finding their homologs is challenging 

[4]. Therefore, experimental validation of functions in model organisms 
for ncRNAs does not necessarily reflect their role in human cells. Low 
homology and low sequence conservation of multiple genes, including 
ncRNAs, also create hurdles for sequence-based prediction of their 
function, traditionally done by many scientific groups. 

A promising way to dissect the functions of the genes is through 
computational analysis by leveraging the existing knowledge of gene- 
function or gene-disease relationships. Gene ontologies represent 
empirically annotated relationships between disease, functions, and 
genes. Multiple research groups have previously utilized these ontol
ogies to predict genes’ associations with functions and diseases [5]. Here 
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we have used the word “function” to represent ontological gene-sets of 
molecular functions and biological processes for ease of reading. Pre
dictive models are good at identifying similarities between data points 
and are extensively used in gene function identification by comparing 
the features of unknown and known genes. However, using the most 
relevant biological signals to train a predictive model is still crucial. The 
features of the functionally related genes must essentially represent the 
functional classes for robust prediction. A straightforward approach to 
gene function prediction is comparing the primary nucleotide and amino 
acid sequences of genes and proteins of known function with the genes 
of unknown function [5–8]. However, it has been shown that alternative 
isoforms can be functionally divergent [9], and primary sequence 
comparison for non-coding genes would be of limited use because of the 
lack of reference to non-coding genes whose biological functions are 
known. Some researchers have used the ontological relationships of 
genes to identify disease-related ncRNA genes [10], but the number of 
annotations of ncRNA genes in the ontologies is less and would result in 
less coverage. Few studies have used gene expression data as features for 
identifying the functions of non-coding genes based on the co-expression 
of the coding genes [11]. Liao et al. constructed a co-expression network 
of coding and non-coding genes to predict the function of long 
non-coding RNAs (lncRNAs) [12]. However, a vast number of func
tionally unrelated genes can show co-expression at a given instant, and 
genes involved in the same pathway may not exhibit any correlation in 
expression [13]. Thus, current approaches could be ineffective in uti
lizing the right input genomic features to predict non-coding gene 
functions. 

It is well known that non-coding RNAs (ncRNAs) regulate the tran
scription of genes involved in the same biological process through in
teractions with chromatin, RNA, and protein [14]. A few other 
computational approaches have also been proposed to predict the 
function of non-coding genes using different combinations of features. 
Utilizing lncRNA-protein interaction and protein-protein interaction 
network, Zhang et al. proposed a bi-random walk model, BiRWLGO, to 
predict the function of long non-coding RNAs [15]. PLAIDOH is a 
computational method that integrates transcriptome, subcellular local
ization, enhancer landscape, genome architecture, chromatin interac
tion, and RNA-binding data and generates statistically defined output 
scores for each lncRNA to functionally associate them to coding genes in 
different cancer conditions [16]. However, epigenome and TF-binding 
patterns at the promoters have not been explored properly for predict
ing ncRNA function. Epigenomic features, along with the binding of 
transcription factors (TFs) and cofactors, are present across coding and 
non-coding genes as they are required to modulate gene expression [17, 
18]. Epigenetic marks and chromatin structure work in tandem with the 
TFs in the modulation of gene expression [19]. In the past, epigenome 
profiles have been used to predict gene expression [20] and the asso
ciation between disease and single nucleotide polymorphism (SNP) 
[21]. At the same time, a few methods and studies that published TF 
ChIP-seq profiles have tried associating binding patterns of TFs with 
genes for individual functions [22–24]. Using TFs as features can also 
help make insights into the combinatorics (synergy and cooperativity) 
involved in regulating different functions [25]. However, a compre
hensive analysis of combinatorics of binding patterns of large numbers 
of TFs at promoters and their associations with the function of genes has 
rarely been done. 

Here, we devised an approach to use combinatorics of epigenome, 
TF-binding, and CAGE-tag patterns at promoters of genes to predict the 
ontology-based function of genes. Accordingly, to capture all the sig
natures of elements involved during the modulation events that would 
occur during the transcription of a gene, we leveraged a large number of 
publicly available ChIP-seq data of TFs, histone modification marks, and 
DNase I hypersensitivity sites along with cap analysis gene expression 
(CAGE) tags to include the expression of genes including non- 
polyadenylated ones. In order to gain more insight into the reliability 
of our method, we performed downstream analysis involving top 

predictive TF and cofactor binding profiles for clustering of functions 
and associating genes with those clusters of gene-sets. We also made 
insights into the specificity of simple combinatorics of TFs (i.e., TF-pair) 
towards functions. 

2. Results 

We developed our approach based on the hypothesis that coordi
nated expression of functionally associated genes is brought about by a 
few common key regulatory factors that are present across both coding 
and non-coding genes. We downloaded ChIP-seq profiles of TFs, histone 
modification marks, and DNase-seq and CAGE-tags from different 
sources and estimated their read-count within 1 Kbp of transcription 
start sites (TSS) of genes, in other words, 2Kbp wide region around 
promoter. The flowchart of our approach (GFPredict) is shown in Fig. 1. 

2.1. Gene functions are predictable using the epigenomic and TF-binding 
signals at the promoter regions 

Machine learning (ML) algorithms were trained for each of the bio
logical functions of the ontologies. We trained five different ML models 
using TFs binding patterns and other features (ChIP-seq data of histone 
modifications and cofactors, DNase hypersensitivity profile, and CAGE 
tags) for a total of 9559 function gene-sets downloaded from the MSigDB 
database [26]. We performed two approaches for predictive modeling. 
For the first approach, we used ChIP-seq profiles of TF and cofactor 
(n = 823) and histone modifications ChIP-seq (n = 621) and DNase-seq 
(n = 255) and CAGE tags (n = 255) from a total of 1954 non-diseased 
samples. While using this approach, we achieved very good pre
dictions for many functions, such as using random forest; the sensitivity 
was above 80%, and the minimum specificity was 90% for 425 
gene-sets. The other four ML models (Lasso-based linear regression, lo
gistic regression with L2-regularization (ridge), SVM, and XGBoost) 
showed 100–300 gene-sets with a sensitivity of 80% and specificity of 
90% (Fig. 2 A). Further, we found that AUROC (area under the receiver 
operating characteristics curve) for 555 gene-sets was greater than 0.9 
(considered excellent) using the random forest model with a balanced 
test set (Fig. 2B). Whereas 4467 functions (gene-sets) had good AUC 
(between 0.8 and 0.9) with the random forest model on the balanced test 
sets [27]. 

