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ABSTRACT

Cytokines utilize the transcription factor STAT5 to
control cell-specific genes at a larger scale than
universal genes, with a mechanistic explanation yet
to be supplied. Genome-wide studies have iden-
tified putative STAT5-based mammary-specific and
universal enhancers, an opportunity to investigate
mechanisms underlying their differential response
to cytokines. We have now interrogated the integrity
and function of both categories of regulatory el-
ements using biological and genetic approaches.
During lactation, STAT5 occupies mammary-specific
and universal cytokine-responsive elements. Follow-
ing lactation, prolactin levels decline and mammary-
specific STAT5-dependent enhancers are decommis-
sioned within 24 h, while universal regulatory com-
plexes remain intact. These differential sensitivi-
ties are linked to STAT5 concentrations and the
mammary-specific Stat5 autoregulatory enhancer. In
its absence, mammary-specific enhancers, but not
universal elements, fail to be fully established. Upon
termination of lactation STAT5 binding to a subset
of mammary enhancers is substituted by STAT3. No
STAT3 binding was observed at the most sensitive
STAT5 enhancers suggesting that upon hormone
withdrawal their chromatin becomes inaccessible.
Lastly, we demonstrate that the mammary-enriched
transcription factors GR, ELF5 and NFIB associate
with STAT5 at sites lacking bona fide binding mo-
tifs. This study provides, for the first time, molecular
insight into the differential sensitivities of mammary-
specific and universal cytokine-sensing enhancers.

INTRODUCTION

Mammary alveoli consist of highly specialized milk-
secreting epithelial cells, expressing ∼1400 genes that show
a minimum 2-fold change between pregnancy day six and
day one of lactation (1). Genetic studies have demon-
strated that expression of at least ∼400 of these genes dur-
ing pregnancy is dependent on the transcription factors
STAT5A and 5B (referred to as STAT5) (1). Notably, sev-
eral mammary-specific genes are activated up to 1000-fold
by prolactin through STAT5. Mouse genetics has demon-
strated that STAT5 is critical not only for the expression
of these genes but also for the formation of the alveo-
lar compartment during pregnancy (2–4). In other cell
types, STAT5 is activated by cytokines, such as erythropoi-
etin and interleukins, and thereby controls the biology of
hematopoietic cells (5–7).

Although ChIP-seq experiments have revealed the entity
of STAT5 binding coordinates (1,8,9), the mechanisms be-
hind the establishment of cell-specific and common regula-
tory units remain to be understood. It can be hypothesized
that the exceptionally high concentration of STAT5 in dif-
ferentiated milk secreting epithelium is key to the extraor-
dinary activation of mammary-specific genes during preg-
nancy. Notably, a mammary-specific STAT5 autoregulatory
enhancer located in the intergenic region separating the two
Stat5 genes is responsible for the exceptional STAT5 levels
in mammary tissue (10).

Based on genetic and genomic data, STAT5 activates
mammary-specific genes as pregnancy progresses, opening
the possibility that increasing STAT5 levels are critical not
only for the establishment but also the maintenance of a
mammary-specific genetic program throughout lactation.
Sustaining a robust differentiation program during lacta-
tion, despite fluctuating prolactin levels, is essential to avoid
premature and aberrant tissue remodeling prior to weaning
and thereby ensures survival of offspring. Although the au-
toregulatory Stat5 enhancer is critical to attain maximum
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STAT5 levels in mammary tissue (10), its role in sustaining
epithelial differentiation during lactation and in decommis-
sioning enhancers upon loss of differentiation in post lacta-
tion tissue remains to be established. Upon weaning circu-
lating levels of prolactin decline rapidly, which is accompa-
nied by loss of active (phosphorylated) STAT5 and gain of
active STAT3, a trigger of epithelial cell death and remod-
eling of the tissue compartment (11–14). It has been sug-
gested that a shift in the balance from active STAT5 to ac-
tive STAT3 distinguishes lactating and post-lactating mam-
mary tissue (15). Maintaining high STAT5 levels during lac-
tation would therefore ensure unabated epithelial differen-
tiation by minimizing recruitment of STAT3, which other-
wise would result in loss of differentiated epithelium.

We have now addressed the question whether high STAT5
levels imposed by the autoregulatory Stat5 enhancer con-
tribute to the maintenance of mammary-specific enhancers
and ensure the coordinated loss of differentiation upon
weaning. With this in mind we have focused on enhancers
of STAT5-dependent genes that are highly induced during
pregnancy and rapidly inactivated upon loss of differen-
tiation. The integrity of mammary-specific enhancers and
their dependence on STAT5 concentrations was evaluated
in mammary tissue from wild-type mice and mice lacking
the Stat5 autoregulatory enhancer (10). Lastly, we inves-
tigated the consequences of the shifting balance from ac-
tive STAT5 to STAT3 (16,17) at the intersection of lactation
to involution on mammary-specific and common cytokine
controlled regulatory units. The consequences of such a bal-
ance were interrogated in mice lacking the Stat5 enhancer.

MATERIALS AND METHODS

Mice

Eight-week-old female mice of wild-type (Stat5+/+), het-
erozygous for the Stat5 locus (Stat5+/−), homozygous for
the Stat5 enhancer mutation (Stat5ΔE/ΔE) and carrying one
Stat5-null allele and one mutant allele (Stat5ΔE/−) (10) were
used. All animal procedures were in accordance with NIH,
NIDDK guidelines for the care and use of laboratory ani-
mals.

