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ABSTRACT

De novo germline mutations (DNMs) are the rarest
genetic variants proven to cause a considerable
number of sporadic genetic diseases, such as
autism spectrum disorders, epileptic encephalopa-
thy, schizophrenia, congenital heart disease, type 1
diabetes, and hearing loss. However, it is difficult to
accurately assess the cause of DNMs and identify
disease-causing genes from the considerable num-
ber of DNMs in probands. A common method to this
problem is to identify genes that harbor significantly
more DNMs than expected by chance, with accu-
rate background DNM rate (DNMR) required. There-
fore, in this study, we developed a novel database
named mirDNMR for the collection of gene-centered
background DNMRs obtained from different meth-
ods and population variation data. The database
has the following functions: (i) browse and search
the background DNMRs of each gene predicted by
four different methods, including GC content (DNMR-
GC), sequence context (DNMR-SC), multiple factors
(DNMR-MF) and local DNA methylation level (DNMR-
DM); (ii) search variant frequencies in publicly avail-
able databases, including ExAC, ESP6500, UK10K,
1000G and dbSNP and (iii) investigate the DNM bur-
den to prioritize candidate genes based on the four
background DNMRs using three statistical methods
(TADA, Binomial and Poisson test). As a case study,
we successfully employed our database in candidate
gene prioritization for a sporadic complex disease:
intellectual disability. In conclusion, mirDNMR (https:
//www.wzgenomics.cn/mirdnmr/) can be widely used

to identify the genetic basis of sporadic genetic dis-
eases.

INTRODUCTION

De novo mutations (DNMs) arise spontaneously either in
germline cells (de novo germline mutation) or shortly af-
ter fertilization (post-zygotic mutation). DNMs represent
extremely rare genetic variants that contribute to sporadic
genetic diseases, such as autism spectrum disorders (1,2),
intellectual disability (3,4), epileptic encephalopathy (5–
7), schizophrenia (8–10), mental retardation (4,11), amy-
otrophic lateral sclerosis (12,13), congenital heart disease
(14), type 1 diabetes (15) and hearing loss (16,17). Recently,
trio-based whole exome/genome sequencing (WES/WGS)
was found to be the best way to identify DNMs in probands
with the rise of next-generation sequencing. However, not
all DNMs cause sporadic disease. For a given proband, an
average of 74 de novo single nucleotide variants (SNVs) and
three de novo insertions/deletions (INDELs) arise sponta-
neously across the genome (18), and few are considered
pathogenic. Therefore, the challenge is to accurately identify
pathogenic DNMs and disease genes among the numerous
DNMs detected in probands.

DNMs in the same gene within large cohorts repeat-
edly detected by trio-based WES/WGS indicate disease risk
(5,19,20). However, multiple DNMs can be found in one
gene by chance, and this often happens in larger genes
or within mutation hotspots in the case of large sequenc-
ing samples (18). Therefore, identification of disease genes
solely based on recurrent DNMs can yield false positives
and requires statistic methods for reliable inference. Se-
quencing of well-matched control samples has identified
candidate genes with significantly recurrent DNMs in sev-
eral large-scale studies (1,21). However, direct case-control
comparisons to evaluate significantly recurrent DNM may
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lack statistical power because of the scarcity of DNMs in
each gene (18). Furthermore, sequencing of sufficient con-
trol samples is not feasible considering current WES/WGS
costs. In principle, accurate estimates of background DNM
rates (DNMRs) for each gene could be used to calculate
significantly excess of DNMRs (22). In fact, gene-specific
DNMRs have already been calculated by several studies
using different models, and they have successfully identi-
fied disease-causal candidate genes via statistical analysis of
DNMRs (2,23–25).

In this study, we constructed a database named mirD-
NMR for gene level background DNMRs predicted by four
different methods based on GC content (DNMR-GC), se-
quence context (DNMR-SC), multiple factors (DNMR-
MF), and local DNA methylation level (DNMR-DM).
Variant frequencies in human genetic variation databases
were also incorporated into mirDNMR, including ExAC,
ESP6500, UK10K, 1000G and dbSNP. Overall, the mirD-
NMR is a database of gene-centered background DNMRs
and population variations, with several functionalities for
disease-causal gene prioritization included.

