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Abstract

There is direct evidence for the spread of infectious diseases such as influenza, SARS,

measles, and norovirus in locations where large groups of people gather at high densities

e.g. theme parks, airports, etc. The mixing of susceptible and infectious individuals in these

high people density man-made environments involves pedestrian movement which is gen-

erally not taken into account in modeling studies of disease dynamics. We address this

problem through a multiscale model that combines pedestrian dynamics with stochastic

infection spread models. The pedestrian dynamics model is utilized to generate the trajecto-

ries of motion and contacts between infected and susceptible individuals. We incorporate

this information into a stochastic infection dynamics model with infection probability and con-

tact radius as primary inputs. This generic model is applicable for several directly transmit-

ted diseases by varying the input parameters related to infectivity and transmission

mechanisms. Through this multiscale framework, we estimate the aggregate numbers and

probabilities of newly infected people for different winding queue configurations. We find

that the queue configuration has a significant impact on disease spread for a range of infec-

tion radii and transmission probabilities. We quantify the effectiveness of wall separators in

suppressing the disease spread compared to rope separators. Further, we find that configu-

rations with short aisles lower the infection spread when rope separators are used.

Introduction

Pedestrian crowds are commonly observed in all public locations offering entertainment,

transportation, social or religious activities. The mass gathering of people congregated in lim-

ited space often elevates the risk of infectious disease spread due to the increased contacts

between susceptible and infectious individuals. Further, individuals with different levels of vul-

nerability and receptivity due to variations in genetic background and intervention usage

often congregate in touristic sites [1]. There is direct evidence for the occurrence of multiple
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epidemic outbreaks in high pedestrian density locations such as transportation hubs, enter-

tainment venues, (e.g. theme parks, stadiums) and mass gatherings [2–13]. Gautret and Steffen

[2] report that sixty-eight cited instances of outbreaks among crowds occurred between 1980

and 2016. Numerous reports deal with the spread of diseases like influenza, SARS, and measles

during air travel [3–5]. Examples of epidemics in entertainment venues include the influenza

outbreak in 2002 during the winter Olympiad [6] and the measles outbreak in Disney World

in 2016 resulting in 125 cases [7]. Several outbreaks of directly transmitted gastrointestinal and

respiratory diseases have been reported in religious and social outdoor mass gatherings [8–10],

international meetings [11, 12] and concert halls [13].

Disease spread in high pedestrian density locations is inherently a multidisciplinary and

multiscale problem involving epidemiology and crowd dynamics. Deterministic [14] and sto-

chastic [15] epidemiological models including Susceptible-Infected-Recovered (SIR) models

are effective tools for understanding epidemic spread. However, such models do not account

for discrete human interactions in pedestrian crowds. Computationally intensive agent-based

models e.g. EpiSimdemics [16], and stochastic models [17] include human interactions

through behavioral rules but are targeted at modeling simple interactions over large popula-

tions and geographical areas [16, 17], rather than evaluating the impact of fine-scale interac-

tions. Instances mentioned above involve a high density of pedestrians over relatively small

areas. Modeling non-uniform mixing in such instances and designing strategies for mitigation

can only be achieved through multiscale modeling involving the combination of epidemic

modeling with pedestrian crowd dynamics.

Understanding pedestrian dynamics and efficient crowd management practices are essen-

tial to enable effective flow of pedestrians, and for meeting safety standards in high pedestrian

density environments noted above. Pedestrian crowd management often involves the combi-

nation of crowd psychology [18] and engineering methods for assessing the capacities of corri-

dors, ramps, stairs, and other bottlenecks [19]. While several approaches including cellular

automata [20], fluid flow models [21] have been used for modeling pedestrian dynamics, social

force models [22, 23] have the advantage of evaluating the complete individual trajectories nec-

essary for contact estimation in epidemic studies. Since its conception, there have been several

advances in social force models involving force field estimations [24], algorithmic develop-

ments [25, 26] and applications in situations like panic [27], traffic dynamics [28] and evacua-

tion [29]. Namilae et al. [30, 31] have used pedestrian dynamics described by the social force

model in a multiscale model to study the spread of epidemics during air travel.

Despite separate developments in pedestrian dynamics and epidemiology, there is a paucity

of epidemiological models that utilize detailed information from pedestrian dynamics for con-

tact estimation. There is a strong correlation between contact and infection rates in several dis-

ease epidemics such as SARS [32] and Ebola [33]. Given the preponderance of epidemic

outbreaks in high pedestrian density locations, a model that accounts for pedestrian dynamics

in contact estimation can be a design tool for developing mitigation strategies. In this paper,

we develop such a multiscale model and utilize it to study disease spread in pedestrian queues.

Winding queue formation is a ubiquitous crowd control procedure. Consequently, individuals

in crowded gatherings often spend a significant amount of time in waiting queue lines. In the

multiscale model, pedestrian dynamics are used to generate trajectories of pedestrian motion

and estimate the rate of contact between infected and susceptible individuals. We incorporate

this information into a stochastic infection dynamics model with infection transmission prob-

ability and contact radius as primary inputs. This generic model is applicable for several

directly transmitted diseases like Ebola, SARS, and H1N1 influenza by varying the input

parameters related to infection probabilities and transmission mechanisms. We utilize this

multiscale model to analyze disease spread in various pedestrian queue configurations, suggest
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preferred layouts, and design strategies that would reduce contacts and consequently mitigate

the overall disease spread.