For the second approach, we used 823 TF and cofactor ChIP-seq li
braries (736 TFs and 87 cofactors) from normal (non-diseased) samples 
for estimating feature scores. However, with this second approach, the 
number of functions with similar predictability did not reduce sub
stantially. Using the threshold criteria of 80% sensitivity and 90% 
specificity, we had 318 functions using random forest. We took the 
union of functions with very good predictability (sensitivity > 80%, 
specificity > 90%) from 5 ML models. A total of 670 functions had very 
good predictability from at least one of the five ML models using only TF 
and cofactors. However, using all features (TF, Histone modification, 
CAGE-tags, DNase-seq), in the first approach, we had an increase of only 
15% in the number of functions (total number = 773) (Fig. 2 C) with 
very good predictability (sensitivity > 80%, specificity > 90%) with at 
least one ML model. When we used the criteria of sensitivity greater than 
70%( with specificity > 90%), the number of functions based on union 
from 5 ML models was above 1300 using the second approach (with TF 
and co-factor ChIP-seq) as features (see Supplementary Figure 1B in 
Supplementary File 1). The evaluation metrics for ML model fit on each 
gene-set, are provided in Supplementary File 2. 

2.2. Non-random nature and relevance of high predictability 

To ensure that the high predictability achieved using our approach is 
non-stochastic, we constructed a null model as a control. For this pur
pose, we checked if modeling on ‘false gene-sets’ is possible apart from 
the gene-sets annotated empirically. We created 200 false gene-sets by 
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randomly shuffling the genes from existing gene-sets. The best- 
performing random forest algorithm trained on these false gene-sets 
showed an overall balanced accuracy of less than 55% on average. In 
comparison, the balanced accuracy of the models on the empirically 
annotated gene-sets is 75% on average, as shown in Fig. 2D. Our result 
indicates that good predictability is possible only for biologically rele
vant gene-sets, and there is an inherent pattern of regulation exhibited 
by a set of common regulators at the promoter sites of the genes asso
ciated with the same biological function. 

3. Inference from clustering of functions 

Further, we used a direct approach in studying the function cor
egulation due to the combinatorics of TFs to get an insight into major 

functional groups of coding and non-coding RNA. We performed clus
tering of functions with more than 60% confidence score (1423 gene- 
sets) using the shared top predictive TFs and cofactors (see Methods). 
We found 50 (Fig. 3 A) prominent clusters of functions (Supplementary 
File 3) based on shared top predictors. In addition, we found that in 
some clusters, the majority of the functions were either involved in 
similar major cellular activity (Supplementary File 3). Therefore, we 
manually curated and labeled the clusters with a major cellular process 
term. For example, one of the large clusters (cluster-47) is related to the 
cell cycle process and consists of members ‘regulation of cell cycle 
process’, ‘cytokinesis’, ‘microtubule-organizing center’, ‘nucleolus’, 
‘regulation of cellular protein localization’ (Fig. 3 A). Some of the top 
predictive transcription factors and cofactors shared among the func
tions of cluster-47 are CTCF, XRN2, BRD4, SMARCA4, and PARP1 

Fig. 1. Flowchart of our analysis to predict gene functions using epigenome and TF binding profiles.  
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(Fig. 3B). The role of CTCF, MYC, PARP-1, and SMARCA4 in cell cycle 
regulation has been reported by previous studies [28–31]. One other 
cluster (cluster-26) shown in Fig. 3 A consisted of early development 
and morphogenesis-related terms. Some of the shared top predictors for 
functions in cluster-26 included POU5F1 [32], RNF2, and SMARCB1 
[33,34], SIX1 [33], which are known to regulate genes involved in early 
development. 

In some clusters, the members consist of unrelated ontological 

function terms but can have a non-discernible role in the overall major 
cellular process. For example, in cluster-47, the majority of the members 
of the clusters have an apparent role in the major cellular process– cell 
cycle activity but a gene-set ‘negative regulation of catabolic process’ 
(part of cluster 47) might look different. A detailed analysis reveals that, 
during the cell cycle, there is an increase in anabolic processes to build 
large molecules (DNA and structural components) [35,36] needed for 
proliferation and reduction in the breakdown of protein complexes 

Fig. 2. An overview of the predictive power of epigenome profiles, especially transcription factor binding patterns at promoters for predicting gene function. A) Bar 
plot showing the number of functional gene-sets which had good predictions on the test set (80% sensitivity and 90% specificity) using five different machine 
learning (ML) models. The upper panel shows the number of functions with the good prediction by ML models using 853 transcription factor (TF) ChIP-seq profiles. 
The lower panel shows the ML models using five different types of profiles (TF, cofactor, and histone modifications ChIP-seq, DNase-seq, CAGE-tags). B) The box plots 
of AUC-ROC (area under the curve of receiver operating characteristic) for all gene-sets are shown for five ML models. The AUC values here are an average of five-fold 
runs for every gene-set. The number of gene-sets with AUC above 0.9 and between 0.8 and 0.9 is mentioned above the boxes. C) The bar plot shows the number of 
union sets of functions with good predictability (80% sensitivity and 90% specificity) using any of the 5 ML models. D) A plot to show the sanity of our approach. 
Here the density plot in yellow shows the distribution of balanced accuracy achieved with false gene-sets (gene-sets created by random sampling). Other density plots 
show the distribution of balanced accuracy achieved using empirically annotated gene-sets. The density plot for some functions with balanced accuracy above the 35 
percentile among all the functions is also shown. 
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(catabolic digestion) [37]. Hence, “negative regulation of catabolic 
processes” could be a part of groups of functions involved in the cell 
cycle [37]. Such indirect role of functions in major cellular processes like 
reproduction (cluster-44) and immune system (cluster-7) can be 
deduced in other clusters (Supplementary File 3). Thus, the emergence 
of clusters of functions broadens the scope of linking gene-sets to major 
cellular processes and provides an opportunity to study the specificity of 
the binding patterns of the regulators (TFs and cofactors) at the systems 
biology level. 