DATA COLLECTION AND METHODS

Data source

The background DNMRs calculated using four differ-
ent methods (DNMR-GC(23), DNMR-SC(2), DNMR-
MF(24) and DNMR-DM) were obtained from three pub-
lished works and one of our unpublished work (Figure 1,
Supplementary materials). DNMR-GC was obtained from
work by Sanders et al. (23). Briefly, at first, DNMRs for
each nucleotide were calculated based on actual sequenc-
ing data. As was reported that the average DNMR of GC
bases are 1.76-fold greater than that of AT bases (26), the
gene-based background DNMRs was calculated consid-
ering both gene sizes and GC contents (26). DNMR-SC
was obtained from work by Samocha et al (2). DNMR-
SC was predicted based on tri-nucleotide sequence con-
text. Based on human–chimpanzee intergenic genome re-
gions sequence comparisons, a mutation rate matrix was
constructed to determine the mutation rates of each type of
tri-nucleotide variation. The gene-level DNMRs were cal-
culated by summing up DNMRs of all coding nucleotides
for different mutation types, separately. DNMR-MF was
predicted based on primate substitution rates, and then ad-
justed by sequence context, transcription strand and recom-
bination rate to obtain final DNMR. The primate substi-
tution rates were calculated based on human-chimpanzee
comparisons on 1-MB genomic region scales. The contri-
bution of multiple other factors to DNMR was estimated
based on actual sequencing data of 250 trios. Gene level
DNMR was determined by DNMR of the 1-MB genomic
region overlapping with the gene mid-point for different
variant types. DNMR-DM was obtained from our unpub-
lished results, which was predicted based on local DNA
methylation levels of human sperm. Because spontaneous
deamination of 5-methylcytosine results in ∼14-fold higher
C>T substitution rates than the genome-wide average, we
assumed that DNA methylation increases base substitution
variants of C>T and built a DNMR model accordingly for

each gene. All of the four background DNMRs were incor-
porated into the mirDNMR database. Furthermore, we cal-
culated background DNMRs of LoF, missense and synony-
mous variants for DNMR-SC, DNMR-MF and DNMR-
DM, respectively. In addition, a unified DNMR (named as
DNMR-average) was calculated by averaging the four back-
ground DNMRs (Supplementary Figure S1). The high cor-
relation (Pearson coefficient > 0.9) among the four back-
ground DNMRs indicates the uniformity. Meanwhile, the
four background DNMRs and DNMR-average show high
correlation (Pearson coefficient ≥ 0.9) with number of rare
SNVs (AF < 0.01) in ExAC, with DNMR-average the most
highly correlated (Pearson coefficient = 0.935), which was
set as default (Supplementary Figure S2).

Variant frequencies in human genetic variation
databases, including ExAC (27), ESP6500 (28), UK10K
(29), 1000G (30,31) and dbSNP (32), were included in
mirDNMR (Figure 1). The Exome Aggregation Con-
sortium (ExAC, version r0.3.1) contains a wide variety
of large-scale sequencing data from 60 706 unrelated
individuals, including African American, East Asian,
Finnish, Non-Finnish European, South Asian and oth-
ers. The NHLBI GO Exome Sequencing Project (ESP,
version ESP6500SI-V2) supplied exome sequencing for
6503 samples, including European Americans and African
Americans. The UK10K project identified rare genetic
variants in 10 000 samples, including 4000 whole-genome
cohorts, 3000 neurodevelopment sample sets, 2000 obesity
sample sets and 1000 rare diseases sample sets. The 1000
Genomes (1000G, Phase 3) performed whole genome se-
quencing of 2504 individuals from 26 different populations.
In addition, germline variations from the dbSNP database
(build 147) were also included in mirDNMR.

Variant annotation

The genetic variants were annotated using the ANNOVAR
program (33) as for gene region, variant effect, amino acid
change, cytoband, etc. To determine the damaging effect,
all variants were classified into three categories: (1) Loss-
of-Function (LoF) variants including frameshift INDELs,
splicing SNVs, stop-gain or stop-loss variant that could lead
to protein function disruption; (2) tolerant variants includ-
ing synonymous SNVs and non-frameshift INDELs (3);
missense SNVs that was difficult to determine their rela-
tionship to protein function and accounted for the great-
est proportion of all variants. In the mirDNMR database,
14 computational methods to predict damaging effects, in-
cluding SIFT, Polyphen2 hvar, Polyphen2 hdiv, GERP++,
PhyloP, SiPhy, RadialSVM, MetaLR, MutationTaster, Mu-
tationAssessor, LRT, VEST3, CADD and FATHMM were
incorporated to predict the severity of missense SNVs. The
mutation was finally classified as damaging only if at least
nine results achieved good agreement.