Modeling methodology

Pedestrian dynamics

To first estimate the number of contacts between susceptible and infectious individuals, we

model each mobile pedestrian as a particle and immobile objects like walls or barriers as

groups of stationary particles. The evolution of pedestrian particles and their interaction with

other pedestrians and stationary particles are described by molecular dynamics like the social

force model [23]. The net force �f i acting on an ith pedestrian (or particle) can be defined as:

�f i ¼
mi

t
ð�vi

0
ðtÞ � �viðtÞÞ þ

P
j6¼i

�f ijðtÞ ¼ mi
dvi
dt

ð1Þ

with the pedestrian position at a given time obtained by integration as �riðtÞ ¼
R

�viðtÞdt. Here

�vioðtÞ refers to the desired velocity of pedestrian, and �viðtÞ is the actual velocity,mi is the parti-

cle’s mass and τ is the time constant. The momentum generated by a pedestrian’s intention,

denoted by
mi
t

�vi
0
ðtÞ � �viðtÞ

� �
, results in a self-propulsion force that is balanced by a repulsion

force �f ijðtÞ to obstacles in the direction of motion. In this study, we use the Lennard–Jones

type repulsion term used earlier by Namilae et al. [30, 31].

While Eq (1) describes the general motion of pedestrians, we need to introduce modifica-

tions to this equation to account for slow-moving pedestrian queues. Pedestrians in a queue

move at the speed of the nearest person ahead in the line. To model this scenario, we introduce

location dependence to the desired velocity in the self-propulsion term as:

vi
0
ðtÞe_1 ¼

fðvA þ givBÞ 1 �
d

minfrijjfront ; i 6¼ jg

 !

e_1; d ¼

(
d1; if i&j of same group

d2; if i&j of different groups
0; if rijjfront < dð2Þ

where e_1 is the desired direction of motion. vA and γivB are the deterministic and stochastic

components of the desired velocity respectively. The values of walking speed terms (vA and

γivB) can be varied to obtain a given distribution of age groups and gender of travelers [34]. δ
is the cut-off distance constant between the ith and jth pedestrians at which the desired velocity

of the ith pedestrian reduces to zero velocity. δ is the minimum distance up to which two

pedestrians can come close before the rear pedestrian stops to prevent overlap with the front

pedestrian.

To mimic the real-life scenarios, we also account for the formation of groups of pedestrians.

The groups’ formation is controlled by adjusting the distance (δ) in Eq (2). Literature [35] indi-

cates that pedestrian spacing is different between pedestrians belonging to a group (e.g. family

or friends in the queue) and other pedestrians. An average distance of δ1 = 0.46 m is chosen

for pedestrian particles within the same group, while this distance between independent pedes-

trians is given a value of δ2 = 0.64 m.

Contact estimation and infection model

Consider a population of size N consisting of I(t) infected and S(t) susceptibles at time t. The

pedestrian’s position (ri(t)) evolves through the pedestrian dynamics model and is a function

of age, sex and infection status. A susceptible can become infected when coming into direct

contact with an infected individual. Given the trajectory of pedestrians over time, the number
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of contactsmi can be evaluated by counting the instances when the distance between the ith

and jth pedestrians (rij) is less than a virus-specific contact radius (x). This transmission dis-

tance (x) used to define the contact is dependent on the type of pathogen and mechanisms for

its spread. For diseases like Ebola, studies indicate that the primary mode of transmission is

through contact droplets [36, 37]. Consequently, a distance that enables direct touch needs to

be used for estimating contact for such diseases. Other infectious diseases like SARS and influ-

enza are known to be transmitted by both shorter and longer range airborne mechanisms [38,

39]. Studies show that micrometer-sized aerosol clouds generated during cough can travel

over 2 m [40, 41]. We vary the contact radius between these distances to account for the vari-

ous infection spread mechanisms. Duration of contact is also needed to define a contact. Here,

a contact is defined when a susceptible pedestrian is in the proximity of infective pedestrian

within the contact distance (x) for a period of 4 seconds. The contact duration is chosen based

on the breathing cycle as time sufficient to complete one inhalation of a contagion laden parti-

cle [42, 43].

Next, consider the probability (Pinf) that a contact between a susceptible and an infective

results in a successful infection transmission. We can divide this input parameter into two

components: A viral shedding probability distribution (Pc) which is a function of time since

acquiring infection for the specific virus in question, and a pathogen spread mechanism com-

ponent (Pm). This includes contributions of several independent mechanisms comprising (a)

aerosol exposure and inhalation probability (Pa) common in infections such as SARS and

influenza [38, 39], (b) Coarse pathogen droplet inoculation (Pd) common in infectious diseases

like Ebola [36]. Other mechanisms including fomite mechanism, which involves contaminated

surface-to-hand transfer would contribute to the infection spread, but such mechanisms do

not involve human-to-human contacts in this context and are not considered here. The infec-

tion probability would then be defined as:

Pinf ¼ Pc:Pm ¼ PcðPa þ PdÞ ð3Þ

First, consider the viral shedding probability distribution (Pc). Studies indicate that the

amount of viral shedding is typically dependent on the length of the incubation period and the

number of days since the appearance of symptoms. In a previous study [31], we used CDC

data on the amount of RNA (ribonucleic acid) virus copies in the blood serum since the illness

contraction to generate this probability distribution for Ebola [44]. A similar approach can be

used for other diseases, for example, for SARS pathogen, the viral gene expression of the nucle-

ocapsid (N) protein, detected at different rates along with the evolution of the virus from post-

onset of the symptoms till convalescence is indicative of viral shedding [45]. For influenza,

nasal, oral or ocular shedding of the H1N1 virus has been detected by determining the relative

equivalent unit from viral RNA level [46]. Such data can be used to generate the Pc distribu-

tion. Fig 1 shows the viral shedding distributions we generated based on [45] and [46] for

SARS and H1N1 influenza respectively.

