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Abstract

Background

Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applica-
tions is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate
platelets may reduce variability and eliminate complications associated with the use of
bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration,
high electric field (SMHEF) pulses generates a greater number of platelet-derived micropar-
ticles, increased expression of prothrombotic platelet surfaces, and differential release of
growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF
pulses induced greater cell proliferation than plasma.

Aims
To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses

results in differential activation of PRP compared to SMHEF, with respect to profiles of acti-
vation markers, growth factor release, and cell proliferation capacity.

Methods

PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine
thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dex-
trose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF
pulses was performed using a standard electroporation cuvette preloaded with CaCl, and a
prototype instrument designed to take into account the electrical properties of PRP. Flow
cytometry was used to assess platelet surface P-selectin expression, and annexin V bind-
ing. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF),
endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA.
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The ability of supernatants to stimulate proliferation of human epithelial cells in culture was
also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM
CaCl, activated with 1 U/mL bovine thrombin.

Results

PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, con-
sistent with the presence of platelet-derived microparticles, platelets, and platelet aggre-
gates whereas SMHEF pulses primarily resulted in platelet-derived microparticles.
Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly
lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-
selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in
SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated
PRP, but not significantly different from that produced by thrombin activation. Higher levels
of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP
than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with
all three activating conditions. Cell proliferation was significantly increased by releasates of
both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone.

Conclusions

PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential
platelet-derived microparticle production and activation of platelet surface procoagulant
markers while inducing similar release of growth factors and similar capacity to induce cell
proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses,
resulting in less platelet microparticle generation but with overall activation levels similar to
that obtained with thrombin. These results suggest that PEF provides the means to alter, in
a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound
healing and clinical outcomes.

Introduction

Platelet gel is a substance derived from platelet-rich plasma (PRP), which contains a concen-
trated amount of platelets that can be activated to release proteins and growth factors found
within the alpha granules. These growth factors have various beneficial effects, such as angio-
genesis and tissue regeneration [1,2]. Autologous platelet gel can enhance wound healing [2,3],
induce hemostasis [4], and provide antibacterial protection for the wound as it heals [5].

The typical workflow for generating autologous platelet gel includes an intravenous blood
draw from the patient, platelet enrichment using commercially available kits, and then platelet
activation. Currently, platelet activation is performed using the protein bovine thrombin (in
the USA) or other types of thrombin in Canada and Europe (recombinant thrombin or throm-
bin from human donor plasma) [3,6,7]. These various types of thrombin in current use are
expensive, may trigger significant side effects and must be stored under refrigeration. More-
over, bovine thrombin can stimulate antibody formation, potentially inducing severe hemor-
rhagic or thrombotic complications or an allergic response in patients previously exposed to
bovine thrombin [8-10]. Approximately 30% of patients exposed to bovine thrombin develop
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cross-reacting antibodies [11]. Thus, some clinicians consider that using bovine thrombin as
the activator for repeated applications of PRP for wound healing introduces unacceptably high
risk [12]. This motivates the exploration of a physical means of platelet activation not requiring
an external agent.

Electric pulse stimulation using nanosecond pulsed electric fields (PEF) is an alternative,
non-biochemical method of platelet activation [13-15] that avoids exposure to xenogeneic
thrombin with its associated risks. PEFs can induce multiple changes in biological function
depending upon pulse duration and intensity [16-18]. Applying PEFs with durations on the
order of microseconds to milliseconds with electric fields of hundreds of V/cm to a few kV/cm
permeabilizes the plasma membrane in a process called electroporation [16,19]. The resulting
pores may grow so large that they cannot reseal upon removal of the PEF, inducing cell death
by irreversible electroporation, which is used in cancer treatment [20,21] and liquid steriliza-
tion [22]. Alternatively, appropriate selection of the pulse duration and intensity may permit
the pores to reseal after the pulse ends, enabling molecular delivery while retaining viability.
This reversible electroporation may be used for electrochemotherapy [23] or as a physical
method of gene therapy [24]. Recent studies have explored the impact of applying PEFs with
the same total energy over a shorter duration (10-300 ns) with higher intensities (30-300 kV/
cm) [16,25,26]. These nanosecond PEFs (nsPEFs) fully charge the membranes of intracellular
organelles prior to the plasma membrane, paving the way for intracellular effects, such as
releasing intracellular calcium stores [27], permeabilizing intracellular structures [28], and
inducing apoptosis [29], without permeabilizing the plasma membrane to standard dyes for
membrane integrity, such as propidium iodide and ethidium homodimer. Subsequent studies
using the smaller dye YO-PRO1 [30,31] and electrical measurements [32] demonstrated that
nsPEFs still permeabilize the plasma membrane, but with pores much smaller than conven-
tional electroporation. Interestingly, applying multiple nsPEFs creates the number of long-
lived plasma membrane pores, but not the size [33]. Additionally, the intense electric field con-
comitant with nsPEF application contributes an electrophoretic effect to ion delivery, as dem-
onstrated experimentally [34], by molecular dynamics simulations [34], and through modeling
studies [35]. The capability to transport ions without creating large membrane pores that could
induce cell death by irreversible electroporation facilitates applications requiring ion transport
with minimal long-term plasma membrane damage, such as nervous system manipulation
[36].