4. Independent validations and comparison with other methods 

4.1. Pubmed abstract mining of co-occurrence of gene names and function 
term 

To check if the predicted results are of any biological relevance, the 
co-occurrence of the predicted gene term and the corresponding 

biological function term of the ontology was searched in the abstracts of 
the PubMed articles published from 1990 to 2021. The boxplot in  
Fig. 4 A shows the total co-occurrence of predicted gene term and 
function term pairs compared against random gene term and random 
function term pairs as control. This result adds to the confidence in our 
predicted results. We also corroborated our prediction with known 
disease-gene associations (see Supplementary Methods and Supple
mentary Tables 1 and 2. in Supplementary File 1). 

4.2. Comparison of predicted results with other gene function prediction 
methods 

Gene function prediction is one of the classical problems in compu
tational biology. Some of the recent methods to predict the ontology- 
based functions of genes have utilized different features like primary 
amino acid sequence (NetGo 2.0, DeepGo), gene expression (correlation 
AnalyzeR), and network inference using co-functionality of genes 

Fig. 3. Clustering functions based on shared predictive TFs and cofactors ChIP-seq profiles reveal their potential overlap for major cellular processes A) tSNE plot and 
visualization of DBSCAN-based clustering of functions (gene-sets). Here, every dot in the tSNE plot shows a gene-set. The details about the two clusters are displayed 
as a heatmap showing the similarity in the number of common top predictors (ChIP-seq profiles in top 20 predictors). The two clusters are cluster-47, consisting of 
functions related to the cell cycle, and cluster-26, which is related to organ development. B) The dot plot shows the value of feature importance of ChIP-seq profiles of 
TFs and cofactors for functions belonging to cluster-47 (cell cycle-related functions). The feature importance value not lying in the top 20 is shown with a minimum 
dot size. 
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obtained through transcriptomic profiles (GenetICA-Network) [40–43]. 
We compared the abstract mining results on the predictions of these 
methods against the novel associations inferred by our approach 
(Fig. 4B). The co-occurrence of input ontology term and predicted gene 
term at least once in the PubMed abstracts for randomly selected 20 
genesets (see Methods) of our method is significantly more compared to 

the same input gene terms and their predicted ontology terms by 
AnalyzeR, DeepGo, NetGo 2.0, and GenetICA-Network [40–43]. 

Fig. 4. Validation of predictions of novel association between function and genes. A) The box plot shows the frequency of co-occurrence of function terms and 
corresponding gene names in PubMed abstracts. The left box plot shows the frequency of the novel predictions made by GFPredict, while the right one shows random 
pairs of functions and genes. The novel and random associations between function and genes were not present in the gene-sets we used for training or testing. B) 
Benchmarking and comparison for five different methods for finding associations between functions and genes. C) Validation using CRISPR screen for ‘Viability’ 
function for genes predicted to be part of a gene-sets belonging to a cluster associated with a major cellular process, “cell cycle process.” In the corresponding study, 
authors found that genes with high CRISPR z-score for viability were mostly associated with cell cycle and DNA-repair [38]. The stripped bars indicate the score of 
random genes, and the non-stripped bars indicate predicted genes’ scores. The difference between z-scores for predicted genes (for cell cycle associated cluster) and 
random genes is not high in other CRISPR screens for ‘pyroptosis,’ ‘resistance to chemicals, and ‘phagocytosis.’ D) Validation using CRISPR screen for the function of 
‘Phagocytosis’ for genes predicted to be part of gene-sets of the cluster associated with the ‘immune system.’ Phagocytosis is an important part of immunity [39]. The 
stripped bars indicate the score of random genes, and the non-stripped bars indicate predicted genes’ scores. The difference between z-scores for predicted genes (for 
the immune system) and random genes is not high in other CRISPR screens for ‘pyroptosis,’ ‘resistance to chemicals, ’ and ‘peptide accumulation.’. 
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5. CRISPR-based validation of association of genes with major 
cellular processes of clusters of functions 

Our approach of grouping functions based on common top predictors 
(TFs or cofactors) leads to new ways of finding links (direct and indirect 
associations) between coding and non-coding genes with few major 
cellular processes. In order to evaluate the results of discovering such 
new links between genes and major cellular processes, we analyzed 
available CRISPR screens. First, we used the CRISPR screen: ‘viability’ in 
human pluripotent stem cells (hPSC), where the hPSC-enriched essential 
genes appeared to be mainly encoding transcription factors and proteins 
related to the cell cycle and DNA-repair [38]. The novel predicted genes 
in functions belonging to cluster-47 (mainly associated with the cell 
cycle process) had significantly higher z-scores compared to an equal 
number of random genes in the same CRISPR screen for the viability of 
hPSC (Fig. 4 C). However, the novel predicted genes for cluster-47 had 
comparatively less z-scores in other CRISPR screens: ‘pyroptosis’, 
‘resistance to chemicals’, and ‘phagocytosis’ [44–46]. 