There are many formulations in the literature to compute the mechanism-specific probabil-

ity of transmission. Table 1 lists the details of the popular mechanisms for aerosol and coarse

droplet mechanisms. The functional form of the aerosol inhalation probability is described in

the data-driven modeling framework in Teunis et al. [47], which in turn is based on Riley’s

Dose-response model [48]. The probability for coarse droplet inoculation mechanism consid-

ers the droplet cone emitted during expiratory events like coughing [49].

The probability that an infectious individual “i” in the crowd comes into contact with other

individuals is mi/N, where mi is the number of contacts. Using Bayes’ theorem of conditional

probability, P(contact and infection) = P (infection |contact). P (contact) = Pinf :
mi
N . To account
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for the demographic stochasticity of the susceptible individuals, the number of newly infected

by this infective “i” is estimated by a binomial distribution Ii (t)~B(ni,pi) with parameters ni =

Si (t-1), the number of susceptibles exposed to the contagion at time t, and pi ¼ Pinf :
mi
N . Eq (3)

is used for estimating Pinf.

For each infective individual, all the possible permutations are considered, i.e. the infective

is considered to be in all possible positions in the queue. Binomial distributions are obtained

to estimate a range of newly infected pedestrians with variations in the position and infectivity

of the infective pedestrian. Denote by the variable λ the possible number of newly infected

pedestrians ranging from zero to the maximum obtained number Ninf (λ = 0,. . .,λi,. . .,Ninf).

The mean binomial distribution of the number of people infected at time t by all the possible

permutations is computed using Eq (4) below. Here Comb denotes the number of combina-

tions of infective positions and wi is the frequency of obtaining λi newly infected in the compu-

tations. The day post-onset of symptoms which defines the infectivity (see Fig 1) is denoted by

c. We combine the probability distributions and average them as given by:

IðtÞ �
Pd

c¼1

Pi0c
i¼1
fBinomial ½Siðt � 1Þ;Pm � Pc

miðt � 1Þ

N
�g� wiðliÞ=Comb ð4Þ

Fig 1. Viral shedding probability distributions (Pc). (A) H1N1 influenza. (B) SARS virus.

https://doi.org/10.1371/journal.pone.0235891.g001

Table 1. Formulations for generating mechanism-specific probability distributions.

Mechanism Equations Notes References

Aerosols mechanism Pa ¼ 1 � e�
QCa t
Vo

� �
Data-driven model framework based on dose-response model [47, 48]

Ca—maximum initial concentration of contagion in aerosol suspension

τ—exposure time

Q—respiration rate of susceptibles

Vo—volume of infection envelope

Coarse droplet inoculation Pd ¼
SA
SC
:
VC
Vo

Model based on expiratory droplet cone [49]

VC—volume of cone in which droplet can fall

Vo—room or exposure volume

SA—exposed mucosa surfaces

SC—circular area base of the cone

https://doi.org/10.1371/journal.pone.0235891.t001
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Note that the contacts are defined when pedestrians are within a specific transmission dis-

tance which is dependent on the transmission mechanism. Instead of using fixed parameters

for defining contact, we will treat the contact distance and transmission prability as parameters

in assessing epidemic spread. We will vary these parameters over a broad range to model the

different scenarios (diseases and transmission mechanisms) for several pedestrian queue con-

figurations. Expelled fine aerosols travel farther and remain suspended for a longer time than

coarse droplets [40, 41]. We account for coarse droplets and aerosols transmission mecha-

nisms by varying the contact radius parameter between 0.9 and 2.1 meters (36–84 inches). The

contact radius range is based on the dynamics and the estimated travel distance of coarse drop-

lets and fine aerosols expelled by an infective member from his respiratory tract during talking,

breathing or coughing [40, 41]. We vary the transmittance probability (Pinf) between 0.025 and

0.2 to account for the variation in the infectivity of different diseases. This range is considers

the transmission probability calculations based on viral shedding [44–46] discussed earlier

(Fig 1). The model parameters and the ranges are tabulated in Table 2.

Model application to pedestrian queue configurations

Pedestrian winding queues are an essential component of crowd management. These queues

are often unidirectional and have different widths and configurations to fit the available area.

The queues are often separated by rope stanchions for their ease of use. However, temporary

walls could also be used for this purpose. Examples of such queues usage include airport secu-

rity, waiting areas at theme parks and other crowded places. Within the same line and among

adjacent lines, many susceptibles are often within the contact radius and viral infection may

propagate if an infectious pedestrian is present.

We evaluate the role of motion pattern and contact creation between neighboring pedestri-

ans, for different queue configurations. The aisles’ geometry, orientation. number of inlets and

exits are altered between the different configurations. To model queue configurations that are

used in practice, we used the dimensions of a waiting queue similar to those in typical theme

park attraction as shown in Fig 2. We used these dimensions as a basis for the different config-

urations modeled in the study. Social force based pedestrian models have been validated in

numerous studies [50, 51]. The model described here has been shown to reproduce pedestrian

evacuation data from airplanes as well as reproduce the experimentally verified speed-density

diagrams [31, 52].