Calcium transport plays a critical role in platelet activation, motivating initial studies in
using nsPEFs for platelet activation [13]. We previously demonstrated PEF-stimulated release
of growth factors from PRP prepared from outdated platelets, aged blood [13,15] and fresh
blood [37] using an automated centrifugation system standardized for clinical use. Compared
to thrombin, exposure of PRP to sub-microsecond duration, high electric field (SMHEF) pulses
induced greater generation of microparticles and expression of prothrombotic platelet surfaces,
and differential release of growth factors [37]. Moreover, the platelet releasate produced by
SMHEF pulses induced greater cell proliferation than plasma. Our previous work on platelet
activation has used monopolar SMHEF pulses only [14,15,37]. However, exposure of other cell
types to SMHEEF often results in cell death by apoptosis [38,39]. Additionally, the SMHEFs
may induce other effects, such as externalization of phosphatidylserine, a lipid that is normally
on the inside of the lipid bilayer and is externalized during apoptosis, by physically altering the
plasma membrane [40].

Many questions remain regarding the mechanism of PRP activation by SMHEF and
whether other electric pulse parameters would yield the same result. SMHEF can rapidly and
transiently release Ca’" from intracellular stores [41,42], which is hypothesized to occur due to
ER permeabilization and subsequent diffusion of Ca** down its electrochemical gradient into
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the cytosol. This intracellular release of Ca** has most closely been associated with Ca**-medi-
ated intracellular signaling and has been demonstrated to activate platelets [13]. In general,
higher power nanosecond duration pulses are thought to preferentially breach smaller struc-
tures, such as intracellular organelles, while minimally impacting the plasma membrane [43],
although studies have demonstrated that these pulses can induce nanopores that are smaller
than those induced by conventional electroporation [30,31,44].

Alternatively, one may apply bipolar pulses, which enhance membrane permeabilization
and delivery efficiency for microsecond duration pulses. Bipolar pulses consist of a pulse of one
polarity (positive or negative) followed by a pulse of the reverse polarity either immediately or
following some time lag after the first pulse, but induce different effects depending upon the
pulse duration and time between pulses. Applying bipolar pulses in the microsecond regime
induced improved transfection efficiency with reduced cell death [45,46]; however, bipolar
nanosecond pulses actually induce effect reversal [44,47,48]. In other words, bipolar nanosec-
ond pulses of high intensity induce less membrane permeabilization, ion transport, or cell
death than nanosecond pulses with either the same duration as a single pulse or a the same
duration as the combined overall duration of the two bipolar pulses. Introducing increasing
delays between the bipolar pulses reduced the cancellation effects, but they were still visible for
delays up to 10 us [48]. The reason for the difference in behavior between bipolar nanosecond
and microsecond pulses is currently unclear. One potential explanation is that nanosecond
pulses induce nanopores and the major impact of ion transport on nanosecond timescales is
electrophoresis [35]. Applying another nanosecond pulse a very short time (say, within hun-
dreds of nanoseconds) may induce a reversal of this electrophoretic ion motion and cancel the
biological effects if diffusion and electrophoresis are at least equally important on long time-
scales, which calculations suggest may be the case [44][44]. While this may explain the reversal
in ion motion, it does not necessarily completely explain the change in cell death induction by
bipolar nanosecond duration pulses. Recent experiments and finite element simulations have
explored the impact of nanosecond pulse induced shock waves on biological cells [49-51].
Shock waves would create mechanical stresses on the biological cells that could be reversed by
the application of opposite polarity pulses within a short period of time [51]. The long-term
effects of bipolar pulses also remain incompletely understood. Electrophoresis clearly domi-
nates ion motion during the pulse; long-term ion motion (on the order of hundreds of micro-
seconds and longer) is actually diffusion through long-lived pores with lifetimes ranging from
hundreds of nanoseconds to tens of minutes. The impact of these contributions can be clearly
seen through simulations [35]. Thus, even if bipolar pulses reverse electrophoretic motion dur-
ing the pulse, one would anticipate that long-term ion diffusion into the cell could still occur.
While calculations indicate that electrophoresis and diffusion are approximately equally
important [44], this will likely vary quite significantly with pulse parameters, including dura-
tion, intensity, and delay between pulses, which can impact pore size and lifetime in addition
to diffusion and electrophoresis. Future studies may further elucidate the impact of bipolar
pulse parameters on the ion transport, which could be particularly important for platelet
activation.