In another validation, we found a higher difference between the z- 
score for predicted genes for the gene ontology term ‘immune effector 
process’ and random genes in the CRISPR for phagocytosis compared to 
other CRISPR screens (see Supplementary Figure 2.). Further, we vali
dated cluster-7 consisting of functions labeled to be involved in the 
major cellular process ‘immune system’ (Supplementary File 3). The 
novel predicted genes of cluster-7 had higher z-scores compared to an 
equal number of random genes in the same screen for phagocytosis, 
which is considered a fundamental process of immunity [39]. However, 
the same novel predicted genes for cluster-7 had comparatively less 

z-scores in other CRISPR screens (see Fig. 4D) [44,46,47]. CRISPR 
screens’ validations assert the associations of novel genes with major 
cellular processes and link the underlying regulatory factors (top pre
dictors) to those biological processes. 

6. Explainability through insight into the association of binding 
patterns of TF-pairs with functions 

The PubMed-based abstract mining result and model’s performance 
metrics indicate the reliability in the prediction of our approach; how
ever, there could still be a need to study combinatorics of TF-binding for 
better explainability of the predictions. Hence, we tried to understand 
the simplest combinatorics of TF-pair binding patterns to gain more 
interpretability and reliability in our approach. TFs exhibit pleiotropic 
effects, meaning TFs can have multiple biological functions [48]. As 
expected, a few TFs had high feature importance scores (from the 
random forest model) for many functions [49]. To analyze the predictive 
pleiotropy of TF-pairs, we searched for TF ChIP-seq pairs (from the same 
cell-types), which emerged as top predictors of different functions. A few 
TF ChIP-seq pairs were among the top predictors of multiple functions 
(Fig. 5 A). 

The occurrence of a TF-pair among the top important features across 
multiple biological functions indicated their pleiotropic predictive 
power [50] (Fig. 5 A). Further, for every TF pair, we checked for the 
diversity of functions for which they were top predictors. For diversity 
estimation, we counted TF-pairs occurrences in the clusters of 
co-regulated functions (Supplementary File 4). As expected, we found 
that TF-pairs appeared to have predictive pleiotropy for many functions 

Fig. 5. Insight into the co-occurrence of Transcription factor (TF) pairs among predictors and their synergy. A) The count of functions (pink) and the clusters of 
functions (green) for which TF ChIP-seq pairs appeared among the top 20 predictors in the same cell type. The panel on the right shows the same counts as a scatter 
plot. The TF-pairs shown with symbols are C3: E2F4-GATA1, C4: MAZ-GATA1, F3: ZNF366-SPI1, F4: SPI1-STAT1. B) Heatmap showing the significance of overlap of 
TF ChIP-seq peaks in GM12878 cells at promoters. C) The box plot of values of significance (-log(P-value)) of overlap of promoter-peaks of TF ChIP-seq pairs in 
GM12878 cells which appeared together as top predictors in one or more functions. On the right is the box plot of the significance of the overlap of promoter peaks 
for random pairs of TF ChIP-seq profiles in GM12878 cells. 
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but had less diversity regarding clusters of co-regulated functions. One 
of the reasons for such a reduction of diversity of clusters of function for 
TF-pairs could be that the clustering was done based on common top 
predictors. However, as described above, the clusters highlighted the 
coherence of member functions for major cellular processes. Therefore, 
the diversity of pleiotropic predictive power of TF-pairs using clusters 
was needed to understand their regulatory effect better. ChIP-seq pat
terns of BATF and RUNX3 at promoters in B cells (GM12878) appeared 
together among the top 20 predictors for 11 functional gene-sets. 
However, these 11 gene-sets belonged to only 2 clusters of functions 
mainly involved in immune cell activation and differentiation (Supple
mentary File 5). Similarly, DNA-binding profiles at promoters in adi
pocytes by CEBPA and E2F4 appeared to be top predictors for 8 
gene-sets (functions) belonging to a single cluster and mainly associ
ated with response to the stimulus by peptides (like insulin), mono
saccharides, and related metabolic functions. Thus, the utility of our 
analysis highlighting some TF-pairs with more specificity toward certain 
clusters of functions is that it can help to confirm the prediction of 
involvement of coding and non-coding genes for a few major cellular 
processes. However, a group of TF-pairs was the top predictor of the 
gene-sets belonging to more diverse clusters of co-regulated functions. 
Especially pairs involving CTCF showed more diversity in a cluster of 
co-regulated functions. The TFs, ZCAN5FB, and CTCF appeared as the 
top predictors for functions belonging to more than 12 different 
co-regulated clusters. Similarly, TET3 and CTCF appeared as the top 
predictor of functions from 6 different clusters. CTCF is known to have a 
more general effect than other TFs in addition to its general role as 
insulator [51]. Nevertheless, its co-occurrence with certain TFs as the 
top predictor also highlights another possible role in various cellular 
processes. Furthermore, the same analysis for pleiotropy and diversity 
was repeated for TF-pairs ChIP-seq profiles of different cell-types (see 
Supplementary Figure 3 A in Supplementary File 1). 

In order to further make insight into the non-random aspect of the co- 
occurrence of TF-pairs (Fig. 5B) as top predictors, we investigated the 
overlap of the peaks of their ChIP-seq profiles in the GM12878 cell line. 
It was based on the notion that if TF-pair occurrence as top predictors 
has no relation with corresponding biological processes, then the over
lap of their peaks would appear as a random event. For this purpose, we 
used the R package ‘ChIPpeakAnno’ [52] and analyzed TF ChIP-seq 
peaks in the GM12878 cell line. We compared the overlap of 
co-predictor TF-pair ChIP-seq peaks in the same cell-type with random 
TF-pairs as control. Here, co-predictor TF-pair were defined as pairs of 
TF ChIP-seq profiles in GM12878 cells, which appeared among the top 
20 predictors (co-predictive) for any function (Supplementary Figure 3B 
in Supplementary File 1). We found that the enrichment of overlap of 
peaks at promoters in GM12878 for such co-predictive TF-pairs was 
much more significant than random TF ChIP-seq pairs (Fig. 5 C). Such 
observations build confidence in our approach and indicate that the top 
predictors’ analysis offers insights into TF-TF synergy through higher 
co-binding frequency at promoters of the genes involved in the same 
biological functions. 