ChIP-seq

Frozen-stored mammary tissues harvested at day 1 of lac-
tation (L1), 12 h (I12) and 24 h (I24) upon termination of
lactation in wild-type and mutants were ground into pow-
der then fixed with 1% formaldehyde at room temperature
for 10 min. Samples were processed as previously described
(10). The following antibodies were used for immunopre-
cipitation: anti-STAT5A (Santa Cruz, sc-1081x), anti-GR
(Thermo Scientific, PA1-511A), anti-H3K27ac (Abcam,
ab4729) and anti-STAT3 (Santa Cruz, sc-482). Libraries for
next generation sequencing were prepared and sequenced
with HiSeq 2000 (Illumina) (10).

ChIP-seq data analysis

ChIP-seq signals were trimmed using trimmomatic (18)
(version 0.33) to filter low-quality reads and subsequently
aligned to the mouse reference genome (mm10) using

Bowtie (19) aligner (version 1.1.2) with the parameter -m 1
to obtain only uniquely mapped reads. The correlation of all
replicates was calculated using deepTools (20) with default
parameters. Spearman correlation was chosen as it is more
reliable if outliers occur, with the caveat that the correlation
value is less sensitive. ChIP-seq data used in this study were
highly reproducible (Supplementary Table S8). The corre-
lation of ELF5 and NFIB (GSE74826) is shown in Shin et
al. (21). HOMER software (22) (default settings) and Inte-
grative Genomics Viewer (23) were used for visualization.
To identify regions of ChIP-seq enrichment over the back-
ground, MACS2 (24) peak finding algorithm (version 2.1.0)
was used. As the data were from different resources, the q-
value/P-value parameter was adjusted individually for each
file to optimize STAT5A, STAT3, GR and H3K27ac peak
calling. Chip-seq peaks of two or more samples were over-
lapped applying R (https://www.R-project.org/; R version
3.2.3) and the package DiffBind (25). For detecting un-
derlying Chip-seq peaks based on a known set of Chip-
seq peaks bedOpts (26) was used. In order to obtain high-
confident peaks, the peak calling result of the replicates
for WT L1 (STAT5A, GR, H3K27ac), WT I12 (STAT3),
WT I24 (STAT5A, STAT3) and Stat5�E/�E L1 STAT5A
were overlapped and the consensus peaks were chosen for
analysis. Only for WT I12 STAT5A the peaks of the repli-
cates were merged, to capture all peaks within the time win-
dow. Coverage plots and heat maps were generated using
Homer software (22) as well as motif analysis with default
background. Graph plotting was performed using R with
the packages dplyr (https://CRAN.R-project.org/package=
dplyr) and ggplot2 (27).

RNA-seq data analysis and gene annotation

RNA-seq data (GSE37646) were trimmed in the same man-
ner as the ChIP-seq data. Mapping was carried out us-
ing the STAR RNA-seq aligner (28) with default settings
and mus musculus GRCm38.84 as a GTF file. To assign
the enhancers only to high-confident genes, the GTF file
was filtered to retain only protein-coding genes, predicted
genes (LOC, Rik and BC) were excluded. R (https://www.
R-project.org/; R version 3.2.3), Bioconductor (29) and
the packages Rsubread ((30); default settings) and DESeq2
((31); default settings) were used for RNA-seq analysis. En-
hancers were annotated to the closest transcription start
site using R and ChIPpeakAnno (32). Additional analyses
of annotated ChIP-seq data and RNA-seq data were done
using R and dyplr (https://CRAN.R-project.org/package=
dplyr).

Histological analysis and immunofluorescence

Mammary tissues from wild-type and mutant mice were
harvested at L1 and fixed in 10% formalin and dehy-
drated in ethanol. Paraffin sections were stained with
hematoxylin and eosin by standard methods (Histoserve).
For immunofluorescence, unstained sections were incu-
bated with the following antibodies overnight at 4◦C: anti-
phosphorylated STAT5 (Cell Signaling, 9314) and anti-
phosphorylated STAT3 (Cell Signaling, 9145).

https://www.R-project.org/
https://CRAN.R-project.org/package=dplyr
https://www.R-project.org/
https://CRAN.R-project.org/package=dplyr
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Western blotting

Total protein was extracted in RIPA buffer (50 mM Tris-
HCl (PH7.5), 150 mM NaCl, 10% Glycerol, 50 mM NaF,
0.5 mM EDTA and 1% NP-40) and 20 �g of proteins was
loaded on 7.5% Mini-PROTEAN® TGX™ Precast Gel
(Bio-Rad, #4561023EDU) for STAT5 and in NuPAGE®
Novex 4–12% Bis-Tris Gel (Invitrogen, NP0321BOX) for
GAPDH. Primary antibodies were incubated overnight at
4◦C (anti-STAT5A (Santa Cruz Biotechnology, sc-1081X,
1:1000) and GAPDH (Novus Biologicals, NB300-221,
1:10000)).

RNA isolation and quantitative RT-PCR

RNA was isolated using the PureLink RNA Mini kit
(Ambion) according to the manufacturer’s protocol. Com-
plementary DNA was synthesized from total RNA us-
ing SuperScript II (Invitrogen) and quantitative PCR
was performed using the Taqman probe-based system
(Stat5a, Mm00839861 m1; mouse Gapdh endogenous con-
trol, 4352339E, Applied Biosystem) on the CFX384 Real-
Time PCR Detection System (Bio-Rad). Stat5a mRNA lev-
els were measured by qRT-PCR and normalized to Gapdh.

Statistical analyses

All samples used for qRT-PCR and ChIP-seq were ran-
domly selected. Statistical power was calculated using
R and the package pwr (https://CRAN.R-project.org/
package=pwr). The effect size was calculated for each com-
parison based on the estimated means and standard devi-
ations of each group. The sample size for each group was
therefore determined via power analysis of Stat5a expres-
sion change with significance level 0.05 and power level 0.9.
Gene expression data were presented with the mean of in-
dependent biological replicates. To evaluate gene expression
data that are statistically different between wild-type and
each mutant group, a two-tailed unpaired t-test was used.
Significance for box plots was determined using a Welch’s
t-test with a two-sided alternative hypothesis.