The nanosecond electric pulses studies discussed above explore the impact of high intensity
submicrosecond electric pulses. Alternatively, one may consider the membrane level effects of
low intensity submicrosecond (SMLEF) bipolar pulses. In this case, one would not anticipate
the potential induction of shock waves observed for the higher intensity bipolar submicrose-
cond pulses or the same level of plasma membrane permeabilization. One may, however, still
induce some degree of intracellular manipulation of the ER while controlling ion flow and min-
imizing adverse effects on viability and morphology. The present study evaluates platelet acti-
vation and procoagulant markers, growth factor release, and the capacity of the treated PRP to
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induce cell proliferation following the application of SMLEF bipolar pulses, SMHEP monopo-
lar pulses, and bovine thrombin to fresh PRP prepared using a clinically relevant centrifugation
procedure.

Materials and Methods
Donors, Blood Collection and Preparation of PRP

This study was reviewed and approved by the Boston Children’s Hospital Committee on Clini-
cal Investigation and all subjects provided written informed consent. Healthy volunteers were
qualified for enrollment if they were aged >18 years, free of aspirin or other antiplatelet medi-
cation (>10 days), and free of all other non-steroidal anti-inflammatory drugs (> 3 days).
Blood, 120 mL, was collected into 1/10"™ volume of acid citrate dextrose (ACD) and PRP was
prepared Harvest SmartPreP2 System (Harvest Technologies, Plymouth, MA, USA) according
to the manufacturer’s recommendation as previously described [37]. Complete blood cell
counts were performed in a Sysmex XE-2100 Hematology Analyzer. Prepared PRP had

1095.2 + 192.9 x 10” platelets/L, 1.65 + 0.26 x10"> RBC/L, and 13.77 + 3.98 x 10° WBC/L
(mean + SD).

Study Design

The ability of SMLEF bipolar pulses to activate concentrated PRP was compared to SMHEF
pulses and bovine thrombin (1 U/mL final concentration, Biopharm Laboratories LLC, Bluff-
dale, UT, USA) PRP activation as measured by platelet surface P-selectin expression, platelet-
derived microparticle generation, platelet and microparticle surface phosphatidylserine expres-
sion, growth factor release, and the capacity of the treated PRP to induce cell proliferation. PRP
samples were recalcified by addition of 1/100™ volume of CaCl, (10 mM final concentration,
Bachem, Torrance, CA, USA) immediately prior to activation with SMHEF pulse, SMLEF
bipolar pulse or thrombin. Control samples were treated with vehicle (0.9% NaCl) without
prior recalcification and without electrical activation. To allow recovery of platelets for assess-
ment of platelet activation markers by flow cytometry, clotting was prevented in electrically
stimulated and thrombin-treated PRP samples by mixing Gly-Pro-Arg-Pro (GPRP, 2 uL, 40
mM final concentration) with a small portion of PRP (18 puL) immediately after activation. The
remainder of the sample was allowed to stand 15 min at RT following activation, then clots
were removed using the wooden handle of a cotton swab and the resulting serum was frozen at
-80°C for later evaluation of released growth factors and cell proliferation activity.

