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Established Facts

• It is already known that different previous health statuses could affect illness progression in COVID-19 
patients.

• It is also known that a cytokine storm takes place in patients with COVID-19 who exhibit a poor prog-
nosis.

Novel Insights

• The Gal-9/TIM-3 axis could be crucial for the stratification of COVID-19 patients with a poor prog-
nosis.
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Abstract
We report the disparate clinical progression of a couple in-
fected by SARS-CoV-2 based on their immune checkpoint 
(IC) levels and immune cell distribution in blood from admis-

sion to exitus in patient 1 and from admission to discharge 
and recovery in patient 2. A detailed clinical follow-up ac-
companied by a longitudinal analysis of immune pheno-
types and IC levels is shown. The continuous increase in the 
soluble IC ligand galectin-9 (Gal-9) and the increment in T-
cell immunoglobulin and mucin domain-containing 3 (TIM-
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3) protein in T cells in patient 1 suggests an activation of the 
Gal-9/TIM-3 axis and, subsequently, a potential cell exhaus-
tion in this patient that did not occur in patient 2. Our data 
indicate that the Gal-9/TIM-3 axis could be a potential target 
in this clinical setting, along with a patent effector memory 
T-cell reduction. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

The first clinical data obtained from patients with 
COVID-19 suggested that SARS-CoV-2 has a dramatic 
impact on the immune system [1, 2]. According to sev-
eral reports, severe effects in patients with COVID-19 
appear about 8–11 days after disease onset, when proin-
flammatory cytokines reach their peaks of expression 
[3]. In line, the total number of lymphocytes is signifi-
cantly reduced in those patients with a poor prognosis 
[1, 4]. These data suggest an impairment of the immune 
system, allowing secondary infections [5, 6]. T-cell ex-
haustion and increased inhibitory receptor expression 
on peripheral T cells have been reported in this disease 
[7–9]. Moreover, although there is evidence of T-cell ac-
tivation in COVID-19 patients [10], several studies have 
found polyfunctionality or cytotoxicity decreases [6, 
11]. Like during sepsis, the potential role of immune 
checkpoints (ICs) and their ligands in the lymphocyto-
penia observed in severe COVID-19 patients have been 
partially studied [5, 10, 12]. Besides, how this activation 
should be viewed in the context of COVID-19 lympho-
penia remains unclear. Here, we present a married cou-
ple with COVID-19 who exhibited remarkably disparate 
clinical progression. Both patients had the same SARS-
CoV-2 exposure, and the same clinical presentation at 
onset, with bilateral interstitial pneumonia, respiratory 
failure, and similar laboratory test results. However, 
their clinical evolution and outcome were completely 
different. A longitudinal analysis of their IC levels and 
immune cell distribution in blood showed a differential 
profile that could provide an explanation for the un-
equal evolution in these patients. 

Case Description, Diagnostic Assessment, 
Therapeutic Intervention, Follow-Up, and Outcomes

A Caucasian married couple in Madrid (Spain) were both di-
agnosed with COVID-19 through a SARS-CoV-2 RT-PCR test. 
Four days before the onset of symptoms, the couple had had close 
contact with the husband’s mother, who was diagnosed with CO-
VID-19 and died (see evolution in Fig. 1). 

Patient 1 was a 60-year-old, retired, overweight man with hy-
pertension, type 2 diabetes, type 1a hemochromatosis with no he-
patic or systemic involvement, and a history of penicillin allergy. 
He presented no records of previous surgical interventions. Symp-
tom onset was on April 22, 2020, with mild influenza-like illness 
(wet cough, fever, asthenia, and hyporexia). He was referred to the 
emergency department (ED) of a secondary hospital, where he was 
diagnosed with possible COVID-19. His blood tests and chest X-
ray were compatible with mild disease, and he was discharged with 
a prescription for 400 mg cefditoren twice a day (b.i.d.), 500 mg 
azithromycin 4 times a day (q.i.d.), 400 mg hydroxychloroquine 
b.i.d. the first day and 200 mg b.i.d. for 4 more days, and 60 mg 
prednisone q.i.d. for 3 days.