7. Broader applicability of GFPredict and its utility for 
predicting functions of non-coding RNAs 

Our results hint at the reliability of our approach for ontology-based 
function prediction and dependence on binding patterns of TFs. The 
framework of GFPredict allows for its generalization to apply to the 
other biologically relevant gene-sets. A vast amount of literature high
lights different gene-sets associated with various phenotypes and bio
logical functions. We further focused on a useful application to meet the 
need for reliable prediction and cost-effective validation of gene- 
function associations using a smaller set of experiments. We used pub
lished CRISPR screen datasets to demonstrate the utility of our 
approach. We chose the top 50 genes from each CRISPR screen dataset as 
positives, and the negatives were non-positive random genes in the 

training data. After training GFPredict, we chose the top predicted 30 
genes and validated them using their available CRISPR screen scores. 
Such as, when we used the top 50 positives from the CRISPR screen for 
resistance to chemicals (in fibroblasts) [53] to train GFPredict, the top 
30 predicted genes for the same function had significantly higher 
(P-value < 0.004) scores than the random 30 genes in same CRISPR 
screen [53]. Similarly, in the cell cycle CRISPR screen, the top 30 pre
dicted genes had a significantly higher (P-value < 1e-4) score than the 
random 30 genes [38]. We have shown results for two more CRISPR 
screen-based analyses in Fig. 6A. Overall such results show that 
GFPredict can be used to predict related genes to any of the biologically 
relevant gene-sets in addition to its utility using traditional ontological 
functions. 

7.1. Application of expanding small CRISPR screens for non-coding genes 
function prediction 

The GFPredict-based analysis enabled the prediction of the associa
tion of 1200 long non-coding genes with various biological processes 
and molecular functions (see Table 1 and Supplementary Table 3 in 
Supplementary File 1). In order to test the reliability of the function 
prediction of ncRNAs, we designed a suitable evaluation method. We 
trained GFPredict on the top 50 genes from the cell cycle CRISPR screen 
consisting mainly of coding genes [38] and further validated the pre
dictions using a different CRISPR screen built to identify lncRNA genes 
involved in the cell cycle [54]. The lncRNAs in the top 30 genes pre
dicted to be associated with the cell cycle by GFPredict had significantly 
higher CRISPR-screen scores than random sets of the same size in two 
(GM12878, K562) of the cell lines (see Fig. 6B). 

Our approach for clustering functions based on co-predictive TFs and 
cofactors helped associate non-coding RNA with a few major cellular 
processes (Supplementary File 6). We further used ncRNA CRISPR 
screens to validate the association of ncRNAs to these major cellular 
processes (see Fig. 3 A). Hence we choose ncRNAs predicted to be part of 
gene-sets of cluster-47, which is labeled to be associated with the cell 
cycle (see Supplementary File 3 and Fig. 3). The ncRNA genes predicted 
to be part of gene-sets in cluster-47 had a substantially higher (p-value <
0.01) CRISPR screen score for the cell cycle in comparison to random 
genes (see Fig. 6C). Our analysis and validation indicate an impactful 
application of our approach that our model, trained using a CRISPR 
screen of coding genes, can be used to predict functions of non-coding 
genes for which CRISPR screens are rarely available. 

8. Discussion 

To predict the function of non-coding RNAs, researchers would have 
to use new assays or genomic features in prediction systems. Here we 
have shown the feasibility of exploiting TF-binding profiles as features 
because they are a common set of regulators across coding and non- 
coding genes involved in the same function, as shown by our results 
(Fig. 6B) [65]. 

Using the union of different ML models, we achieved very good 
predictability (sensitivity > 80% and specificity > 90%) for more than 
780 functions with all features and 650 functions using 853 TFs and 
cofactors ChIP-seq (736 TFs and 87 cofactors). With random forest ML 
models, for more than 50% of functions (5022 out of 9559 gene-sets), we 
achieved a minimum of 0.8 AUROC, often considered to represent good 
prediction [27]. We independently validated our results using different 
datasets. We also compared predictions of GFPredict to other methods’ 
predictions that use various other features such as primary amino acid 
sequence (NetGo 2.0, DeepGo), gene expression (correlation AnalyzeR), 
and gene-cofunctionality based network inference (GenetICA-Network) 
[40–43]. Such comparison with the different features-based models 
highlights that our approach of using epigenome and TF-binding pat
terns at promoters can be a very effective feature for predicting the 
function of genes. Compared to other features, it also provides an 
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Fig. 6. Validation of predicted coding and non-coding genes using CRISPR screens. A) CRISPR scores of the top 30 predicted genes from the GFPredict model, which 
was trained on the top 50 genes of CRISPR screens against CRISPR scores of random genes. The top 30 predicted genes were not part of the training set. B) CRISPR 
scores of lncRNA genes among the top 30 predicted genes in the lncRNA-CRISPR-screen for cell cycle by GFPredict trained using the top 50 positive coding genes of a 
different cell-cycle CRISPR screen (Yilmaz et al.). Among the top 30 predicted genes, there were 15 lncRNA genes. C) CRISPR scores of 52 lncRNA genes predicted to 
be in the cluster with the major cellular process, cell cycle (custer-47 shown in Fig. 3.), compared against the scores of random genes in lncRNA CRISPR screen for 
cell cycle. 

Table 1 
List of predicted functions of non-coding RNAs with experimental evidence.  