We utilize the queue layout shown in Fig 2 as the basis for evaluating the effect of the layout

and shape of the queue configurations. The aisles’ length and orientation are altered between

the configurations of the same area and aisle width. We investigated four different rectangular

configurations with the same shape and area as shown in Fig 3. The four configurations are

split vertically (configurations in Fig 3B and 3C) or horizontally (Fig 3A and 3D). Configura-

tions in Fig 3A and 3B have one inlet and one exit whereas configurations in Fig 3C and 3D

Table 2. Numerical values and ranges of the parameters used in the multiscale model.

Parameter Description Estimated value/range

vA + γivB Pedestrian’s free speed 1.00–1.55 m/s

γi Random number 0–1

δ1 Cut-off distance between pedestrians of the same group 0.46 m

δ2 Cut-off distance between pedestrians of different groups 0.64 m

Pinf Infection probability 0.025–0.2

R Contact radius 0.9–2.1 m

https://doi.org/10.1371/journal.pone.0235891.t002
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Fig 2. Replication of real life pedestrian motion in queues using simulations. (A) Schematic representation of an actual pedestrian queue in an entertainment venue.

(B) Simulation snapshot of a corresponding model.

https://doi.org/10.1371/journal.pone.0235891.g002

Fig 3. Evolution of pedestrians (t = 125s) from simulation of double queue rectangular layouts. (A) Configuration 1. (B) Configuration 2. (C) Configuration 3. (D)

Configuration 4.

https://doi.org/10.1371/journal.pone.0235891.g003
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have two inlets and two exits due to the existence of separated zones. The width of the pedes-

trian lanes remains 1 m, which allows some pedestrians belonging to the same group to form a

double line. The four configurations are termed Configurations 1, 2, 3 and 4 respectively.

We also investigate the relation between the layout shape and the contact evolution, by

modeling four square floor plans of the same area as above configurations. In all the simula-

tions, a total of 600 pedestrians are distributed within the waiting area. We take into account

the possibility of pedestrians within a group walking side-by-side. In general, presence of

groups would reduce the average distance between pedestrians and increase the pedestrian

density, therefore would increase the number of contacts and the number of new infections.

For all of the configurations, the number of contacts between pedestrians is calculated where

rope separators or temporary walls are placed between the aisles. For rope separators, contact

extends to pedestrians in the neighboring aisles, whereas for temporary walls, transmission

due to contact is limited only between the pedestrians within the same aisle. The data of pedes-

trian contact is then combined with the infection model to estimate infectious disease spread.

We consider the situation of a single infective in the queue. The infectious individual is

unidentifiable; his/her rank in the queue is not known apriori. Therefore, all permutations of

the infectious individual’s position are simulated to determine the average number of contacts

for a given queue configuration. This results in 600 combination for six variations of each con-

figuration. We then parametrize the contact radius and transmission probability and analyze if

and how the queue layout and features impact the disease spread.

For a given configuration and a set of infection parameters, the mean number of newly

infected pedestrians is binomially distributed to account for the demographic stochasticity in

the immunity and receptivity of the susceptible population. For instance, Fig 4 represents the

distribution of newly infected individuals for the four configurations at an infection probabil-

ity of 0.025 and a proximate contact radius of 1.2 meters for aisles separated by ropes. While,

we compute such distributions for the entire parameter space, for ease of representation in

subsequent analysis, we only plot the mean of the distributions as a function of pedestrian and

infection parameters.

Results

Rectangular floor plan

Based on our observations of common queues, we consider the situations when two pedestri-

ans belonging to the same group can move abreast or side-by-side in the four rectangular con-

figurations shown in Fig 3. As initial conditions, the pedestrians are distributed side-by-side

inside the aisle and in front of the inlet. The spacing between the pedestrian particles is varied

to differentiate between individuals of the same groups and others from different groups as

mentioned earlier. As time evolves, the abreast queues turn into a single file in the exit aisles

where the pedestrian speed increases (See Fig 3). We do not consider a waiting time at the exit

to decrease the computational effort.

With the commonly used rope separators and an infection radius less than 1.2m, which cor-

responds to coarse droplet mechanisms, the infective has an influence on the directly adjacent

aisles on both sides. The bar chart in Fig 5A estimates the total number of contacts between

the infective and the susceptible population. However, a given contact will lead to infection

based on the transmission probability. Combining the contact data of the bar chart with the

infection model leads to the mean distribution of infection over the probability range like in

Fig 4. In Fig 5, we plot the corresponding mean of the binomial distribution for the different

configurations and transmission probabilities. Configuration 3 is the best layout for all trans-

mission probabilities, followed by configuration 2 (Fig 5A). In configuration 2, the vertical
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aisles are short with fewer pedestrians. Configuration 3 has the same aisle geometry as configu-

ration 2; however, the pedestrian will exit the queue earlier (halfway) compared to that of con-

figuration 2 which results in lower exposure time and consequently fewer contacts.

Configurations 1 and 4 result in a higher mean number of infections. These configurations

have long open aisles compared to configurations 2 and 3 with the lower aisle length, therefore

more pedestrians are involved, and interaction occurs more frequently with pedestrians from

neighboring aisles in these two configurations. Configuration 1 is the least favorable layout

because diverse pedestrians from both sides come into proximity more frequently than in con-

figuration 4 with comparatively shorter aisles. Configuration 4 is worse than configuration 2

because, at the common corners between the left and right zones, the infective comes into con-

tact with additional pedestrians from the neighboring zones.