Due to impairment from dyspnea, the patient was admitted 
to our ED on May 1, 2020. The physical examination showed 
mild tachypnea, tachycardia, and disseminated crackling rales on 
pulmonary auscultation. Table 1 shows the baseline variables and 
vital signs. He was diagnosed with respiratory failure, with an 
oxygen saturation of 89% and bilateral interstitial pneumonia 
(online suppl. Fig. S1; for all online suppl. material, see www.
karger.com/doi/10.1159/000514727). An RT-PCR for SARS-
CoV-2 confirmed the COVID-19 etiology. We added tocilizum-
ab and low-molecular-weight heparin (LMWH) at prophylactic 
doses to his previous therapy with hydroxychloroquine and 
prednisone. The patient was admitted to the internal medicine 
ward. His respiratory status worsened despite methylpredniso-
lone boluses (250 mg q.i.d. for 3 days) and lying in the prone po-
sition, and he was finally admitted to the intensive care unit 
(ICU) on May 9 with COVID-19-related acute respiratory dis-
tress syndrome. Empirical treatment with aztreonam and line-
zolid was administered until May 20. A point-of-care echocar-
diogram suggested a pulmonary embolism, and the patient was 
therefore administered fibrinolysis, resulting in mild improve-
ment of the respiratory status. LMWH was adjusted to a thera-
peutic dosage, and the patient was placed on mechanical ventila-
tion on May 10. Although the patient was administered thera-
peutic doses of LMWH, he developed an acute distal left leg 
arterial occlusion, which was treated conservatively. During his 
ICU stay, the patient required noradrenaline at varying dosages. 
The results of his systematic microbiological workup were re-
peatedly negative, except on May 21 (when Enterococcus faecalis 
was found in the urine culture during a febrile episode) and May 

Fig. 1. Timelines of progression of the clinical courses of the 2 pa-
tients with confirmed SARS-CoV-2 infection. Red boxes show the 
events for patient 1 and green boxes show the events for patient 2. 
ABL, amphotericin B liposomal; ARDS, acute respiratory distress 
syndrome; CT, computed tomography; ED, emergency depart-
ment; FiO2, fraction of inspired oxygen; HCQ, hydroxychloro-

quine; LMWH, low-molecular-weight heparin; Lop/R, lopinavir/
ritonavir; MPS, methylprednisolone; MSSA, methicillin-sensitive 
Staphylococcus aureus; MV, mechanical ventilation; OS, oxygen 
saturation; PE, pulmonary embolism; q.i.d., 4 times a day; QTc, 
corrected QT interval; TC, tocilizumab.

(For figure see next page.)
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25 (when methicillin-sensitive Staphylococcus aureus was isolat-
ed in the bronchoalveolar lavage and blood cultures taken due to 
his impaired status). Sepsis with ventilator-associated pneumo-
nia and secondary bacteremia were diagnosed. The patient was 
administered meropenem and linezolid empirically from May 25 
and maintained after microbiological results showed that both 
microorganisms were sensitive. The patient developed refractory 
septic shock and was treated with hydrocortisone, high-dose 
noradrenaline, and empirical liposomal amphotericin B. On May 

25, the SARS-CoV-2 RT-PCR was negative. The patient eventu-
ally died on June 4 after 40 days of illness. 

Patient 2 was a 60-year-old, non-obese woman without previ-
ous conditions or surgeries. On April 22, 2020, she started with 
mild symptoms characterized by asthenia, myalgia, low-grade fe-
ver, wet cough, moderate dyspnea, dysgeusia, nausea with various 
episodes of vomiting, and diffuse abdominal discomfort with diar-
rhea. In the ED, she presented tachycardia (111 bpm) and mild 
tachypnea, with an oxygen saturation of 92%. Table 1 shows her 

Table 1. Patients’ and HVs’ baseline clinical characteristics

Patient 1 Patient 2 HVs (n = 10)

Age, years 60 60 56.1 (9.0)
Gender Male Female 5 female, 5 male
Weight, kg 80 56 76.1 (5.2)
Height, cm 178 161 174.4 (23.2)
BMI, kg/m2 25.2 21.6 24.8 (4.4)
Comorbidities