Bioinformatics. The workflow is illustrated in Supplemen-
tary Figure S3.

RESULTS

Rapid decommission of mammary enhancers upon termina-
tion of lactation

Precipitously declining prolactin levels at the end of lac-
tation result in a rapid loss of epithelial cell differenti-
ation and diminishing expression of milk protein genes,
processes governed, at least in part, by STAT5-dependent
super-enhancers (21). This is followed by a complete loss
of milk secreting cells during involution. To determine to
what extent these events are linked to decommission of en-
hancers, we analyzed genome-wide STAT5 occupancy at
day one of lactation (L1) and at the interface between lac-
tation and involution upon forced termination of lactation.
For the subsequent analyses ChIP-seq ‘peaks’ were identi-
fied and as proven in Shin et al. they are putative enhancers

(21). Therefore, the term enhancer is used throughout the
manuscript. ChIP-seq for STAT5 and H3K27ac demon-
strated the presence of ∼9200 structural enhancers within
the mammary genome at L1 (Figure 1A). Out of these,
∼4370 were lost within 12 h (I12) after termination of lac-
tation and they are referred to as ‘class 1’ enhancers. Ap-
proximately 4520 ‘class 2’ enhancers were lost after 24 h
(I24), and 315 ‘class 3’ enhancers were retained after 24 h
(Figure 1A). These data demonstrate that acute disruption
of prolactin signaling results in the sequential eradication
of putative cytokine-controlled enhancers. The three classes
of enhancers likely reflect their differential sensitivities to-
ward STAT5 signaling, with class 3 being the most resilient
one that is retained outside lactation. Peak calling results
were further validated by peak profiles. The peak coverage
of the 9200 STAT5 enhancers decreased by ∼15% at I12 and
90% at I24 (Figure 1B). Loss of H3K27ac at I12 paralleled
the STAT5 pattern but a significant degree of H3K27ac
was retained at I24, suggesting that complete disassembly
of enhancers was lagging. Glycam1 with its four mammary-
specific STAT5 sites represents ‘very sensitive’ class 1 en-
hancers and all sites had been decommissioned within 12
h (Figure 1C). Loss of H3K27ac paralleled the elimination
of STAT5 binding, further supporting the concept that the
enhancers had been disassembled. STAT5 binding in Olah,
a representative gene characterized by the ‘sensitive’ class 2
enhancers, was retained after 12 h but lost after 24 h (Figure
1C). STAT5 binding to Bcl6, a representative of the class 3
‘resilient’ enhancers, was retained at 24 h (Figure 1C). As a
note of caution, transcription factor peaks at promoter se-
quences, especially those lacking respective binding motifs
and not changing upon loss of prolactin signaling, could
coincide with phantom peaks (33).

Since gene activation is likely controlled by STAT5 bind-
ing sites within 10 kb of promoter sequences (1) the analy-
sis was further restricted to 2556 STAT5 enhancers identi-
fied during lactation within these boundaries. Out of these,
∼1190 were decommissioned within 12 h (class 1) and an
additional 1300 after 24 h (class 2). Sixty-one enhancers
were retained after 24 h (class 3) (Figure 1D, Supplemen-
tary Table S1). This suggests that the majority of putative
cytokine-sensing STAT5 enhancers are abandoned swiftly
upon hormone decline. This global analysis provides evi-
dence that subsets of STAT5 binding sites display differen-
tial sensitivities toward hormone changes occurring within
a 24-h window at the interphase between lactation and in-
volution.

The mechanism controlling differential STAT5 occu-
pancy at the transition of lactation to involution might in-
volve the presence of specific GAS motifs (TTCnnnGAA).
To address this possibility we carried out a motif analysis
using the three different enhancer classes and determined
the percentage of enhancers containing GAS motifs. While
38% of enhancers within class 1 enhancers coincided with a
GAS motif, so did 54% of the class 2 enhancers and 74%
of class 3 enhancers (Figure 1E). Importantly, enhancers
with GAS motif show a higher coverage in all three cat-
egories (Figure 1F–H). Next we analyzed enhancers from
classes 1, 2 and 3 in wild-type tissue at lactation day one.
In general, enhancer height was larger at the resilient class
3 sites. The size of the most stable enhancers, those associ-