SMLEF Bipolar Pulse and SMHEF Pulse Stimulation of PRP

Electrical stimulation of PRP was performed using a specially designed instrument prototype
(GE Global Research, Niskayuna, NY, USA), which has previously been described [15,52]. For
generation of bipolar pulses, a capacitor was placed between the instrument output and the
cuvette. The instrument takes into account the specific electrical properties of PRP which is
typically more conductive than the buffers used in electroporation. Concentrated PRP (400 uL)
was placed in a 2 mm electroporation cuvette (Molecular BioProducts, San Diego, CA, USA),
containing 1/100™ volume CaCl, (10 mM final concentration), then exposed to SMLEF bipolar
pulses (bipolar pulses, 150 ns pulse width, time delay between two bipolar pulses was about
500 ns, 80 pairs of bipolar pulses, ~4kV/cm electric field) or SMHEF monopolar pulses (five
electric field pulses, one pulse per second; pulse widths ~500 ns, 20 kV/cm electric field e.g., ~
5-fold higher than SMHEF, resulting in ~300 A current). A Tektronix DPO4104 oscilloscope
and a Tektronix P6015A high voltage probe were used to measure the voltage pulses applied to
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cuvettes with PRP for activation. Fig 1 shows an example of SMLEF bipolar pulse and SMHEF
pulse used for the platelet activation experiments described herein.
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Fig 1. Representative electrical tracings for A) SMLEF bipolar pulse and B) SMHEF monopolar pulse. A) SMLEF
bipolar pulse was ~150 ns pulse width, ~650 ns interval between pulses of opposite polarity,~4kV/cm electric field. B)
SMHEF monopolar pulse was pulse ~650 ns, 20 kV/cm electric field. Samples received a total of 80 pairs of bipolar SMLEF
pulses at 1 second intervals (the spacing between the opposite polarity pulses within a pair of bipolar pulses was about 650
ns, as shown in Fig 1A; a pair of two bipolar pulses, as shown in Fig 1A, was applied every 1 second-a total of 80 pairs) or 5
monopolar pulses at 1 second intervals. Black tracing: voltage; red tracing: current.

doi:10.1371/journal.pone.0160933.g001
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Characterization of Platelet Activation and Procoagulant Markers by
Flow Cytometry

Platelets and platelet-derived microparticles were identified and enumerated by flow cytome-
try on the basis of surface CD41 expression and particle forward light scatter (a reflection of
particle size), side light scatter (a reflection of granularity) as previously described [37,53,54].
Briefly, activated and control PRP samples were diluted 10-fold in HEPES-Tyrode’s buffer
with 0.35% bovine serum albumin (HT-BSA; 10 mM HEPES, 7 mM NaCl, 2.8 mM KCl, 1
mM MgCl,, 12 mM NaHCOs3, 0.4 mM Na,HPOy,, 5.5 mM glucose, 0.35% bovine serum albu-
min; chemicals from Sigma, St. Louis, MO, USA) then added to a mixture of phycoerythrin
(PE)-conjugated anti-CD62P (clone AK4, BD Pharmingen, San Diego, CA, USA) and
CD41-PerCP-Cy5.5 (clone HIP8, BD Pharmingen, San Diego, CA, USA). After 15 min at
room temperature, the reaction was stopped by fixation with 1 mL 1% formaldehyde, 10 mM
HEPES, 0.15 M NacCl, pH 7.4. Platelet and microparticle counts were determined in samples
mixed with calibrated counting beads (Spherotech Inc., Libertyville, IL). Flow cytometric
analysis was performed in a calibrated standard configuration Becton Dickinson FACSCali-
bur equipped with a 488 nm laser. Control samples of platelets labeled with each individual
fluorescent antibody were used to set hardware compensation and account for spectral over-
lap. In particular, compensation was adjusted so that the fluorescence in the PE channel
(FL2) of platelets stained with CD41-PerCP-Cy5.5 (FL3) was identical to the fluorescence
observed for platelets stained only with PE-conjugated normal IgG. Final color compensation
settings were as follows: FL1-1.4% FL2, FL2-9.3% FL1, FL2-6.9% FL3, FL3-14.2% FL2. The
threshold was set on FL3 to include only those events labeling positively for CD41. Platelets
were identified by means of CD41-PerCP-Cy5.5 positivity and characteristic logarithmic for-
ward and orthogonal light scatter. CD41-positive events with lower forward light scatter
than characteristic of platelets were defined as platelet-derived microparticles and CD41-po-
sitive events with higher forward light scatter than platelets were defined as aggregated plate-
lets. Non-specific staining was determined in parallel using a sample reacted with a mixture
of isotype-matched PE and PerCP-Cy5.5-conjugated normal immunoglobulin.

Phosphatidylserine expression on platelets and platelet-derived microparticles were
determined by annexin V binding and light scatter, as previously described [37,55,56].
Briefly, treated PRP samples were diluted 20-fold in HT-BSA with GPRP (50 puM final),
incubated 15 min at room temperature with FITC-conjugated annexin V, PE anti-CD41
(clone HIP8, BD Pharmingen, San Diego, CA, USA) and a PE-Cy5 anti-CD42b antibody (as
a platelet identifier; both reagents from BD Biosciences, San Jose, CA, USA) in the presence
or absence of CaCl, 4 mM, then fixed by addition of 1 mL 1% formaldehyde in HEPES-
saline. Flow cytometric analysis was performed in a calibrated Becton Dickinson FACSCali-
bur with the threshold set on CD41 positive events to identify platelet-related events and
then gating on platelet and platelet-derived microparticle populations according to their
light scatter properties. Hardware compensation was set based on samples stained with indi-
vidual fluorophores.