Ontology Predicted non-coding gene Literature evidence 

GO_STEROL_HOMEOSTASIS LINC02356 [55] 
GO_HEART_DEVELOPMENT AP001528/ENSG00000280339 [56] 
GO_EYE_DEVELOPMENT AC078909.1 [57] 
GO_PHOSPHOLIPID_METABOLIC_PROCESS ENSG00000257023 [58] 
GO_SYNAPSE_ORGANIZATION MIR4281 [59] 
GO_NEURON_MATURATION ENSG00000274367 [60] 
GO_NEGATIVE_REGULATION_OF_INTERLEUKIN_6_PRODUCTION LINC00528 [61] 
GO_REGULATION_OF_HOMEOSTATIC_PROCESS MIR658 [62] 
GO_KERATINOCYTE_DIFFERENTIATION PAUPAR [63] 
GO_IN_UTERO_EMBRYONIC_DEVELOPMENT MIR5001 [64]  
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additional benefit of predicting the function of non-coding RNA. 
Further, in the downstream analysis, the clustering of functions 

revealed an interesting pattern. Most functions that shared the same top 
predictors (especially ChIP-seq profile from the same cell type) were 
related to similar major cellular processes through manual curation and 
labeling. Thus, despite having a seemingly unrelated biological role, 
functional gene-sets showed convergence in association with major 
cellular processes like cell cycle and transport. Such observation is 
because of shared similarity in patterns of some epigenomic and TF- 
binding features at promoters of genes. On the same logic, if a few 
epigenomic and TF-binding features appear to be important common 
determinants (or predictors) for two known gene-sets, the genes of those 
gene-sets could likely be involved in the same major function. In other 
words, our analysis goes beyond the boundary of currently defined gene- 
sets of function to highlight the effect of TFs. For example, for cluster-47, 
the top predictors are MYC, PARP-1, CTCF, and SMARCA4, which are 
involved in the cell cycle [28–31]. There are few indirect studies on the 
coregulation of functions by the combinatorics of TF and cofactor 
binding [66]. However our study could be unique due to analysis of 
common top predictive TFs that show the interdependence between 
molecular or biological processes and may also explain the perturbation 
effect on a key regulator that can potentially affect a myriad of functions. 
Two major aspects highlight the novelty of our study: i) deciphering 
combinatorics of TF-binding at promoters for association with functions. 
ii) grouping known gene-sets using top co-predictors and finding com
mon major cellular process terms for their groups. Such groups of 
functions with biological and molecular functions have the potential to 
provide a better explanation in CRISPR screens. CRISPR screens reveal 
the involvement of coding and non-coding genes in larger cellular 
contexts like cell cycle and resistance to pathogens [38,67]. GFPredict’s 
derivable clusters of ontological functions representing major cellular 
processes (cell cycle and immune response) can further broaden the link 
between CRISPR screen genes and those specific ontological molecular 
and biological functions. 

Overall downstream analysis shows the reliability and sensibility of 
our models, which is directly associated with the prediction of the 
function of non-coding RNAs. The clustering of functions also high
lighted the broader role of a few non-coding RNAs (see Supplementary 
File 6). For example, the non-coding RNA genes–DLG1-AS1, UBL7-AS1, 
LINC00441, and LINC01137 were predicted to be associated with at 
least one of the members of the cluster of functions largely involved in 
cell cycle activity by our approach. Out of these six non-coding RNAs, 
DLG1-AS1 [68] and UBL7-AS1 [69] are reportedly involved in prolif
eration. The other two non-coding RNAs, LINC00441 [70] and 
LINC01137 [71] are reportedly involved in cancer development. Such 
inference about the role of non-coding RNAs in a few major cellular 
processes could help biologists design experiments for validation. 

Our approach of combining the TF and cofactor binding pattern as 
features for gene-function prediction and clustering functions to un
derstand the role of coding and non-coding genes stands out from the 
typical gene-function prediction methods. There are a few tools and 
methods for utilizing transcription factor ChIP-seq profiles in different 
ways, such as the Cistrome BETA suite [72], which predicts transcription 
factors’ repressive or activating behavior. Similarly, Reshef et al. [73] 
published a method for signed linkage disequilibrium profile regression, 
which uses a TF-binding profile to identify genome-wide directional 
effects of functional annotations on diseases. Another tool called MAGIC 
[74] identifies TFs and cofactors responsible for patterns of gene 
expression changes between different conditions. However, there is 
rarely any study on the prediction of the function of coding and 
non-coding genes using TF-binding patterns at promoters. We could not 
find any study on the interpretation of the association of combinatorics 
of the TF-binding pattern at promoters with a cluster of functions, which 
indicates the uniqueness of our approach and analysis. 

We have created a resource for the biologists to corroborate their 
experimental results and utilize our predictions to design the 

experiments to understand the molecular and biological roles of non- 
coding and coding genes. It is to be noted that the current version of 
GFPredict might not be accurate for all ontological gene-sets. As we have 
mentioned, out of 9559 gene-sets, our method has a minimum of 80% 
AUROC for only 5022 gene-sets (52%) using the random forest model. It 
could be due to three reasons; first, the number of positive genes for 
some functions could be too low for training the prediction model; 
second, the number of features (TFs, DNase-seq, CAGE-tags) were 
insufficient. The third reason could be that additional types of features, 
in addition to the TF-binding, epigenome, and CAGE-tags patterns, could 
be needed for many gene-sets. The inclusion of TF-binding signals at 
promoter-bound enhancers could further improve the prediction of gene 
function. With the improvement of the consensus list of enhancer- 
promoter interaction in the context of cell-types in the future, our 
method with minor modification (by adding enhancers) could become 
more accurate and useful. Nevertheless, our analysis provides a useful 
insight into epigenome and TF-binding patterns at the promoters of 
ncRNA genes, which is indicative and useful for inferring their functions. 
We hope that with the advent of new technologies of epigenome 
profiling like FloChIP [75] and multi-CUT&Tag [76], there would be an 
increase in epigenome profiles that would allow GFPredict to have high 
accuracy in predictions for more number of functions. Our study advo
cates using more epigenomic and TF-binding profiles to better under
stand non-coding RNAs’ functions. 