Prioritize candidate genes based on DNM burden

To identify potential candidate genes based on over-
occurrence of DNMs, three different statistical methods in-
corporated in mirDNMR for this purpose were: TADA that
was published (22), Binomial test, and Poisson test. TADA
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Figure 1. The flowchart of mirDNMR. mirDNMR is a gene-centered database incorporating four different background DNMRs and variant frequencies
in five human genetic variation databases. Four functions are in this database, which allow users to retrieve background DNMRs and variant frequencies
in normal populations and to prioritize candidate genes. GO, KEGG pathway and PPI analysis are also provided for annotation of candidate genes.

prioritizes candidate genes using a Bayesian model to effec-
tively combine the de novo LoF variants and the de novo
damaging missense variants (predicted as ‘deleterious’ or
‘conserved’ by at least 9 of the 14 methods) and compared
the observed DNMs with the background DNMRs. The Bi-
nomial test used an R function ‘binom.test(x, n, p, alterna-
tive = ’greater’),’ where ‘x’ refers to the number of de novo
variants in each case, ‘n’ refers to ‘(number of trios) × 2,’
and ‘p’ refers to background DNMRs specified by users.
The Poisson test used an R function ‘poisson.test(x, n, p,
alternative = ’greater’),’ where ‘x,’ ‘n’ and ‘p’ of the func-
tion are the same as those of the Binomial test. For the three
methods, P-values were adjusted by the FDR approach to
obtain the q values.

GO, KEGG pathway and PPI analysis

To further explore the biological functions and interactions
among candidate genes, we incorporated Gene Ontology
(GO) (34), KEGG pathway (35) and protein–protein inter-
action (PPI) into mirDNMR to allow for enrichment anal-
ysis (Figure 1). GO and KEGG pathway enrichment were
run using a bioconductor package named ‘GOstats’ in an
R environment. GO and KEGG pathway databases were
originated from the ‘org.Hs.eg.db’ package. The GO term
and KEGG pathway enrichment tests used a hypergeomet-
ric test, and P values were adjusted by the FDR approach
(q value <0.05 by default). For PPI analysis, interactions
between two candidate genes were retrieved from the Bi-
oGRID database (Version 3.4.138) (36).

Database construction

The web interface of mirDNMR is an Apache environment
based on a CentOS release 6.5 Linux operating system. All
the data were managed using the MySQL database and the
web interface for database browsing. The result pages were
generated using PHP scripts. To ensure data security, the
web interface used a secure https protocol. The database has
been successfully tested with Microsoft Internet Explorer
11.0, Firefox 38, Google Chrome 45 and Safari 5.1.

WEB INTERFACE

Browse background DNMRs

For users to easily browse background DNMRs, the four
background DNMRs of specified variant types (LoF,
missense, synonymous and combined) and their averages
(DNMR-average) for 20 524 RefSeq genes are presented as
a table on the web page. All genes were divided into 200 sets
based on the DNMR range from 0 to 1.426 × 10−3, and as-
signed names as level 1 to level 200. Counts of gene within a
given DNMR range were filled in a specified cell (Figure 2).
Users can view detailed gene information in a given DNMR
range by clicking on the number in a specified cell. Detailed
information includes a bar plot with the DNMR tendency
and a table listing four types of DNMRs in ascending order
for all genes at this level.

Search background DNMRs and variant frequencies in nor-
mal populations

In mirDNMR, users can search for the background DN-
MRs for each gene by gene name or DNMR range (Figure
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Figure 2. An example of mirDNMR use. For the ‘Browse’ function, all four background DNMRs and DNMR-average were divided into 200 bins based
on magnitude ranging from 0 to 1.426e-03. Users can search background DNMRs by gene or DNMR range. Users can also search variant frequencies
in human genetic variation databases for a gene, exon, genomic region, or locus. With an input DNM list, users can prioritize candidate genes based
on TADA, Poisson test, or Binomial test using one of the four background DNMRs. Using a gene list, users can prioritize candidate genes based on
background DNMRs, RVIS score or the distribution of different variant types in human genetic variation databases. For a given gene list generated by
these functions, GO, KEGG pathway and PPI annotations can also be performed in mirDNMR.