Type 2 diabetes Yes No No
Hypertension Yes No No
Other No No No

Temperature, ° C 36.9 36.3 36.1 (0.4)
O2 saturation, % 89 91 96.8 (3.1)
Ferritin, ng/mL 550 653 215 (42.1)
Lactate, nmol/L 3.1 2 0.8 (0.3)
LDH, IU/L 289 350 258 (37)
GOT, IU/L 20 55 32 (9.7)
GPT, IU/L 25 75 36 (7.4)
pH 7.41 7.44 7.41 (0.2)
CRP, mg/L 9.8 7.9 5.6 (3.8)
MBP, mm Hg 75 75 73 (12)
SBP, mm Hg 125 123 125 (10)
Heart rate, bpm 105 111 87 (14)
Respiratory rate, brpm 28 28 15 (4)
Pneumonia at admission Yes Yes No
qSOFA score 1 1 –
CGS score 15 15 –
SARS-CoV-2 (RT-PCR) Positive Positive Negative

Values for HVs denote mean (SD). bpm, beats per minute; BMI, body mass index; brpm, breaths per minute; 
GCS, Glasgow Coma Score; CRP, C-reactive protein; GOT, glutamic oxaloacetic transaminase; GPT, glutamic-
pyruvic transaminase; HV, healthy volunteer; LDH, lactate dehydrogenase; MBP, mean blood pressure; qSOFA, 
quick Sequential Organ Failure Assessment; SBP, systolic blood pressure; SD, standard deviation.

Fig. 2. Gal-9/TIM-3 axis showing disparate levels and patterns for 
patients 1 and 2. a The plasma levels of soluble Gal-9 (sGal-9) from 
patients 1 and 2, collected until exitus or discharge, respectively, 
and the mean levels for 10 healthy volunteers (HVs) with negative 
SARS-CoV-2 RT-PCR results are shown. b A final reading from 
patient 2, obtained 70 days after disease onset, is also shown. The 
mean fluorescence intensities (MFI) of TIM-3 on gated CD3+ cells 
are shown. c Percentage of TIM-3+ cells on gated CD3+ cells. d The 
percentages of CD3+ cells from total leukocytes are shown. e, f The 
percentages of CD4+ (e) and CD8+ (f) cells on CD3+ cells are 

shown. g, h The MFI of TIM-3 (g) and the percentage of TIM-3+ 
cells (h) on gated CD4+ cells are shown. i, j The MFI of TIM-3 (i) 
and the percentage of TIM-3+ cells (j) on gated CD8+ cells are 
shown. k The t-SNE map clustering expression of TIM-3 on CD4+ 
and CD8+ populations is shown. a–j Data from patient 1 are shown 
in red, and data from patient 2 are shown in green. Dashed lines 
represent the calculated means from the analysis of a single sample 
from 10 HVs (mean ± SD). Arrows indicate important clinical 
events (patient 1: ICU admission, sepsis, and septic shock; patient 
2: discharge). (For figure see next page.)
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baseline variables and vital signs. The patient was diagnosed with 
panlobar COVID-19 pneumonia confirmed by SARS-CoV-2 RT-
PCR (online suppl. Fig. S2). Blood tests showed a significant in-
crease in her ferritin level, with other parameters within normal 
limits. The patient was admitted to the internal medicine ward, 
where she was administered lopinavir/ritonavir (400 mg/100 mg 
b.i.d.) and a prophylactic dose of LMWH. Lopinavir/ritonavir was 
discontinued after 48 h due to QTc interval prolongation. In view 
of the patient’s clinical improvement and having reached 10 days 
of illness, no other antiviral treatment was started. The patient pro-

gressed adequately and was discharged 9 days after her admission 
and after 17 days of illness. 

Immune Phenotyping and IC Profile

We repeatedly obtained blood samples from both pa-
tients until exitus (patient 1) or discharge (patient 2). In 
addition, 10 healthy volunteers with a single blood sam-
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Fig. 3. Soluble plasma levels of immune checkpoints from patients 
1 and 2. a–f The plasma levels of soluble immune checkpoints 
from patients 1 and 2, collected until exitus or discharge, respec-
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ple were included in the study (see their main character-
istics in Table 1). From the study of soluble ICs and li-
gands in plasma, we detected that soluble Gal-9 levels 
were elevated in both patients at onset. However, a sig-
nificantly different progression was observed after 8 days 
of illness (Fig. 2a). This disparity matched the completely 
different clinical progression. We also studied other sol-
uble ICs and ligands (Fig. 3a–f), reinforcing the findings 

of disparate immune responses observed in the patients 
throughout their illness. Interestingly, sCD86 and mono-
cyte expression of HLA (human leukocyte antigen)-DR 
isotype showed similar patterns, pointing to a drastic re-
duction in the antigen presentation ability of patient 1 
from onset (Fig. 3f, g). 