https://CRAN.R-project.org/package=pwr
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Figure 1. (A) Using peak calling on two replicates, 9213 STAT5A enhancers were found to coincide with H3K27ac (±500 bp) at day one of lactation
(L1). A total of 4372 of them decommissioned within 12 h upon termination of lactation (class 1), 4526 within 24 h (class 2) and 315 were resilient (class
3). Since termination of lactation coincides with the onset of involution, these two time points were labeled I12 and I24. (B) Peak profile of STAT5A
and H3K27ac based on the 9213 STAT5A peaks and STAT5A ChIP-seq data from wild-type tissue at L1 (blue), I12 (dark green) and I24 (light green).
The coverage at I12 was reduced by 15% and by 90% at I24. H3K27ac ChIP-seq data from wild-type tissue at L1 (blue), I12 (dark green) and I24 (light
green) are shown. The reduction in acetylation was larger at I12 than at I24. (C) A representative gene is shown for each of the enhancers groups. The left
panel illustrates Glycam1, a class 1 gene, with ‘very sensitive’ enhancers. The four enhancers completely decommissioned within 12 h, as did H3K27ac.
The middle panel shows Olah, a ‘less sensitive’ class 2 enhancer. Enhancer height decreased at I12, but all of them were still present. Also acetylation had
decreased at I12. However, all STAT5A enhancers as well the acetylation were non-existent after 24 h. The right panel shows Bcl6, a class 3 gene with
‘resilient enhancers’, which were not affected by involution. The STAT5A enhancers as well as the acetylation remained stable throughout involution. (D)
STAT5 enhancers within 10 kb of the nearest TSS of an annotated gene. By selecting enhancers within 10 kb of TSS, a region associated with enhancers (1),
a total of 1191 class 1 enhancers, 1304 class 2 enhancers and 61 class 3 enhancers were identified. (E) The bar plot illustrates that the most stable enhancers
were more likely associated with GAS motifs, as only 38% of the class 1 have a GAS motif within 200 bp. This percentage increased to 54% for the 1304
class 2 enhancers and 74% for class 3 enhancers, which were still present at I24. (F) Coverage of class 1 enhancers was higher in the presence of GAS motifs
than without. (G) Enhancer height increased in class 2 enhancers, but the coverage of enhancers with an underlying GAS motif was still higher. (H) Class
3 enhancers displayed the highest coverage and the ones with GAS motif were again higher than those without. (I) Peak coverage at L1 of the three classes,
independent of an underlying GAS motif. The resilient class 3 enhancers had the highest coverage, followed by class 2 and class 1 enhancers. Color code
in panels A, D-I, class 1 (purple), class 2 (brown) and class 3 (yellow).
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ated more frequently with GAS motifs, exceeded those that
were decommissioned after 12 and 24 h (Figure 1I). These
findings support the notion that the most resilient STAT5
binding sites are preferentially associated with GAS motifs
and withstand rapid enhancer decommission upon declin-
ing hormone levels.

Interplay between STAT5 and GR

Glucocorticoids, in conjunction with prolactin, control the
expression of mammary-specific genes (34) and the gluco-
corticoid receptor (GR) has been shown to act in concert
with STAT5 in tissue culture cells (35). To gain additional
insight into the in vivo interplay between GR and STAT5 we
performed GR ChIP-seq during lactation and determined
their global co-binding (Figure 2A). Out of 2556 STAT5 en-
hancers 51% coincided with GR binding and the majority
of them were associated with class 1 (43%) or class 2 en-
hancers (53%). Only 4% were associated with class 3 en-
hancers (Figure 2A). Peak coverage analysis demonstrated
coinciding decommission of GR and STAT5 upon disrupt-
ing lactation (Figure 2B). The enhancer coverage decreased
by 35% within 12 h and 91% within 24 h. Decommission
was exemplified at three different enhancers, Wap, Olah and
Bcl6. GR binding to Wap was largely lost within 12 h, as was
the most distal STAT5 enhancer (Figure 2C). The GR en-
hancers at the sensitive Olah enhancers were lost in parallel
with STAT5 enhancers within 24 h (Figure 2C). Compared
to Wap and Olah, GR binding at the Bcl6 enhancer was very
weak (Figure 2C).

Since GR binding does not necessarily parallel that of
STAT5 we compared the coverage of these two transcrip-
tion factors. Notably, while the height of the GR enhancers
in all three enhancer categories was similar, STAT5 en-
hancer height increased 4-fold between class 1 and class 3
(Figure 2D). GR and STAT5 coverage was virtually iden-
tical at class 1 enhancers but the relative STAT5 coverage
was 1.6-fold higher at class 2 sites and 3-fold higher at class
3 sites. The GR peak coverage at class 3 sites was 43, 33
at class 2 sites and 30 at class 1 sites, those most sensitive
to decommission upon cessation of lactation. These results
suggest that enhancers bound by STAT5 and GR were par-
ticularly sensitive to prolactin signaling and those preferen-
tially bound by STAT5 were resilient to hormonal changes.

To address the possibility that GR selectively supports
STAT5 binding to sites without GAS motif, we separately
analyzed class 1 enhancers with and without GAS motifs
(Figure 3A). While in the presence of GAS motifs, 38% of
STAT5 sites coincide with GR, 53% coincide at enhancers
without GAS motifs. Notably, while STAT5 coverage was
lower at enhancers without GAS motifs, GR coverage was
equivalent in both groups (Figure 3B). Preferential loss of
STAT5 and GR binding was observed at sites containing
GAS motifs (Figure 3C). A de novo motif search at class 1
sites lacking bona fide GAS motifs revealed the presence of
GAS and NFIB half sites and GR binding motifs (Supple-
mentary Figure S2), supporting the notion that additional
transcription factors aid the binding of STAT5. To fur-
ther examine this we integrated ChIP-seq data from STAT5,
GR, ELF5 and NFIB (Figure 3E). Elevated binding of GR,
ELF5 and NFIB was detected at STAT5 enhancers lacking

GAS motifs (Figure 3E). The GR enhancer coverage was
15% reduced in STAT5 enhancers with GAS motif. Addi-
tionally, ELF5 was 56% and NFIB 40% lower than in en-
hancers without underlying GAS motifs. The concept that
NFIB and ELF5 preferentially bind to STAT5 enhancers
lacking a GAS motif was investigated at individual genes
containing enhancers composed of class 1 sites with and
without GAS motifs (Figure 3F). Both ELF5 and NFIB
bind at STAT5 enhancers lacking GAS motifs.

Linking STAT5-sensitive enhancers to highly-induced genes

Next we investigated to what extent different classes of
STAT5 binding sites were associated with highly activated
genes. The 1191 class 1 sites were annotated to 656 unique
genes, the 1304 class 2 sites to 516 unique genes and the
61 class 3 sites to 17 unique genes (Figure 4A). Genes were
categorized based on the decommission time of the first en-
hancer. Class 1 genes have at least one enhancer decommis-
sioned within 12 h, class 2 genes at least one within 24 h and
in class 3 genes all enhancers were intact after 24 h. Repre-
sentative illustrations for each enhancer category are shown
in Figure 1C and Supplementary Figure S1. To further un-
derstand to what extent these 1189 genes are controlled by
hormone-sensitive STAT5 enhancers, we integrated them
with RNA-seq data (Supplementary Table S2, Figure 4B).
Approximately 40% of these genes are mammary-specific
(2-fold induction from pregnancy day 6 to lactation day 1)
and 58% of them were associated to class 1, 41% with class
2 and 1% with class 3 genes.