2). For the search of gene name, one or more genes (sep-
arated by semicolon) are acceptable for input. In a gene
search result, four background DNMRs of specified vari-
ant type (LoF, missense, synonymous and combined) and
DNMR-average are displayed in a table. Meanwhile, a jitter
plot is also provided to show the global distribution of DN-
MRs of the given gene. For a search using DNMR range, a
table listing all genes within this range is shown.

mirDNMR supports different input for searching variant
frequencies in the five human genetic variation databases
(ExAC, ESP6500, UK10K, 1000G, dbSNP) (Figure 2).
Users can perform a search by inputting a single gene,
single exon, genomic region or locus. The search re-
sult can be filtered by selecting different variant effects
(including stop-gain, stop-loss, splicing site, frameshift,
non-synonymous, non-frameshift, synonymous and un-
known), variant types (including C>T/G>A, C>G/G>C,
C>A/G>T, A>T/T>A, A>G/T>C, A>C/T>G, inser-
tion and deletion), and using a custom range of variant fre-
quency of a given database. The search result contains three
blocks: a summary of the variant counts in the five human

genetic variation databases, a pie chart for the distribution
of variant effects and variant types, and a table listing all
variants that passed the filtering process. For each variant in
the table, detailed information is retrieved by clicking the ‘+’
in the last column, including the variant frequency of differ-
ent population in each database and the damaging predic-
tion result from the 14 software.

Prioritize candidate genes

mirDNMR allows users to prioritize candidate genes based
on DNM burden of observed DNMR and background
DNMR (Figure 2). After DNM list uploaded, users should
define the statistical methods (TADA, Binomial test, and
Poisson test) and background DNMR for analysis. TADA
prioritizes candidate genes by integrating the counts of LoF
and damaging missense variants that can be determined by
the 14 software methods. Weights for LoF and missense
variants could be freely set by users according to different
datasets. Of note, users can select their interested software
and threshold of the number of damaging predictions to de-
termine whether a missense variant is damaging. For the
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three statistical methods, P values are adjusted by the FDR
approach to obtain the q values. In the gene prioritization
result, a table of candidate genes is shown, containing their
RVIS score (37), counts of different types of variants, ob-
served DNMR, background DNMR, P value, and q value
in ascending order. Users can get the detailed list of DNMs
by clicking the number of DNMs in the table. Users can also
run GO, KEGG pathway, and PPI annotation for their can-
didate genes by clicking the button on the top of the results
page (Figure 2).

Filter genes with custom range

mirDNMR provides users the ability to filter genes based
on the range of background DNMRs, RVIS score and vari-
ant frequencies in human genetic variation databases (Fig-
ure 2). Unlike the ‘Prioritize’ function, this utility prioritizes
genes from a gene list. On the results page, genes remaining
after this filtering process are listed by ascending order of
DNMRs. Meanwhile, the RVIS scores and the distribution
of the counts of LoF, missense, and synonymous variants
in human genetic variation databases in both rare (AF<
0.001) and common (AF ≥ 0.001) forms are shown.

Case study

To demonstrate the power of mirDNMR in gene priori-
tization, we used DNMs from WES/WGS of 1,031 trios
affected with intellectual disability and 982 normal con-
trol trios from the NPdenovo database (38) to prioritize
candidate genes as a case study (Supplementary Table S1).
Based on the TADA method, genes were prioritized us-
ing the four background DNMRs for intellectual disabil-
ity and controls. We defined the genes with a q value <0.1
which were jointly identified based on the four background
DNMRs as candidate genes. In the result, we identified
46 candidate genes for intellectual disability but no can-
didate gene for control (Figure 3A and B, Supplementary
Tables S2 and S3). Among the 46 candidate genes, POGZ,
SCN2A, CTNNB1, GATAD2B, TCF20 and SYNGAP1 are
the most significant ones (q value < 0.0001 based on the
four background DNMRs), and they are strongly corre-
lated with intellectual disability based on previous studies
(Figure 3B) (39–42). Several other genes, such as SETBP1,
TBR1, WAC, STXBP1 and MED13L, were also found to
underlie the pathology of intellectual disability (43). Sev-
eral genes, such as SCN2A, SYNGAP1, DLG4, STXBP1
and GRIN2A, were not only correlated with intellectual dis-
ability, but also involved in other neuropsychiatric disor-
ders, such as autism spectrum disorder and epileptic en-
cephalopathy (Supplementary Table S2).