Several previous reports have indicated that interac-
tions between Gal-9 and TIM-3 could result in T-cell ex-
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haustion and, ultimately, a significant reduction in cell 
count. Likewise, the progression of TIM-3 expression in 
CD3+ cells was remarkably disparate, with an almost ex-
ponential increase in patient 1, while patient 2 main-
tained the expression of this IC at the levels reported for 
10 healthy volunteers (Fig. 2b, c). In addition, the per-
centages of circulating CD3+ cells as well as CD4+ and 
CD8+ subpopulations from both patients were different, 
with a patent low level in patient 1, which remained low 
during the whole longitudinal temporal series (Fig. 2d–f). 
Moreover, TIM-3 levels were markedly higher on both 
the CD4+ and CD8+ T cells from patient 1 compared with 
patient 2 (Fig. 2g–j), an effect that was more pronounced 
over time. t-SNE cluster map analysis of TIM-3 expres-
sion on CD4+ and CD8+ T cells also illustrated these dif-
ferences (Fig. 2k). 

Due to the impact of effector memory T cells (TEM, de-
fined as CD3+CD45RA–CD27–, see gating strategy in 
Fig. 4a) on resolving SARS-CoV-2 infection [13], we ana-

lyzed their percentages in circulating blood from the 
study patients. Both CD4+ and CD8+ TEM levels showed 
a downward curve for patient 1 but not for patient 2 
(Fig. 4b, c, left panels). Note that the expression of cell 
senescence marker PD-1 on CD4+ TEM was added to this 
effect in the latter points and on CD8+ TEM some time 
earlier (Fig. 4b, c, central left panels). The expression of 
CD57, another reported senescence marker, did not show 
high levels in patient 1, except at the final point on CD8+ 
TEM (Fig. 4b, c, central right panels). Eventually, upregu-
lation of the proapoptotic factor CD95 was patent on 
CD8+ TEM from an early point in patient 1, which was also 
evident on CD4+ TEM after sepsis onset (Fig. 4b, c, right 
panels). A similar analysis was performed on naïve 
(CD3+CD45RA+CD27+; Tnaïve), central memory 
(CD3+CD45RA–CD27+; TCM), and terminally differenti-
ated (CD3+CD45RA+CD27–; TEM-RA) CD4+ and CD8+ 
cells (online suppl. Fig. S3). Both CD4+ and CD8+ Tnaïve 
percentages increased in patient 1 when he was close to 
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Fig. 5. Gal-9/TIM-3 axis showing disparate levels in patients with different outcomes. Blood samples from 57 
COVID-19 patients, recruited on admission and before any treatment, were analyzed. a Plasma levels of soluble 
Gal-9 (sGal-9) from COVID-19 patients classified according to their outcome (survivors or exitus) and healthy 
volunteers (HVs) are shown. b–d The percentages of TIM-3+ cells on CD3+ (b), CD4+ (c), and CD8+ (d) cells are 
shown. a–d Kruskal-Wallis statistics and multiple comparisons are shown.
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the onset of sepsis. In the case of TCM, an increase in both 
CD4+ and CD8+ TCM levels was detected in patient 1 after 
the onset of sepsis. Eventually, the analysis of TEM-RA 
showed a peak increase at the moment close to ICU ad-
mission, followed by a pronounced decrease in both 
CD4+ and CD8+ populations in patient 1. 

TIM-3 expression was also evaluated on other im-
mune cells, including CD14+ monocytes, natural killer 
cells, and neutrophils (online suppl. Fig. S4, S5). Note that 
the interleukin (IL)-6 and IL-17 levels increased in pa-
tient 1 approximately 10 days after disease onset (online 
suppl. Fig. S5G, H). 

Levels of Soluble Gal-9 in Plasma and TIM-3 
Expression on T Cells from COVID-19 Patients with 
Disparate Evolution

To evaluate the potential role of the Gal-9/TIM-3 axis 
as a biomarker of prognosis in the COVID-19 clinical con-
text, we did a retrospective analysis of samples from CO-
VID-19 patients with disparate evolution. Blood samples 
taken on admission and before any treatment were stored 
in the Biobank of La Paz University Hospital. Patients in-
cluded in the study were classified according to their final 
outcome as survivors (n = 47) or exitus (n = 10). Note that 
new healthy volunteers (n = 15) were also included (online 
suppl. Table 1). As Figure 5 shows, levels of soluble Gal-9 
were significantly higher in exitus patients than in survi-
vors. Moreover, expression of TIM-3 on T cells was also 
higher in those patients with the worst evolution. 