ChIP-seq experiments performed during lactation have
demonstrated that mammary-specific genes are associated
with either clusters of STAT5 binding sites, named super-
enhancers, or solitary enhancers (21). Forty-seven percent
of mammary-specific genes (233) under STAT5 control
were associated with clustered enhancers and 53% (268)
with solitary enhancers (Figure 4C). Genes associated with
enhancer clusters are in induced to a greater degree during
pregnancy (Figure 4D). Having observed enhancer clusters
at highly induced genes, it is possible that individual en-
hancer units within these clusters display differential sensi-
tivities to cytokines and STAT5. ChIP-seq data conducted
12 and 24 h after termination of lactation provide com-
pelling evidence that rapidly decommissioned STAT5 en-
hancers are highly enriched for genes associated with clus-
tered enhancers (Supplementary Tables S3, S5, S7) as com-
pared to solitary enhancers (Supplementary Tables S4, S6,
S7). In clustered enhancers 75% of the genes (174 genes)
are of class 1 (Supplementary Table S3) with at least one
enhancer decommissioned within 12 h, 24% are of class 2
(Supplementary Table S5), with at least one enhancer de-
commissioned within 24 h and two genes belonged to class
3 (Supplementary Table S7) with resilient enhancers (Figure
4E). In genes with solitary enhancers 43% decommissioned
within 12 h (class 1, Supplementary Table S4) and further
55% within 24 h of involution (class 2, Supplementary Table
S6) and five enhancers were class 3 (Supplementary Table
S7) and stable after 24 h (Figure 4F).

Recently we conducted H3K27ac, GR, MED1 and
STAT5 ChIP-seq experiments and identified 440 super-
enhancers specific to the mammary genome, half of which
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Figure 2. (A) Co-binding of STAT5A and GR. Fifty-one percent of the STAT5A enhancers coincided with GR and out of those 43% (562) were classified
as class 1 enhancers (30% contain GAS motif), 53% (691) as class 2 (51% contain GAS motif) and 4% (45) as class 3 enhancers (67% contain GAS motif).
(B) Temporal decommission of GR. The peak coverage was reduced by 35% within 12 h, and by 91% within 24 h, equivalent to that observed for STAT5.
(C) Genes representing the three differential STAT5 enhancers. Wap (class 1), with its three enhancers, showed the same decommission pattern for STAT5A
and GR. The most distal enhancers (E3) was lost within 12 h (I12) and no enhancers remained at 24 h (I24) of involution. All enhancers in Olah (class
2) were intact at I12 but completely decommissioned at I24. However, the enhancer height for STAT5 and GR was already reduced at I12. Bcl6 (class 3)
showed no GR co-binding compared to the classes 1 and 2. (D) Coverage plots for STAT5A and GR enhancers in each of the enhancer categories. STAT5A
and GR enhancer coverage was equivalent at class 1 sites. At class 2 sites GR coverage was smaller than that of STAT5A and class 3 sites had relatively
the smallest GR enhancers.
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Figure 3. (A) Class 1 STAT5A enhancers were separated into enhancers with and without GAS motif. Thirty-eight percent of the enhancers with, and
53% without, a GAS motif co-bound GR. (B) STAT5 enhancers were higher in the presence of GAS motifs. Coverage of GR was independent of the GAS
motif status. (C) Preferential reduction of class 1 enhancers containing a GAS motif occurred at 12 h of involution (I12). GR coverage at enhancers with
GAS motifs is less than 45% of that obtained at enhancers lacking a GAS motif. At sites without GAS motif GR enhancers continue to exceed STAT5A
enhancers. (D) Peak coverage at 24 h of involution (I24). At this time point most enhancers have been decommissioned but the pattern is reminiscent to that
seen at I12. (E) Peak coverage of STAT5A class 1 enhancers with and without GAS motifs and GR, ELF5 and NFIB co-binding. Enhancers without GAS
motif showed stronger co-binding of GR, ELF5 and NFIB as compared to those with a GAS motif. (F) Three representative genes and their STAT5A
enhancers illustrate co-binding. Glycam1, GR co-bound at all STAT5A enhancers. Strongest ELF5 binding was at the enhancer lacking a GAS motif
(asterix). The STAT5A enhancer without GAS motif at Olah showed the strongest ELF5 and NFIB co-binding. All STAT5A enhancers co-bound GR.
Csn2 had also one STAT5A enhancer without GAS motif, which had the strongest co-binding by GR and ELF5.