Growth Factor Release

Commercially available ELISA kits were used to measure platelet-derived growth factor
(PDGF, R&D Systems, Minneapolis, MN, USA), vascular endothelial growth factor (VEGF,
Eagle Biosciences, Nashua, NH, USA), endothelial growth factor (EGF, R&D Systems, Minne-
apolis, MN, USA) and platelet factor 4 (PF4, Abcam, Cambridge, UK) in supernatants of acti-
vated and control PRP.
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Cell Proliferation

Supernatants of activated PRP was evaluated for their ability to stimulate proliferation of a
human non-tumorigenic epithelial line (MCF 10A [ATCC® CRL-10317"], American Type
Culture Collection, Manassas, VA, USA) [[57,58] as previously described [37]. Briefly, MCF
10A cells seeded at 200,000 cells/cm* in McCoy’s medium supplemented with 10% fetal bovine
serum (Invitrogen, Grand Island, NY, USA), were grown for 24 hours at 37°C in 5% CO, then
washed twice with Hank’s Balanced Salt Solution (Invitrogen) and placed in serum-free media
for an additional 24 hours. The serum-starved cells were then incubated for 24 hours at 37°C
with control PPP (100 uL) from unactivated PRP or the supernatants of PEF- or thrombin-
treated PRP. Cell proliferation was monitored by measuring total ATP/well using the ATPlite
Istep single addition luminescence ATP detection assay (Perkin Elmer, Waltham, MA, USA)
according to the manufacturer’s recommendations. Growth factor-dependent cell proliferation
was confirmed by addition of purified recombinant human EGF (Lonza, Portsmouth, NH,
USA).

Statistical Analysis

Data were analyzed using SAS software, version 9.2 (SAS Institute, Cary, NC, USA) and Graph-
Pad Prism version 5.0a (GraphPad Software, La Jolla, CA, USA). Normally distributed data (as
judged by the D’Agostino and Pearson omnibus normality test) are summarized as

mean + standard deviation or mean + standard error of the mean, as indicated. Non-paramet-
ric data are reported as median and interquartile range or median and range.

Results

Flow Cytometric Analysis of Platelets and Platelet-Derived
Microparticles

Flow cytometric analysis of PRP treated with SMLEF bipolar pulse or with bovine thrombin
showed forward-light scatter (FSC) and side-light scatter (SSC) profiles consistent with the
presence of platelet-derived microparticles (low FSC and SSC), platelet-sized particles
(medium FSC and SSC), and platelet-platelet aggregates (high FSC and SSC) (Fig 2A). In con-
trast, SMHEF pulses produced few platelet-platelet aggregates (high FSC and SSC) and signifi-
cantly more platelet-derived microparticles (as a percent of all CD41/CD42b positive events)
than SMLEF bipolar pulses (Fig 2A and 2B). In addition to SMLEF bipolar pulses producing
fewer microparticles than SMHEF pulses, those that were produced were less procoagulant as
judged by % annexin V-positivity (Fig 2C). The % of procoagulant annexin V-positive platelets
(medium FSC and SSC events) was lower with SMLEF bipolar pulses than with either SMHEF
or bovine thrombin (Fig 2D).

While annexin V-positivity for microparticles and platelets in SMLEF bipolar pulses was
lower than that for SMHEEF, the % P-selectin positivity and surface P-selectin expression (MFI)
for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher
than that in SMHEF-activated PRP, but not significantly different from that produced by
thrombin activation (Fig 2E and 2F). These results are summarized in Table 1 and detailed in
S1-S10 Tables.

Growth Factor Release and Cell Proliferation

EGF, VEGF, PDGF, and PF4 in the supernatants of SMLEF bipolar pulse-treated PRP were sig-
nificantly elevated compared to supernatants of unactivated PRP, but were not significantly
different from levels in supernatants of SMHEF pulse-treated PRP (Fig 3A-3D). Compared to

PLOS ONE | DOI:10.1371/journal.pone.0160933 August 24, 2016 8/17



Platelet Activation with Altered Electrical Conditions

PLOS o

* %

| H ot

m S 3 S

(slueAs +aza/L¥aD 4O %)
so|oiuedr paalap-}ajeleld

r
102

T
10!