Discussion and Conclusion

We showed the disparate clinical courses of 2 patients 
with different previous health statuses. Patient 1 had suf-
fered from diabetes and hypertension, which constitute 
risk factors for complications during COVID-19 infec-
tion, mostly for males [14–16]. In contrast, patient 2 had 
no comorbidities. Infection of both patients took place at 
the same time and by the same source when community 
transmission of SARS-CoV-2 was controlled in Madrid 
(Spain). In this context, any differences in their clinical 
course cannot be related to different virus strains or dos-
es of infection.

As shown in Table 1, the baseline clinical differences 
between these two patients lie in the cardiovascular pro-
file. In fact, they could be closely related to our immuno-
logical findings, as some evidence regarding the patho-

genesis of COVID-19 has suggested [17]. Note that the 
virus uses angiotensin-converting enzyme 2 as a receptor 
to enter cells, altering the renin-angiotensin axis [18]. 
This could lead to an increased angiotensin II effect, in-
cluding increased inflammation [19]. However, this hy-
pothesis requires further study.

Altogether, the continuous increase in soluble Gal-9 
and the increment in TIM-3 on T cells in patient 1 could 
suggest an activation of the Gal-9/TIM-3 axis and a poten-
tial cell exhaustion in this patient, in strict contrast to what 
happened in patient 2. However, this hypothesis must be 
confirmed by further mechanistic assays. Additionally, re-
ported data have suggested that CD8+ TEM, one of the 
most important immune cell populations for resolving in-
fection, would undergo apoptosis during infection. This 
explains the clinical course of patient 1, including the sep-
sis and secondary infections suffered by the patient. 

According to several authors, TIM-3 and Gal-9 have 
shown the ability to induce T-cell exhaustion and reduce 
CD8+ effector cells [20–22]. In line, some authors have pro-
posed the association of various ICs including soluble TIM-
3 with COVID-19 severity [9]. Our data suggest that solu-
ble Gal-9 and TIM-3 expression on T cells could be bio-
markers for those COVID-19 patients at high risk of 
suffering from sepsis and secondary infections. In addition, 
the Gal-9/TIM-3 axis could also play a role in modulating 
other cell types. For example, TIM-3 expression on neutro-
phils was shown to be involved in bacterial killing [23]. 
Along these lines, we found a transient peak of TIM-3 ex-
pression on neutrophils in patient 2 just before discharge. 

Although significant comorbidities (such as those our 
patient 1 had) have been associated with poor outcomes 
in COVID-19, not all patients with such comorbidities 
will develop a severe disease. Our findings could help to 
identify those with a poorer prognosis in addition to 
those known risk factors. In fact, both soluble Gal-9 and 
TIM-3 expression on T cells was evaluated in samples 
from a small cohort of COVID-19 patients with disparate 
evolution and similar comorbidities (online suppl. Table 
1). Our data indicate that the Gal-9/TIM-3 axis was up-
regulated in those patients who showed the worst evolu-
tion. It is important to remark that the samples were tak-
en on admission and before any treatment. 

In a new disease such as COVID-19, with neither previ-
ous clinical experience nor tools for patient classification 
and only two drugs, remdesivir and dexamethasone, indi-
cated to be effective for selected patients [24, 25], it is man-
datory to explore and establish biomarkers to identify 
those patients at high risk. Here, we have presented data 
that show the potential of the Gal-9/TIM-3 axis for the 
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classification of patients with a poor prognosis. Likewise, 
there is the possibility of its use as a pharmaceutical target 
in this clinical context. Furthermore, due to the functional 
implications of Gal-9/TIM-3 axis-blocking antibodies, 
these molecules should be explored for potential therapies 
for COVID-19. Notwithstanding, it is worth noting that 
the small cohort observed could constitute a limitation to 
the scope of our results and that the mechanisms underly-
ing the described associations remain largely unknown.

Our study points to immune biomarkers that could 
play a key role in managing COVID-19 in this clinical set-
ting, either for early recognition of patients with the po-
tential for severe illness before clinical impairment pres-
ents itself or for adapting and individualizing treatments 
according to the progression of these biomarkers. 
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