10284 Nucleic Acids Research, 2016, Vol. 44, No. 21

Figure 4. (A) Assignment of annotated enhancers to genes. The 1191 class 1 enhancers were assigned to 656 unique genes, the 1304 class 2 enhancers
to 516 genes and the 61 class 3 enhancers to 17 genes. (B) Forty-two percent of the genes are associated with mammary-specific genes, which have a
minimum of 2-fold induction between day six of pregnancy and day one of lactation. Out of those 58% (289) were categorized as class 1, 41% (205) as
class 2 and 1% (7) as class 3. (C) Forty-seven percent (233) of the mammary-specific genes were associated with clustered enhancers and 53% (268) with
solitary enhancers. (D) Genes assigned to clustered enhancers showed a significantly higher induction during pregnancy compared to those with solitary
enhancers. Median, middle bar inside each box; IQR (interquartile range), the box containing 50% of the data; whiskers, 1.5 times the IQR. (E) Seventy-five
percent of clustered enhancers belonged to class 1 enhancers with at least one enhancer decommissioned within 12 h; 24% (57) belonged to class 2 where
at least one enhancer was decommissioned within 24 h, and two enhancer clusters belonged to class 3. (F) Forty-three percent (115) of solitary enhancers
were decommissioned within 12 h (class 1), 55% (148) within 24 h (class 2) and 2% (5) were resilient during involution (class 3). (G) Mammary-specific
super-enhancers are composed of differential enhancer classes. Eighty-two percent of the 440 identified mammary-specific super-enhancers had at least
one enhancer decommissioned within 12 h; 16% (72) belonged to class 2 and two to class 3. (H) A class 2 super-enhancer, where all enhancers were intact
after 12 h of involution, but decommissioned within 24 h of involution. (I) Representative of a class 3 super-enhancer with resilient enhancers after 24 h of
involution.
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were associated with genes induced during pregnancy (21).
Since 95% of these super-enhancers are established dur-
ing pregnancy we hypothesized that they are composed
of class 1 enhancers, i.e. those most sensitive to cytokine
stimulation. Indeed, 82% of the mammary-specific super-
enhancers contain at least one class 1 enhancer (Figure 4G).
The super-enhancer of Wap is a class 1 representative, where
one enhancer decommissioned within 12 h and the others
within 24 h of involution (Supplementary Figure S1B). A
representative of class 2 is shown in Figure 4H, where all
enhancers were present after 12 h involution, but decom-
missioned within 24 h. A resilient super-enhancer is shown
in Figure 4I, as the enhancers are still present after 24 h of
involution even if they are reduced in height.

Mammary enhancers sense STAT5 concentrations

The instantaneous loss of STAT5 binding to class 1 en-
hancers at the interface of lactation and involution sug-
gested that their integrity might be exquisitely dependent
on STAT5 levels or activity. Having identified a mammary-
specific autoregulatory enhancer within the Stat5 locus (10)
we surmised that STAT5 concentrations might define class
1 enhancers. To address this possibility we investigated the
integrity of STAT5-dependent enhancers in mice lacking
the Stat5 autoregulatory loop. We analyzed mammary tis-
sue and its defining enhancers in four distinct genotypes.
Mice carrying two intact Stat5 loci (Stat5+/+) expressing
100% STAT5, mice heterozygous for Stat5 (Stat5+/−), mice
homozygous for the Stat5 enhancer mutation (Stat5�E/�E)
and mice carrying one Stat5-null allele and one mutant al-
lele (Stat5�E/−). Histologically mammary tissue appeared
normal in the presence of one intact Stat5 allele (Stat5+/−)
(Figure 5A). The intensity of pSTAT5 staining was equiv-
alent in wild-type and Stat5+/− tissue (Figure 5B). Stat5
expression in mammary tissue lacking the autoregulatory
enhancer (Stat5�E/�E) was reduced by approximately 75%
(10) and histological analyses revealed reduced alveolar ex-
pansion, although alveoli displayed hallmarks of differen-
tiation (Figure 5A and B). In contrast, mammary tissue
from Stat5�E/− mice was underdeveloped (Figure 5A and
B). QRT-PCR data demonstrated an ∼75% reduction of
Stat5a RNA levels in Stat5�E/�E tissue (Figure 5C), which
is en par with our recently published data (10). Western blot
analyses also showed a reduction of STAT5 (Figure 5D).
These data emphasize the importance of the Stat5 autoreg-
ulatory enhancer for the expression of STAT5 and the phys-
iology of mammary tissue.

The biological impact of ablating the Stat5 autoregula-
tory enhancer was also demonstrated in a coverage plot.
While the peak coverage of wild-type and Stat5+/− tissue
was equivalent, it decreased 60% in Stat5�E/�E tissue and
more than 90% in Stat5�E/− tissue (Figure 5E). Impor-
tantly, STAT5 binding at the autoregulatory enhancer was
still observed in the presence of one wild-type Stat5 al-
lele but absent in Stat5�E/�E and Stat5�E/− tissues (Fig-
ure 5F). An equivalent behavior was observed at class 1 en-
hancers and STAT5 enhancers were smaller at the Glycam1
and Olah loci in Stat5�E/�E and Stat5�E/− tissues (Figure
5G). However, residual STAT5 binding in the absence of the
autoregulatory enhancer was sufficient to maintain limited

H3K27ac. The class 3 enhancer of Bcl6 was marginally af-
fected by the mutations, even though the enhancer heights
were reduced in Stat5�E/- tissue.

Based on these experiments we predicted an impaired sta-
bility of class 1 enhancers in the absence of the Stat5 au-
toregulatory loop, which was investigated in Stat5�E/�E tis-
sue at the interface of lactation and involution (Figure 6).
While active STAT5 was homogeneously detected in wild-
type epithelium during lactation it was lost in most cells 12 h
after forced ending lactation and completely absent after 24
h (Figure 6A). Phospho-STAT5 staining in Stat5�E/�E ep-
ithelium at L1 was greatly reduced and completely absent
after 12 h (Figure 6A), likely a reflection of the greatly re-
duced STAT5 levels in mutant cells. Out of the 9213 STAT5
enhancers observed in wild-type tissue at L1 only 5225 co-
incided with enhancers in mutant tissue (Figure 6B) indicat-
ing a failure to establish the full complement of structurally
intact enhancers.