9. Methods 

9.1. Epigenome and TF-binding features’ score calculation for promoters 

Here, we considered each gene ontology as a class and corresponding 
empirically annotated genes as positive labels, and gene function pre
diction is treated as a classification problem. We used the read-counts of 
the epigenome and transcriptome binding profiling assays (DNAse-seq, 
ChIp-seq, CAGE-tags) as features. All the epigenome, TF, and cofactor 
ChIP-seq and CAGE-tags profiles were from human cells and tissues and 
aligned their reads to the hg19 genome version. For the estimation of 
binding scores at promoters, we counted the number of DNA fragments 
(read) lying within one kbp of gene transcription start sites (TSS) (see 
supplementary material for detail). We calculated the number of reads 
around TSS using ChIP-seq (TF, Histone modifications) and DNAse-seq 
profile from the ChIP-Atlas database [77] and CAGE-tags from the 
FANTOM5 database. We used the TSS of non-coding genes from gencode 
(V30) and RefSeq gene transcripts [78,79]. For each gene, we allowed 
multiple transcripts as long as their TSS were at least 500 bp apart from 
each other. In total, we performed our analysis using 89747 promoter 
regions. 

9.2. Prediction method 

For each gene-set in the ontology, we considered genes annotated in 
them as positive and randomly picked an equal number of genes (not 
annotated in the same gene-sets) as negatives and gene function pre
diction is treated as a classification problem. Out of possible 50000 
genes, if we assume that the expected number of positive unknown 
genes belonging to a function is less than 100. Then the background 
probability of being false negative for one randomly chosen gene would 
be less than 0.002 (100/500000). We choose an equal number of neg
atives to positives for each gene-set. Hence if for the same function, we 
have 50 known positive genes in the training set and 50 randomly 
chosen genes in the negative set, with a background probability of false 
negative as 0.002, the probability of one or more positives (false nega
tives) in a set of 50 randomly chosen genes (as negatives) would be less 
than 0.005 (using Binomial test). Based on such estimates, we relied on 
the set of random genes not belonging to a gene-set as negative-set for 
the corresponding function. 

We divided the positives and negatives into a training set (75%) and 
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a test set (25%). The 5 different machine learning models for each gene- 
sets are Random Forest, XGBoost, SVM (support vector machine), linear 
regression-based Lasso, and L2-regularization-based logistic regression 
(Ridge regression). Further, bootstrapping was done to calculate the 
standard deviation in the balanced accuracy by training the models for 
five iterations (see Supplementary Figure 4 in Supplementary File 1). We 
used various criteria to evaluate the test set’s prediction: accuracy, 
balanced accuracy, F1-score and Mathew’s correlation coefficient 
(MCC), and error rate (Supplementary File 2). The Random Forest 
models were implemented using the ‘randomForest’ function from the 
‘randomForest’ R package. XGBoost models were implemented using the 
‘xgb.train’ function from the ‘xgboost’ R package. SVM models were 
implemented using the “svm” function from the “e1071” R package. 
Linear regression using ‘cv.glmnet’ (with alpha = 1) (Lasso) from 
‘glmnet’ R package and logistic regression with L2-regularization (ridge 
regression model) was implemented using ‘cv.glmnet’ (with alpha = 0, 
family = "binomial") from ‘glmnet’ R package. 

After evaluating the test set, we used the trained model to make 
predictions for all promoters (genes) in our list to find novel associations 
between function and genes. To have a stringent selection of novel/ 
unknown gene-function association predictions, we calculated the con
fidence score for every function (gene-sets). 

9.3. Calculating confidence score for gene-sets 

To have robust predictions, we calculated the confidence score of 
predictions for each function. 

For every function (gene-sets), each of their respective trained 
random forest models were used to predict probability scores (of 
belongingness to the gene-sets) for all 89747 promoters (genes). The 
confidence score of a gene-set is the maximum precision, i.e., the 
maximum value obtained on the ratio of the number of true positive 
genes to the number of predicted genes (true positive + false positive) by 
adjusting the threshold to classify the genes as positive or negative, 
using predicted probabilities of the genes. We have considered gene-sets 
having more than a 60% confidence score for our downstream analysis. 

The prediction model evaluation metrics like accuracy, balanced 
accuracy, specificity, sensitivity, etc., the balanced datasets (equal 
number of positives and negatives) were used in training and test sets. 
Only for the estimation of the confidence score, probabilities of the 
positives, and all the non-positives (unbalanced datasets) were used. 

9.4. Balanced accuracy calculation 

Balanced accuracy is a metric used to judge the predictive power of a 
binary classifier. It is often used when there is an imbalance in the 
number of positive and negative (imbalanced classes). Balanced accu
racy is calculated as the arithmetic mean of sensitivity and specificity: 

Balanced accuracy =
sensitivity + specificity

2  

9.5. Method to make inferences about top regulators 

We made inferences about top regulators by estimating feature 
importance while training random forest models. This approach has also 
been used by GENIE3, a top performer in gene-network inference in the 
DREAM 5 challenge [80–82]. Here, instead of gene expression of tran
scription factors, we are using binding affinity to promoters as feature 
scores and predicting the belongingness of a gene to a class. Thus for 
every function, we chose the top 20 predictors with high feature 
importance calculated by the random forest-based approach. 

9.6. Method for clustering functions 

To infer clusters of functions (gene-sets), we first estimated similarity 

scores among functions. The similarity score or closeness among the two 
functions was defined as the number of the TF and cofactor ChIP-seq 
(SRX IDs) profiles among the top 20 predictors for both gene-sets in 
the same directionality with a penalty of the number of common TFs and 
cofactors (in the top 20) with opposite directionality. The similarity 
scores (or closeness) were reverted and translated to get distances 
among functions to apply tSNE-based dimension reduction. Hence the 
distance between gene-sets A and B was calculated as:

d(A,B) = 10 − closeness(A,B) (1)  

Where, 

closeness(A,B) = ΣTFn
TFi∈top20(A and B)sign(cor(TFi,A)) ∗ sign(cor(TFi,B))

(2)  

Where, 
TFi is one of the common TFs out of total n number of common TFs 

(TFn) in top 20 features in random forest model. The function cor(TFi,A)
is the correlation between the read-count score of TFi at promoters and 
the association of genes to function A. Thus if cor(TFi,A, ) is positive, 
then TF is likely to be more enriched at promoters of genes belonging to 
function A. Thus we use the directionality of the association of function 
with the occurrence of top predictive TF to calculate the stringent 
closeness score. The cohesive index was also calculated for every cluster 
as the average distance between individual members (Supplementary 
File 3.). 