The use of temporary (or permanent) walls in the place of ropes limits the mixing of pedes-

trians within the same aisle and reduces the impact of common corners between aisles. In this

case, we assume that the contagion cannot cross over to the adjacent aisles due to the solid wall

barrier, therefore it results in a lower number of contacts. Fig 5B shows the mean number of

infections when walls are used for crowd control. Overall, the mean number of new infections

is significantly lower than when using rope separator. It can be inferred from Fig 5B that con-

figuration 3 still results in the lowest number of infections at all transmission probabilities, and

configuration 1 with long lines results in the highest number of infections in this case too. The

primary difference between using rope separators and walls is for configurations 2 and 4. Con-

figuration 2 resulted in a lower number of infections compared to 4 when using rope separa-

tors while this is reversed with walls. In configurations 3 and 4, the exit time is again shorter

Fig 4. Infection distribution profile for the different configurations at Pinf = 0.025 and R = 1.2m with rope separation.

https://doi.org/10.1371/journal.pone.0235891.g004
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than that of configurations 1 and 2 resulting in lower overall contacts. Also, at 1.2m radius of

infection, the configurations with long aisles and high pedestrian density corners result in

higher contacts when using wall separators. This is explained by the fact that the same group

of pedestrians remains in contact for a prolonged time.

Fig 6 shows the results of repeating the transmission probability variation over the same

range, but assuming the aerosol transmission mechanism with a longer contact radius of 2.1

m. Configuration 3 still results in the lowest number of contacts for both rope and wall separa-

tors. For rope separator, we observe the same pattern of results as with the lower contact

radius, but with increased infection spread (Fig 6A). The differences between the configura-

tions reduce at low transmission probabilities, therefore, the results for configurations 2 and 3,

Fig 5. Infection distribution profile for different double queue configurations at a contact radius of 1.2m. (A) The rope is used for separation between the rows. (B)

The temporary shading walls are used for separation between the rows.

https://doi.org/10.1371/journal.pone.0235891.g005
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and for configurations 1 and 4 overlap. At 2.1 m contact radius, the dispersion of the fine con-

tagion laden particles crosses the aisle boundaries to two adjacent aisles on each side. Here, the

findings of configurations 2 and 3 are nearly identical since the aisles are distributed in the

same manner except that configuration 3 has two separated zones. When the transmission

radius expands to many neighboring aisles, pedestrians of one zone in configuration 3 come

into contact not only with other pedestrians within the same zone, but with those in the adja-

cent zone. Accordingly, configurations 2 and 3 have the same behavior. Here, the separation of

these two groups has no effective role in reducing contact. The same principle applies to

Fig 6. Infection distribution profile for different double queue configurations at a contact radius of 2.1 m. (A) The rope is used for separation between the rows. (B)

The temporary shading walls are used for separation between the rows.

https://doi.org/10.1371/journal.pone.0235891.g006
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configurations 1 and 4; the offset between the data of configurations 1 and 4 is reduced com-

pared to that of the coarse droplet transmission mechanism for the same reason. Configura-

tion 1 remains the worst layout, especially at higher probabilities, due to the elongated,

abundant contact between pedestrians from adjacent aisles.

Previously, when the coarse droplet transmission with wall separator was evaluated (Fig

5B), the maximum number of contacts for configurations 1 and 2 were highest, followed by

configuration 4. With aerosol transmission mechanism (R = 2.1 m) as in Fig 6B, configuration

2 remains the greatest in terms of contacts generated, followed by configuration 4, and the

resultant number of contact of configuration 1 drops. At a low contact radius (R = 1.2m),

pedestrian density within the circle of infection is greater in aisles than at corners. Therefore,

long aisles allow greater contact time. However, an infection circle with a 2.1m radius of con-

tact will include more pedestrians at the corners rather than the aisles. Configuration 2 has the

shortest aisles, with the greatest number of corners (21 corners), which leads to a higher num-

ber of contacts.

We now explore the contacts generated between pedestrians in the four configurations

assuming different infection mechanisms represented by the radius variation. Configurations

2 and 3 result in a lower number of infections for rope separators, across the range of infection

radii from 0.9 to 2.1 m as shown in Fig 7A. As explained earlier, for aisles separated with ropes,

shorter aisles lead to lower exposure of an infective resulting in this behavior. For walls, the

combination of the radius of infection, as well as the interaction time within the aisles and at

the corners alter the results as shown in Fig 7B. Each combination of infection radius and

queue layout generates a different number of mean newly infected individuals. At low infec-

tion radii, short-aisle and low exit time configurations are favorable. At higher radii, configura-

tions with less turning corners are better.

Square floor plan

We now consider square layouts with the same area as the rectangular layouts discussed

previously. Since the aspect ratio of the square configuration changes from that of a rectangle,

the number of aisles and their dimensions vary as shown in Fig 8. Note that configurations 1

and 2 in Fig 8A and 8B, are the same except for rotation, therefore, we do not discuss them

separately.

Fig 7. Contact distribution profile for different queue configurations with varying contact radii. (A) Rope separators used between the rows. (B) Walls used for

separation between the rows.

https://doi.org/10.1371/journal.pone.0235891.g007
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The results shown in Figs 9–11 for these configurations are aggregate of those observed for

configurations 1 and 2. Here, the best configuration is again investigated by monitoring the

variation of the number of newly infected individuals in terms of infection probability and

radius sweep. Looking at the four configurations, by varying the infection probability range,

configuration 3 is again the most favorable, whereas, the other three configurations result in a

similar number of infections when using rope separators (Fig 9A). Configuration 3 only differs

from configurations 1 and 2 by the two left and right zones, enabling faster flow at the inlets

and exits. In contrast to configurations 1 and 2 where pedestrians remain in the queue for a

longer duration, pedestrians in configuration 3 are exiting halfway with less elapsed time in