uoljenoe

ou

ulquioiyy
aunoq

L T_H_H._ | Jejodouow
43HNS

Jejodiq
43NS

10*

T
10°

— @
u 2 "8
Ig v |0®
o 2 e >
= c =
» g .| B
o= Jf
ca
SE (3
o9
o c
=

108

o

P
%

o
°

<  .epeogybrieps

Forward Light Scatter

v ] v T T ]
L0k g0k Ob g0b R0b 0k g0

% %k

*kk
==
T

% %Kk

T
o o
w

sjo|o)e|d
aAISOd-A UIXauuy %,

100+

O

- T |_ L

%% %k

QO 8 3 =
wmmo_tm% paAlsp-}ajele|d
BAINISOd-A UIXauuy 9%,

uonenioe
ou

uiquioiyy
aunoq

Jejodouow
43HAS

Jejodiq
43NS

uoljeAijoe
ou

uiquaiyy
auInoq

Jejodouow
43HAS

Jejodiq
43NS

_ . uoneaoe
ou

ulquioiyy
aunoq

v_u—--._m_oao:oE
43HAS

&&&&0
_l_l 8 6 4 2

[4IN UROSISS-d

kX3

Jejodiq
4371NS

_ | uoneape
ou

.‘ | Jejodouow

43HAS

L _

ulquioiyy
auinoq

%%k Kk

kX3

Jejodiq
43NS

o o
0

oANISOd %
unos|es-d

100+

9/17

PLOS ONE | DOI:10.1371/journal.pone.0160933 August 24, 2016



el e
@ : PLOS ‘ ONE Platelet Activation with Altered Electrical Conditions

Fig 2. Flow cytometric analysis of platelets and platelet-derived microparticles (PDMP) in PRP
following activation with SMLEF bipolar pulses, SMHEF monopolar pulses and thrombin. A)
Representative forward- and side-light scatter profiles of (CD41/CD42b double positive) particles in activated
and unactivated PRP samples. The oval indicates the location of the normal forward and side-light scatter
distribution for intact platelets; CD41+/CD42b+ particles with lower forward and side light scatter are
considered PDMP. B) PDMP as % of all CD41/CD42b double positive particles. Platelet count prior to
stimulation was 1095.2 + 192.9 x 10%/L (mean + SD). C) Percentage of PDMP positive for surface
phosphatidylserine as detected by annexin V binding; D) Percentage of platelets positive for surface
phosphatidylserine as detected by annexin V binding; E) Percentage of all CD41/CD42b double positive
particles positive for surface P-selectin. F) P-selectin mean fluorescence intensity (MFI) per particle. Upper
and lower boundaries of boxes represent 25™ and 75™ %tile, whiskers represent 10" and 90" %tiles, line
indicates median, n = 5. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0160933.9g002

thrombin, SMLEF bipolar pulse resulted in similar levels of VEGF, PDGF and PF4 and signifi-
cantly higher levels of EGF (Fig 3A-3D, Table 1).

Proliferation and survival of MCF10 cells, an epithelial cell line, as judged by luminescent
measurement of total ATP, was increased 1.75-fold by addition of EGF 100 ng/mL compared
to proliferation in serum-free media. Supernatants of PRP stimulated with SMLEF bipolar
pulse and SMHEF pulse both significantly increased the proliferation of MCF10 cells in culture
(~1.2-fold) compared to the proliferation seen with plasma alone (Fig 3E, Table 1). This prolif-
eration was not significantly greater than that produced by supernatants of bovine thrombin-
treated PRP (Fig 3E, Table 1). The higher relative cell proliferation seen with purified EGF
(~75% increase in ATP) compared to that seen with activated PRP supernatants (~20%

Table 1. Differential effects of SMLEF bipolar pulses, SMHEF pulses and thrombin on PRP activation, growth factor release, and cell proliferation.

SMLEF SMHEF Thrombin no SMLEF bipolar vs. SMLEF bipolar | SMLEF bipolar vs.
bipolar monopolar activation SMHEF monopolar vs. Thrombin no activation
PDMP (% of CD41/CD42b 36.4+9.1 63.814.0 58.4+79 | 0.82+0.16 * ns **
+ events)
Annexin V-positive PDMP | 83.3+2.8 99.4+0.28 |91.70£32| 26.7+5.0 ** ns *H
(%)
Annexin V-positive 44.0+5.6 97.7 £0.99 76.0+5.7 75+3.3 *x% *x% *x%
platelets (%)
Platelet surface P-selectin | 75.8+2.9 47.0+3.6 722+34 | 38.1+13.3 *x% ns i
(% positive platelets)
Platelet surface P-selectin | 38.2+12.9 9.0+1.2 219+1.27| 52+0.78 ** ns **
(MFI)
EGF (ng/mL) 2.36+0.27 | 2.90+0.28 |1.43x0.17 | 0.02+0.005 ns * *H%
VEGF (pg/mL) 783+ 200 773+ 154 633+195 | 62.5+0.00 ns ns *
PDGF (ng/mL) 15.1+£3.0 111214 14129 | 0.32+0.07 ns ns *EX
PF4 (ug/mL) 20.5+3.7 14.8+3.2 20.1+£2.7 | 0.34+£0.04 ns ns **
Cell proliferation 1.20£0.05 1.19+0.05 [1.14+0.06| 1.00+0.04 ns ns *