The coverage plot demonstrated highest coverage in wild-
type L1 samples, followed by wild-type samples 12 h upon
disrupting lactation (I12), and Stat5�E/�E samples had the
lowest coverage (Figure 6C). Heat map analyses further
demonstrated the progressive loss of class 1 and class 2 en-
hancers within a 12 to 24 h window upon terminating lac-
tation (Figure 6D). Notably, the intensity of the ‘very sensi-
tive’ class 1 enhancers was greatly reduced in Stat5�E/�E tis-
sue at day 1 of lactation compared to wild-type tissue (Fig-
ure 6D). It was more reminiscent to wild-type tissue at in-
volution. These findings are exemplified at the Stat5a locus
where STAT5 enhancers in mutant tissue are already signif-
icantly reduced compared to wild-type tissue (Figure 6E).
In contrast, the peak coverage at the universal STAT5 tar-
get locus Bcl6 was equivalent between wild-type and mu-
tant tissue and remained stable upon cessation of lactation
(Figure 6E). For Wap, the enhancer height was also reduced
about 3-fold but the kinetics of decommission is similar in
wild-type and mutant tissue (Figure 6E).

Homeostasis between STAT5 and STAT3 binding

Since in vitro STAT3 and STAT5 recognize an identical
GAS motif we hypothesized that their relative abundance
and activity would determine the extent of in vivo binding
at any given STAT5 enhancer. Based on this assumption,
a shift from STAT5 to STAT3 binding should occur at the
transition of lactation to involution, which is characterized
by a decline of STAT5 activity and an increase of STAT3
activity (15). Immunohistochemical analyses demonstrated
a loss of pSTAT5 in mammary epithelium within 12 h upon
termination of lactation (I12) and a concomitant increase of
pSTAT3 staining (Figure 7A). It can also be hypothesized
that loss of the autoregulatory Stat5 enhancer could result
in an imbalance of STAT5/STAT3 binding with physiolog-
ical consequences.

To investigate to which extent STAT3 and STAT5 bind to
identical genomic coordinates, we conducted STAT3 ChIP-
seq experiments at L1 and at 12 and 24 h after forced in-
volution. While the strongest pSTAT5 signal was detected
at lactation, STAT3 activity was highest after 24 h (Fig-
ure 7A). Thus, we compared genome-wide STAT5 coverage
at L1 with STAT3 coverage at I24 (Figure 7B). Out of the
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Figure 5. (A) Alveolar development is dependent on the Stat5 autoregulatory enhancer. Histologically mammary tissue appeared normal in the presence of
only one intact Stat5 allele (Stat5+/−). Mammary tissue with homozygous deletion of the autoregulatory enhancer (Stat5�E/�E) appeared less differentiated
and Stat5�E/− was severely underdeveloped. (B) Qualitatively, pSTAT5 staining of wild-type (Stat5+/+) tissue appeared similar to Stat5+/−. In contrast,
pSTAT5 staining was greatly reduced in Stat5�E/�E, Stat5�E/− tissues. (C) Stat5a mRNA levels in wild-type and mutant mammary tissue (Stat5+/+ n = 6;
Stat5+/- n = 2; Stat5�E/�E n = 4; Stat5�E/− n = 3). (D) The Western blot showed reduced STAT5 levels in Stat5�E/�E tissue. GAPDH served as control,
and showed no reduction. (E) Peak coverage in wild-type and mutant tissue. (F) STAT5A enhancers were reduced in Stat5+/− tissue and completely absent
in Stat5�E/�E and Stat5�E/− tissue. Reduction of H3K27ac was delayed in all genotypes except Stat5�E/− where it was absent. (G) Representative genes
with class 1, class 2 and class 3 enhancers. STAT5 binding in mutant tissue was most severely affected in class 1 enhancers (Glycam1) and the least in class
3 enhancers (Bcl6).
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Figure 6. (A) Decline of active STAT5 in wild-type and mutant mammary tissue. Phospho-STAT5-positive cells in wild-type tissue decreased within 12 h
(I12) after terminating lactation and were absent at 24 h (I24). In contrast no pSTAT5-positive cells were observed at I12 in tissue lacking the autoregulatory
enhancer Stat5�E/�E. (B) A total of 5255 out of 9213 STAT5A binding sites (enhancers) in wild-type tissue were shared with Stat5�E/�E tissue at L1,
suggesting that the full establishment of enhancer was not accomplished at lower STAT5 levels. (C) The coverage plot illustrates that the wild-type L1
sample had the highest coverage. Even wild-type tissue at I12 showed a higher coverage than the Stat5�E/�E samples at L1. Stat5�E/�E at involution 12 h
showed the lowest coverage. (D) Heat map comparing STAT5A coverage in wild-type and Stat5�E/�E tissue in the three different enhancer categories. (E)
Representative examples from the heat map. The STAT5A enhancer in the Stat5a locus was disrupted in Stat5�E/�E tissue. H3K27ac coverage was reduced
but still present. STAT5 binding to the Wap enhancers was greatly reduced in Stat5�E/�E tissue. Class 3 enhancers were the least affected in mutant tissue.
The height of the STAT5A enhancers was lower in the Stat5�E/�E sample, but H3K27ac remained unaltered.

∼9200 STAT5 enhancers, 1586 coincided with STAT3 en-
hancers at I24 (Figure 7B). While the number of STAT5 en-
hancers precipitously declined during involution with only
∼300 remaining 24 h after terminating lactation, the num-
ber of STAT3 enhancers increased from ∼2400 at lactation
to more than 8600 at I24 (Figure 7C). The largest over-
lap between STAT5 and STAT3 enhancers was at I12 when
both members were in an active state (Figure 7C, bottom
panel).

As shown, the three classes of enhancers were character-
ized by different affinities to STAT5, with class 1 represent-
ing the most sensitive ones and class 3 the resilient ones.