Fig 8. Evolution of pedestrians (t = 125s) from a simulation of abreast queue square layouts. (A) Configuration 1. (C) Configuration 2. (B) Configuration 3. (D)

Configuration 4.

https://doi.org/10.1371/journal.pone.0235891.g008
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the waiting line, thus, resulting in less interaction during the shorter wait. Although configura-

tion 4 also possesses two inlets and exits (short exit time), the number of common corners

where pedestrians from both zones are at proximate contact is more than that of a rectangular

layout. Also, the square configuration 4 here retains the shortest aisle length among all the con-

figurations of the same square layout and even the rectangular ones. Although short aisles with

rope separators allow less interaction as mentioned previously, shorter aisles lead to conges-

tions at the corners where pedestrians reduce their walking speed while changing the direction

of motion. Therefore, even with a shorter waiting time than the other configurations, configu-

ration 4 allowed more frequent interactions between pedestrians of both zones resulting in a

Fig 9. Infection distribution profile for different double queue configurations at a contact radius of 1.2 m. (A) Rope stanchions are used for separation between the

rows. (B) Wall separators are used for separation between the rows.

https://doi.org/10.1371/journal.pone.0235891.g009
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similar number of newly infected members as configurations 1 and 2, for lower contact radius

(Fig 9A). Thus, the long elapsed time in the queue (aisle and corner) and the abundancy of

turning corners have the same effect in increasing infection for rope separators in a rectangu-

lar floor layout. For the same configuration geometries, if the floor layout is increased, i.e.

wider and longer aisles, configuration 4 will have a better performance as the interaction at the

corners and in the aisles as well as the time elapsed in the queue are lower than those of config-

urations 1 and 2.

With temporary walls used as aisle separators, the order of the configurations alters as

shown in Fig 9B. In this case, only the waiting time within the same line and congestion at the

corners play an important role. Referring to Fig 8, it can be noticed that the pedestrians’ den-

sity along the aisles is almost the same between all the configurations. However, at the corners

Fig 10. Infection distribution profile for different double queue configurations at a contact radius of 2.1 m. (A) Rope stanchions are used for separation between

the rows. (B) Wall separators are used for separation between the rows.

https://doi.org/10.1371/journal.pone.0235891.g010
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of configuration 4, pedestrians are congregated at higher density than the other layouts leading

to an increase in the number of infections for Configuration 4 (Fig 9B). This is explained by

the shorter aisles and the necessity to keep changing velocity direction, thus the reduction in

the magnitude of the velocity components. This phenomenon also applies to the rope separa-

tor scenario. However, with ropes, the maximum interaction with pedestrians in neighboring

aisles and corners is of greater importance and frequency than that within the same line. Con-

figuration 3 remains the most favorable as it comprises a combination of moderate aisle length

and less waiting time at corners.

Expanding the contact radius to 2.1 m assuming aerosol transmission mechanism, all con-

figurations behave in the same manner for rope separators as shown in Fig 10A. Here the

infective’s influence crosses multiple surrounding aisles and separation zones, therefore, the

number of corners and aisles do not have any effect. For walls, the pedestrians’ distribution at

the corners alters the results with minor differences (Fig 10B). Configuration 4 has the most

congested corners and highest number of contacts. Fig 11 summarizes these results. At a low

infection radius, for a rope separator, configuration 3 results in fewer contacts, whereas, with

higher contact radii, the differences between the different configurations are reduced. For

walls, pedestrians’ density at the corners leads to higher contacts for configuration 4. The short

waiting time of configuration 3 makes it competitive in all conditions.

Discussion

The modeling approach developed in this study provides a unique approach to combine

pedestrian movement models and infectious disease spread models. By tracing the trajectory

of each pedestrian in the time frame, the data of contacts between susceptible and infective

pedestrians is obtained. Then, applying a stochastic susceptible-infected model to the contact

data determines the number of newly infected individuals who are in critical contact with the

infectives. This model has applications in the design of high pedestrian density locations which

are often associated with infectious disease spread [2–13]. We demonstrate the approach for

layout design by applying the model to various configurations of pedestrian queues and assess-

ing the contact and infection spread dynamics as a function of various parameters.

Another aspect of the model deals with addressing the inherent uncertainty in this problem.

Human movement is often guided by discretionary behaviors with respect to route and

Fig 11. Contact distribution profile for different queue configurations with varying contact radii. (A) Rope separators used between the rows. (B) Walls used for

separation between the rows.

https://doi.org/10.1371/journal.pone.0235891.g011
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destination choices, intrinsic variability in pedestrian speed and inter-pedestrian interactions,

which results in a high level of uncertainty. This aleatory uncertainty is further compounded

by the combination with the infectious disease spread model, which introduces variables like

transmission probability and contact radius. We parametrize the sources of uncertainty,

thereby assess the conditions under which certain configurations or strategies are effective in

mitigating disease spread. To account for the various transmission likelihoods and transmis-

sion mechanisms, we varied the transmission probability and contact radius in the parameter

sweep. This approach can identify the effectiveness and vulnerability of a given mitigation

strategy. For example, Figs 5 to 11 indicate that configuration 3 is the more effective configura-

tion in reducing the number of contacts across different parameter combinations. Further

analysis suggests that the difference between queue configurations is highest at low contact

radii (e.g. 1.2 m) compared to high contact radius (2.1 m), and also for higher transmission

probabilities. Such information can be useful for designing queue layouts with the objective of

minimizing contact for a specific outbreak.