(normalized)

The indicated parameters were measured in PRP exposed to SMLEF bipolar pulses, SMHEF monopolar pulses, bovine thrombin, or no activator. Results for
cell proliferation in response to the plasma supernatants of activated PRP are shown normalized to the cell proliferation obtained with plasma from
unactivated PRP. Purified recombinant human EGF 100 ng/mL added to serum-free media increased cell proliferation 1.75-fold relative to media alone (data
not shown). Results shown are means + SEM,n=5

*p<0.05

*¥*p<0.01

*%*%*p<0.001 by Dunnett’s multiple comparison test. Abbreviations: EGF, epidermal growth factor; MFI, mean fluorescence intensity; SMHEF, sub-
microsecond high electric field; SMLEF, sub-microsecond low electric field; PDGF, platelet-derived growth factor; PF4, platelet factor 4; VEGF, vascular
endothelial growth factor.

doi:10.1371/journal.pone.0160933.1001
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Fig 3. Growth factor release and stimulation of cell proliferation. PRP, treated as described in the Methods, was centrifuged, the supernatant
recovered and assayed for pro- and anti-angiogenic factors by ELISA and for stimulation of cell proliferation using serum-starved epithelial cells
(MCF10A). Cell proliferation in response to the plasma supernatants of unactivated or activated PRP (panel E) is normalized to that obtained with
supernatants of unactivated PRP. Purified recombinant human EGF 100 ng/mL added to serum-free media increased cell proliferation 1.75-fold
relative to media alone (data not shown). Results shown are means + SEM, n = 5. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0160933.9003

increase in ATP), may in part be explained by the much higher concentration of purified EGF
added to cultures (100 ng/mL) compared to the amount of EGF found in the supernatants of
activated PRP (up to 4 ng/mL, Fig 3, Table 1). Growth factor and cell proliferation results for
individual donors are provided in S1-S10 Tables.

Discussion

SMLEEF bipolar pulse activation of PRP, compared to activation of PRP with SMHEF pulse
conditions, preserves platelet size (as judged by forward light scatter) and yields fewer micro-
particles (Fig 2A and 2B). The resulting particles have lower phosphatidylserine expression and
higher surface P-selectin expression, which may favor their participation in inflammatory pro-
cesses more than procoagulant processes compared to particles generated by SMHEF pulse
treatment of PRP. Nevertheless, growth factor release was similar for the two conditions, as
was net cell proliferation. (The end point for the proliferation assay, total ATP, is the net result
of cell proliferation and cell death or apoptosis.) Further study is required to determine
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whether the differences in the characteristics of PRP activated by these methods will have dif-
ferential effects on specific phases of wound healing.

The mechanism of platelet activation following nanosecond PEF stimulation is poorly
understood. In general, higher power nanosecond duration pulses are thought to preferentially
breach smaller structures, such as intracellular organelles, with less impact on the plasma mem-
brane [16,23]. Zhang et al.[13] reported that platelets exposed to monopolar high electric field
nanosecond pulses showed increases in cytosolic calcium (Ca®*) that were dose-dependent on
the electrical energy density of the pulses and hypothesized that nanopore formation in organ-
elle membranes and the plasma membrane allowed Ca®* leakage from intracellular stores and
an influx of extracellular Ca®*. This intracellular release of Ca** has most closely been associ-
ated with Ca**-mediated intracellular signaling and has been demonstrated to activate platelets
[13]. However, such monopolar pulses also induce electrophoretic transport of proteins and
ions, particularly Ca®* [37,59]. In contrast, bipolar nanosecond pulses (with proper delay
between pulses) reverse electrophoretic transfer [44,47,48], generally cancelling ion transport
and changes in viability compared to monopolar nanosecond pulses [47,48]. However, as
noted above, these nanosecond bipolar pulses may also induce shock waves [49-51] that
induce mechanical, in addition to electrical, effects on the cells. These mechanical effects on the
cell may subsequently be cancelled if the delay between first and second pulse is sufficiently
short, as observed experimentally by the reduction in effect cancellation for increasing delay
times [48]. While these previous studies considered the impact of high intensity bipolar pulses,
the present study explores low intensity bipolar effects, or SMLEF bipolar pulses, with a short
delay between the bipolar pulses (~ 500 ns). These lower intensity fields would not be antici-
pated to induce strong shock waves and may not be victim to the same cancellation observed in
the previous studies. Thus, the present study compares PRP activation using SMLEF bipolar
pulses with SMHEF monopolar pulses. Interestingly, SMLEF bipolar pulses induce similar lev-
els of growth factor release as monopolar SMHEFs, which contradicts the effect reversal
observed for SMHEF bipolar pulses, suggesting that the intensity of the fields plays an impor-
tant role in effect cancellation. Future research could further elucidate the importance of pulse
parameters on bipolar nanosecond pulse effects, particularly for low intensity fields, which
have not been studied in detail.