Dimension reduction was done using the distance matrix, and 
density-based clustering was performed. For this purpose, the R package 
‘Rtsne’ was used with the option ‘is_distance’ equal to TRUE. After low 
dimensional embedding, DBSCAN was used to find clusters of functions 
using the 2D embedding coordinates provided by ‘Rtnse’ [83,84]. 

9.7. Method for Independent validations using PubMed abstract mining 

To gain confidence in novel predictions and compare our approach 
with other methods, we used PubMed abstract-based validation. Here, 
the ontology term and corresponding predicted gene term are used as 
input. In order to have a good match of the ontology term in a potentially 
relevant abstract, the ontology terms were processed to remove stop 
words (Supplementary Methods in Supplementary File 1). The ‘Bio. 
Entrez’ package was used to search for the co-occurrence of the ontology 
term and its corresponding predicted gene term in the abstracts of the 
research articles in the PubMed database. As a control to this approach, 
ontology function terms were paired randomly with gene terms and 
searched for their co-occurrence with the same parameters. 

9.8. Method for comparison of PubMed abstract mining results for 
predictions of different methods 

A list of 50 genes predicted into randomly selected 20 gene-sets out 
of 1423 gene-sets with more than 60% confidence score (functions) was 
used as input of other methods–Correlation AnalyzeR, DeepGO, 
GenetICA-Network, NetGO 2.0 [40–43]. For the Correlation AnalyzeR 
method, the R library package ‘correlationAnalyzeR’ was used, the 
‘analyzeSingleGenes’ function from the package was used to predict the 
ontology-based labels for the list of 50 genes, and ontology labels with 
the highest score were considered as the final predicted label. If the 
prediction was not available by the method for a gene, its label was left 
blank. 

For DeepGO, GenetICA-Network, and NetGO 2.0 methods, their 
respective web servers were used to get the predictions on the consid
ered list of genes by feeding the relevant protein sequence FASTA files as 
input; the top listed isoform was considered from the Uniport database 
[85]. The prediction label with non-generic terms with the highest score 
from either Biological Processes or Molecular Functions section was 
considered the final label. For non-coding genes and coding genes with 
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less than a 50% prediction score, their labels were left blank. 
PubMed abstract mining was run on all the predictions of different 

methods to get the co-occurrence of the predicted ontology term and 
input gene term using the ‘Bio.Entrez’ package described above. Stop 
words (Supplementary Methods in Supplementary File 1) were filtered 
out from the input terms to avoid matching generic terms. 

9.9. Methodology for transcription factors synergy and pleiotropy 
analysis 

The occurrence of TFs and cofactors as top 20 predictors for the same 
and different cell-types across those biological functions with more than 
60% confidence score was counted. Similarly, with the set of TFs used as 
features, a list of TF-pairs was constructed, and the occurrence of each 
TF-pair among the top 20 predictors across all the biological functions 
was counted. 

9.10. Methodology for evaluation using CRISPR screens 

Validation of genes predicted into the clusters ’cell cycle process’ and 
‘immune system’ was done using CRISPR screens: viability (cell cycle 
and DNA-repair related genes) and phagocytosis [38,45]. The genes 
which had insignificant p-value (>0.05) were removed. The z-scores of 
the genes predicted into the cell cycle and immune system clusters were 
checked against the z-scores of the randomly selected genes. The same 
procedure was used for other control CRISPR data-set shown in Fig. 4 
C-D. 

To demonstrate the broader applicability of GFPredict, the function 
‘predict_related_genes’ with ‘ml_model = random.forest’, the top 50 
genes of different CRISPR screens were used as training sets individually 
[47,53,54,67,86]. The models were fine-tuned by changing the 
n_bootstrap from 3 to 20 to sample more negative points to get the 
highest balanced accuracy. Among all the predicted genes after training 
the model using GFPredict, the top 30 predicted genes were selected, 
and their CRISPR scores were checked and compared against the CRISPR 
scores of random genes. 

To validate the non-coding gene functions, lncRNA CRISPR screens 
were used by intersecting the non-coding genes predicted in cluster-47 
(consisting of cell cycle-related functions) with the CRISPR screen 
genes, and their corresponding scores were compared against the 
random genes [54]. The two scripts (lncrna_crispr_validation.R, pack
age_test_crispr.R) used for all the validation are available at https://gi
thub.com/reggenlab/GFPredict/tree/main/code. 

The lncRNA gene scores, as defined by Liu et al. are as follows: screen 
score = scale[–log10(adjusted P)] + |scale[log2(sgRNA fold change)]| 
[54]. 

9.11. Availability of data and code 

Profiles of ChIP-seq of transcription factors, histone marks, and 
DNase-seq were downloaded from the ChipAtlas database (https://chip 
-atlas.org/) in bedGraph format, which can be processed by extension of 
the DFilter tool (https://reggenlab.github.io/DFilter/). The CAGE-tags 
profiles were downloaded from the FANTOM database (https://fan 
tom.gsc.riken.jp/data/). The read-counts of the epigenome profiles 
can be obtained using DFilter at https://reggenlab.github.io/DFilter/. 

Our method, GFpredict, can predict genes functionally related to a 
user-provided biologically relevant list of genes. It is available as an R 
package, ‘GFPredict’. 

The code and documentation are provided at https://github.com/ 
reggenlab/GFPredict. 

Predictions are available at http://reggen.iiitd.edu.in:1207/gfpredi 
ct_server_script/. 
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