We identify three main methods to reduce the number of contacts when pedestrians are

waiting in queues. The shape and configuration of the layout effects the number of contacts. A

longer rectangular queue with pedestrian movement aligned along the short side like in configu-

rations 2 and 3 reduces the number of contacts. Another simple way of reducing the number of

contacts in waiting queues is if temporary walls are used in place of rope separators. Such walls

would potentially limit the contacts within the row, which would reduce the number of contacts

from up to 55% to 75% compared to rope separators (see Fig 12A). Another approach is to

reduce the aisle width to create a single file queue. Fig 12B compares the number of contacts

between the default case and when single file is enforced. The overall number of contacts reduces

by 8–25% in the queue configurations we considered when a single file queue is considered.

Conclusions

There is a strong correlation between contact rates and infection rates in disease epidemics.

The movement and interaction of people in high pedestrian density environments affect the

Fig 12. Comparison of the number of contacts between different configurations and queue arrangements. (A) Rope separators and walls for rectangular and square

layout for configuration 3 with a contact radius of 1.2 m. (B) A similar comparison for the rectangular layout between the default and a single file queue setup.

https://doi.org/10.1371/journal.pone.0235891.g012
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number of contacts and thereby impact infectious disease spread. The mixing of susceptible

and infectious individuals in these high people density environments involves pedestrian

movement which is often not taken into account in the modeling studies of disease dynamics.

In this paper, we developed a multiscale model for incorporating input from pedestrian

dynamics models into a stochastic infection spread model. The model is applied to a ubiqui-

tous problem of contact evolution and infectious disease spread in pedestrian waiting queues.

We evaluate the effect of queue configurations on generating contacts between neighboring

pedestrians. Four distinct queues are evaluated with vertical and horizontal aisle patterns, one

or two waiting zones, rectangular and square floor plans, and single-file or abreast pedestrians

distributions within the control area. In these various geometrical scenarios, a comparison is

made between the rope and wall separators and their effect on pedestrian interactions. With

rope separators, pedestrians are allowed to interact with other pedestrians from neighboring

aisles in addition to the forward and backward members in the queue within the same aisle.

However, for wall separators, the interaction between pedestrians is restricted to those only

within the same aisle.

We find that wall separators are very effective in reducing the number of contacts and dis-

ease spread. In some cases, replacing ropes by wall separators results in the reduction in num-

ber of contacts by more than 75%. Among the different queue configurations considered in

the study, configurations with motion along short aisles lead to lower number of contacts and

disease spread when rope separators are used. Also, for the same area of the queue layout, we

find that rectangular configurations lead to lower number of contacts than square configura-

tions. While the model is applied to the specific case of pedestrian queues in this paper, the

general principles can be used for analysis of infectious disease spread in any high pedestrian

density location.
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26. Lämmel G, Plaue M. Getting out of the way: Collision-avoiding pedestrian models compared to the real-

world. InPedestrian and Evacuation Dynamics 2012 2014 (pp. 1275–1289). Springer, Cham.

27. Treiber M, Hennecke A, Helbing D. Derivation, properties, and simulation of a gas-kinetic-based, nonlo-

cal traffic model. Physical Review E. 1999 Jan 1; 59(1):239.

28. Wei-Guo S, Yan-Fei Y, Bing-Hong W, Wei-Cheng F. Evacuation behaviors at exit in CA model with

force essentials: A comparison with social force model. Physica A: Statistical Mechanics and its Appli-

cations. 2006 Nov 15; 371(2):658–66.

29. Li Z, Jiang Y. Friction based social force model for social foraging of sheep flock. Ecological modelling.

2014 Feb 10; 273:55–62.

30. Namilae S, Derjany P, Mubayi A, Scotch M, Srinivasan A. Multiscale model for pedestrian and infection

dynamics during air travel. Physical review E. 2017 May 31; 95(5):052320.

31. Namilae S, Srinivasan A, Mubayi A, Scotch M, Pahle R. Self-propelled pedestrian dynamics model:

Application to passenger movement and infection propagation in airplanes. Physica A: Statistical

Mechanics and its Applications. 2017 Jan 1; 465:248–60.

32. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, et al. Transmission dynamics and control of

severe acute respiratory syndrome. Science. 2003 Jun 20; 300(5627):1966–70. https://doi.org/10.

1126/science.1086616 PMID: 12766207

33. Rivers CM, Lofgren ET, Marathe M, Eubank S, Lewis BL. Modeling the impact of interventions on an

epidemic of Ebola in Sierra Leone and Liberia. PLoS currents. 2014 Nov 6; 6.

34. Zębala J, Ciępka P, RezA A. Pedestrian acceleration and speeds. Problems of Forensic Sciences.

2012; 91:227–34.

35. Moussaïd M, Perozo N, Garnier S, Helbing D, Theraulaz G. The walking behaviour of pedestrian social

groups and its impact on crowd dynamics. PloS one. 2010 Apr 7; 5(4):e10047. https://doi.org/10.1371/

journal.pone.0010047 PMID: 20383280

36. Osterholm MT, Moore KA, Kelley NS, Brosseau LM, Wong G, Murphy FA, et al. Transmission of Ebola

viruses: what we know and what we do not know. MBio. 2015 May 1; 6(2):e00137–15. https://doi.org/

10.1128/mBio.00137-15 PMID: 25698835

37. Judson S, Prescott J, Munster V. Understanding ebola virus transmission. Viruses. 2015 Feb; 7

(2):511–21. https://doi.org/10.3390/v7020511 PMID: 25654239

38. Clark RP, de Calcina-Goff ML. Some aspects of the airborne transmission of infection. Journal of the

Royal Society Interface. 2009 Oct 8; 6(suppl_6):S767–82.