As mentioned, SMLEF bipolar pulses and SMHEF pulses stimulated release of similar levels
of the four growth factors evaluated: EGF, VEGF, PDGF, and PF4, but both SMLEF and
SMHEEF stimulated greater release of the proangiogenic growth factor EGF than bovine throm-
bin (Fig 3A). The release of similar levels of growth factors following SMLEF bipolar pulses
and SMHEEF pulses is somewhat surprising, given that the growth factors are primarily stored
in platelet alpha granules [1] and P-selectin, a marker of platelet alpha granule release [60], was
significantly higher on platelets and microparticles exposed to SMLEF bipolar pulses than on
those following SMHEF monopolar pulses. One possible explanation for this is that both
SMLEEF bipolar pulses and SMHEF pulses stimulate virtually complete alpha granule release,
and thus similar levels of growth factors, but that SMHEF monopolar pulses induce further
changes which result in increased microparticle formation; with smaller particles carrying less
P-selectin. Indeed, annexin V-positive microparticles were increased with SMHEF monopolar
pulses compared to SMLEF bipolar pulses. While growth factors are recognized to be impor-
tant in the proliferation phase of wound healing [61,62], EGF is particularly important for epi-
thelialization [63]. Thus, depending on the type of wound healing or stage of the process, PRP
activated using SMLEF bipolar pulses or SMHEF monopolar pulses with higher EGF levels
may induce different effects than PRP activated using other methods.

The first study of platelet activation using bipolar electric pulses (bipolar SMLEF pulses in
our case) presented here introduces novel and interesting opportunities for appropriately
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controlling various platelet activation markers. Experimental results shown in the present
paper as summarized in Table 1, present capabilities on having select platelet activation mark-
ers at levels similar to bovine thrombin (using bipolar SMLEF pulses) or at levels significantly
different compared to bovine thrombin (using monopolar SMHEEF pulses). Our study should
motivate the bioelectrics community to further explore the effects of bipolar SMLEF pulses,
considering that higher intensity bipolar pulses have been typically utilized so far in research.
Our future research will explore the effects on platelet activation of SMLEF bipolar vs. SMLEF
monopolar pulses, with the same voltage, current amplitude and pulse to pulse spacing. The
pulse to pulse spacing within a pair of bipolar pulses is about 650 ns for the present work (Fig
1A). The present version of our instrument for platelet activation has been designed for a pulse
to pulse spacing of 1 s, for monopolar pulses in conductive coupling mode; bipolar pulses are
obtained here by using capacitive coupling, with monopolar pulses via conductive coupling.
An improved version of our instrument will hopefully allow for monopolar pulse to pulse spac-
ing similar to bipolar pulses in capacitive coupling. Finally, wound healing studies may quan-
tify the effects of the gentle, more thrombin-like platelet activation via bipolar SMLEF pulses
versus the typical monopolar SMHEF pulse treatment [13,15,37].

Supporting Information

S1 Table. Platelet derived microparticles (% of total CD41/Cd42b double positive parti-
cles).
(DOCX)

S2 Table. Percentage of PDMP positive for surface phosphatidylserine as detected by
annexin V binding.
(DOCX)

S3 Table. Percentage of platelets positive for surface phosphatidylserine as detected by
annexin V binding.
(DOCX)

$4 Table. Percentage of all CD41/CD42b double positive particles positive for surface P-
selectin.
(DOCX)

S5 Table. P-selectin mean fluorescence intensity (MFI) per particle.
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S6 Table. PDGF pg/mL, Lower limit of detection 156.25.
(DOCX)

§7 Table. VEGF, pg/mL Lower limit of detection, 62.5 pg/mL.
(DOCX)

S8 Table. Platelet Factor 4, pg/mL.
(DOCX)

S9 Table. EGF, pg/mL.
(DOCX)

$10 Table. Normalized cell proliferation.
(DOCX)
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