To further explore the functional relevance of the 46
candidate genes, we performed GO term enrichment an-
notation (Figure 3C, Supplementary Table S4). As a re-
sult, for biological processes, 18 of the 46 genes (CTNNB1,
DLG4, DYRK1A, FOXG1, GRIN2A, KDM2B, PPP2R5D,
PURA, SATB2, SCN2A, SCN8A, SLC6A1, SMARCA4,
SOX5, STXBP1, SYNGAP1, TBR1, TCF4) are enriched in
four GO terms (GO:0007399, GO:0031644, GO:0051969,
GO:0048169), suggesting that these genes are important in
the formation of neurons and synaptic transmission pro-
cesses. For molecular function, 26 of the 46 genes (AHDC1,

CTCF, CTNNB1, FOXG1, FOXP1, GATAD2B, GRIN2A,
KCNH1, KDM2B, MED13L, POGZ, PURA, SATB2,
SCN2A, SCN8A, SETBP1, SMARCA4, SON, SOX5, SR-
CAP, TBR1, TCF20, TCF4, TRIP12, USP7, WAC) are
enriched in five GO terms (GO:0003677, GO:0008134,
GO:0003712, GO:0005244, GO:0003682), indicating that
these genes are involved in gated channel activity and
gene transcription. For cellular components, eight of the
46 genes (CTNNB1, DLG4, GRIN2A, PURA, SCN2A,
SCN8A, SLC6A1, SYNGAP1) are enriched in three GO
terms (GO:0043005, GO:0030424, GO:0030425), indicat-
ing that these genes are involved in the composition of neu-
ron. Overall, we could see that the candidate genes identified
based on the mirDNMR database are quite relevant to the
studied individuals’ phenotypes, which prove its efficiency.

DISCUSSION AND PERSPECTIVES

DNMs are widely used to identify genes underlying various
genetic disorders based on trio-based WES/WGS of large-
scale sporadic cases (1,18,43). However, accurate identifi-
cation of actual disease-causal genes using DNMs from
probands is complicated and challenging. A common so-
lution to this problem is to identify genes with signifi-
cantly more DNMs than expected by chance (25). There-
fore, background DNMR for each gene is required to calcu-
late significance of DNM recurrence. In this study, we have
constructed a novel database named mirDNMR, which
provides gene-centered background DNMRs predicted by
four different methods: DNMR-GC, DNMR-SC, DNMR-
MF and DNMR-DM. Meanwhile, mirDNMR also pro-
vides population genetic variants from the five largest pop-
ulation variation databases to assist with gene prioritiza-
tion: ExAC, ESP6500, UK10K, 1000G and dbSNP. The
three DNMR prediction methods were calculated accord-
ing to previous studies using different models based on
GC content (DNMR-GC) (23), tri-nucleotide sequencing
context (DNMR-SC) (2) and multiple factors (DNMR-
MF) (24). Another DNMR prediction method: DNMR-
DM is developed by us based on observed strong correla-
tion between DNMRs and human sperm DNA methylation
level. The four main functions in mirDNMR are: browse,
search, prioritize and filter. Users can conveniently retrieve
background DNMRs and variant frequencies in human
genetic variation databases for certain genes by ‘Browse’
and ‘Search’ functions. Meanwhile, mirDNMR provides
two user functions that prioritize candidate genes based on
DNM burden and filters genes of interest based on back-
ground DNMR and the distribution of different variant
types in human genetic variation databases. In conclusion,
the mirDNMR database incorporates expected DNMRs,
population genetic variation data for each gene and an in-
terface with functions assisting with disease-causal gene
prioritizations based on DNMs detected from trio-based
WGS/WES data.

As an ongoing project, mirDNMR will be updated reg-
ularly and incorporate new DNMR prediction methods in
the future. For the moment, only summarized background
DNMRs on coding regions and for gene level are consid-
ered by mirDNMR. The declining cost of WGS will en-
able DNM studies on non-coding regions for larger sam-
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Figure 3. Prioritization of candidate genes for intellectual disability from trio-based WES/WGS. Based on the TADA method, genes were prioritized using
the four background DNMRs. (A) Forty six genes with q values <0.1 were shared by the four background DNMRs in intellectual disability trios. (B) A
scatter diagram for the 46 intellectual disability candidate genes. The size of each point indicates the total number of LoF and damaging missense DNMs
for each gene. (C) Relative enriched GO terms (q value <0.05) of the 46 candidate genes for intellectual disability. Detailed information for each GO term
is shown in Supplementary Table S4.

ple size. Therefore, in the future mirDNMR will provide
background DNMR of non-coding regions, and enrich-
ment analysis on nucleotide-levels. Any questions, com-
ments, and suggestions are welcome, which will help future
updates. We expect that mirDNMR will serve as a valuable
resource for the research community working on identifica-
tion of genetic variation underlying human diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkw1044/-/DC1
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