39. Yuen KY, Wong SS. Human infection by avian influenza A H5N1. Hong Kong Medical Journal. 2005.

40. Bourouiba L, Dehandschoewercker E, Bush JW. Violent expiratory events: on coughing and sneezing.

Journal of Fluid Mechanics. 2014 Apr; 745:537–63.

41. Gupta JK, Lin CH, Chen Q. Flow dynamics and characterization of a cough. Indoor air. 2009 Dec; 19

(6):517–25. https://doi.org/10.1111/j.1600-0668.2009.00619.x PMID: 19840145

42. Moskal A, Gradoń L. Temporary and spatial deposition of aerosol particles in the upper human airways

during breathing cycle. Journal of Aerosol Science. 2002 Nov 1; 33(11):1525–39.

43. Naseri A, Shaghaghian S, Abouali O, Ahmadi G. Numerical investigation of transient transport and

deposition of microparticles under unsteady inspiratory flow in human upper airways. Respiratory physi-

ology & neurobiology. 2017 Oct 1; 244:56–72.

44. Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, et al. Rapid diagnosis of Ebola

hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral

load as a predictor of outcome. Journal of virology. 2004 Apr 15; 78(8):4330–41. https://doi.org/10.

1128/jvi.78.8.4330-4341.2004 PMID: 15047846

45. Zhao GP. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic dis-

ease in the genomics era. Philosophical Transactions of the Royal Society B: Biological Sciences. 2007

Feb 27; 362(1482):1063–81.

46. Yu H., Liao Q., Yuan Y., Zhou L., Xiang N., Huai Y., et al. (2010). Effectiveness of oseltamivir on disease

progression and viral RNA shedding in patients with mild pandemic 2009 influenza A H1N1: opportunis-

tic retrospective study of medical charts in China. Bmj, 341, c4779. https://doi.org/10.1136/bmj.c4779

PMID: 20876641

PLOS ONE Model for infectious disease spread in pedestrian queues

PLOS ONE | https://doi.org/10.1371/journal.pone.0235891 July 9, 2020 20 / 21

https://doi.org/10.1126/science.1086616
https://doi.org/10.1126/science.1086616
http://www.ncbi.nlm.nih.gov/pubmed/12766207
https://doi.org/10.1371/journal.pone.0010047
https://doi.org/10.1371/journal.pone.0010047
http://www.ncbi.nlm.nih.gov/pubmed/20383280
https://doi.org/10.1128/mBio.00137-15
https://doi.org/10.1128/mBio.00137-15
http://www.ncbi.nlm.nih.gov/pubmed/25698835
https://doi.org/10.3390/v7020511
http://www.ncbi.nlm.nih.gov/pubmed/25654239
https://doi.org/10.1111/j.1600-0668.2009.00619.x
http://www.ncbi.nlm.nih.gov/pubmed/19840145
https://doi.org/10.1128/jvi.78.8.4330-4341.2004
https://doi.org/10.1128/jvi.78.8.4330-4341.2004
http://www.ncbi.nlm.nih.gov/pubmed/15047846
https://doi.org/10.1136/bmj.c4779
http://www.ncbi.nlm.nih.gov/pubmed/20876641
https://doi.org/10.1371/journal.pone.0235891


47. Teunis PF, Moe CL, Liu P, E. Miller S, Lindesmith L, Baric RS, et al. Norwalk virus: how infectious is it?.

Journal of medical virology. 2008 Aug; 80(8):1468–76. https://doi.org/10.1002/jmv.21237 PMID:

18551613

48. Riley RL, O’Grady F. Airborne infection: transmission and control. Macmillan; 1961.

49. Teunis PF, Brienen N, Kretzschmar ME. High infectivity and pathogenicity of influenza A virus via aero-

sol and droplet transmission. Epidemics. 2010 Dec 1; 2(4):215–22. https://doi.org/10.1016/j.epidem.

2010.10.001 PMID: 21352792

50. Parisi DR, Gilman M, Moldovan H. A modification of the social force model can reproduce experimental

data of pedestrian flows in normal conditions. Physica A: Statistical Mechanics and its Applications.

2009 Sep 1; 388(17):3600–8.

51. Johansson A, Helbing D, Shukla PK. Specification of the social force pedestrian model by evolutionary

adjustment to video tracking data. Advances in complex systems. 2007 Dec; 10(supp02):271–88.

52. Sadeghi Lahijani M, Islam T, Srinivasan A, Namilae S. Constrained Linear Movement Model (CALM):

Simulation of passenger movement in airplanes. PLoS one. 2020 Mar 5; 15(3):e0229690. https://doi.

org/10.1371/journal.pone.0229690 PMID: 32134966

PLOS ONE Model for infectious disease spread in pedestrian queues

PLOS ONE | https://doi.org/10.1371/journal.pone.0235891 July 9, 2020 21 / 21

https://doi.org/10.1002/jmv.21237
http://www.ncbi.nlm.nih.gov/pubmed/18551613
https://doi.org/10.1016/j.epidem.2010.10.001
https://doi.org/10.1016/j.epidem.2010.10.001
http://www.ncbi.nlm.nih.gov/pubmed/21352792
https://doi.org/10.1371/journal.pone.0229690
https://doi.org/10.1371/journal.pone.0229690
http://www.ncbi.nlm.nih.gov/pubmed/32134966
https://doi.org/10.1371/journal.pone.0235891