Based on the unique association of class 1 and class 2 en-
hancers with mammary-specific enhancers that greatly de-
pend on STAT5 and class 3 with universal regulatory el-
ements we propose that the two former enhancer classes
would be less frequently associated with STAT3. STAT5
and STAT3 ChIP-seq were analyzed and only 6% of class 1
enhancers coincided with STAT3 and STAT5 (Figure 7D).
On the other side of the spectrum 55% of class 3 enhancers
were bound by STAT3 and STAT5. Notably these were the
ones most highly enriched for GAS motifs. Figure 7E illus-
trates STAT5A and STAT3 binding for all three enhancer
classes. Glycam1 (class 1) lost all three enhancers within 12 h
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Figure 7. (A) Homeostasis between STAT5 and STAT3. While pSTAT5 levels declined upon termination of lactation, pSTAT3 levels increased. (B)
Binding sites shared by STAT5 and STAT3 were identified by integrating STAT5A data at L1 and STAT3 data at I24. (C) Bar plot showing the reduction
of STAT5A binding compared to the increase of STAT3 binding during involution. This indicates that STAT3 replaced STAT5, but not necessarily at the
same binding sites. The venn diagrams illustrate the overlap of STAT5A and STAT3 enhancers for L1, I12 and I24. Due to the replacement of those two
factors most overlaps could be detected at involution 12 h. (D) STAT3 binding to the three enhancer categories. Six percent (280) of class 1 STAT5A sites
overlapped with STAT3. Thereby, STAT3 and H3K27ac peak height was reduced from L1 to I12, but not from I12 to I24. Twenty-five percent (1137)
of class 2 enhancers co-bound STAT3, but by looking at the peak coverage during involution the H3K27ac decreased and STAT3 increased. The last
group of common enhancers had 173 enhancers (55%) overlapping STAT5A and STAT3 enhancers and the coverage plot shows that the peak coverage of
STAT3 increased and H3K27ac decreased slightly during involution. (E) Representative genes to demonstrate the STAT5/3 homeostasis. Glycam1 (class
1) displayed STAT3 co-binding at the promoter at L1, but no increase of STAT3 at the individual enhancers was observed. Wap (class 1) had no STAT3
co-binding at the third enhancer (E3). However, E1 and E2, which decommissioned at I24, co-bound STAT3 at I12 and even stronger at I24. The promoter
showed continuous co-binding. The class 2 representative, Lalba, displayed constant co-binding at the promoter, and the enhancers showed a co-binding
starting at involution 12 h, getting stronger at I24, when the STAT5A enhancers were absent. The resilient Bcl6 gene (class 3) showed continuous co-binding
during involution.
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involution, but none of them was replaced by STAT3 bind-
ing. In contrast some of the enhancers of Wap, also a class
1 gene, showed a stepwise replacement with STAT3. The
most distal enhancer disappeared at I12 and did not co-bind
STAT3, whereas the two other enhancers showed STAT3
co-binding at I24. At I24 those two enhancers were fully de-
commissioned, but STAT3 binding remained and even in-
creased at E1. A representative of class 2 is Lalba. Its en-
hancers co-bound STAT3 and STAT5 at I12 and STAT3
binding increased at I24 upon loss of STAT5 binding. Bcl6,
a class 3 gene bound both STAT3 and STAT5 at all stages.

DISCUSSION

Molecular mechanisms responsible for different degrees of
gene activation induced by cytokines through STAT tran-
scription factors remain elusive. In mammary epithelium, a
biological system with exceptional gene regulatory dynam-
ics, prolactin induces lineage-specific genes more than 1000-
fold during pregnancy. In contrast, activation of universal
cytokine-induced STAT5 targets, such as Cish and Socs2 is
in the single digits. Our study now demonstrates the pres-
ence of three distinct classes of regulatory elements that dif-
ferentially sense STAT5 concentrations. While genes highly
induced in mammary epithelium are preferentially associ-
ated with enhancers requiring high levels of STAT5, genes
subject to a modest activation are linked to regulatory ele-
ments that strongly bind STAT5 at low levels.

Genes linked to lactation, such as those encoding milk
proteins, are highly induced during pregnancy. Maintain-
ing their maximum expression throughout lactation is es-
sential to uphold epithelial differentiation and mammary
function. In turn, genetic wiring in mammary epithelium
also needs to respond speedily to declining prolactin levels
at the termination of lactation to ensure a rapid inactivation
of milk protein genes and the induction of tissue remodel-
ing. Failure to execute this program would result in mas-
sive milk accumulation in a dying organ with severe con-
sequences, such as mastitis. Prolactin, and its downstream
transcription factor STAT5, likely are key driver of these
processes, and the extraordinary high level of STAT5 found
only in mammary tissue (10) controls a subset of genes crit-
ical for the establishment and maintenance of epithelial dif-
ferentiation. Enhancers in differentiation-associated genes
are highly sensitive to STAT5 levels and they rapidly decom-
mission upon weaning when prolactin levels, and thereby
active STAT5, decline. In contrast regulatory elements of
cytokine-induced genes, such as Bcl6 and members of the
Socs family, required for common cellular functions, are
rather resilient and bound by STAT5 in the mammary gland
at all biological stages. This ensures that the extreme fluc-
tuations of active STAT5 preferentially affects genes asso-
ciated with epithelial differentiation and milk production.
While mammary tissue is characterized by its extraordi-
narily high levels of STAT5 other cytokine-responsive cell
types, such as hepatocytes and hematopoietic cells, express
lower levels of STAT5 and gene induction is at least one
order of magnitude lower (36–40). Moreover, in most cell
types cytokines and STAT5 have a more modulating func-
tion (7,41), which is distinct from mammary epithelium
(2,42) and T regulatory cells (6), where STAT5 is essential

for the establishment and maintenance of the respective lin-
eages.

We have recently identified mammary-specific super-
enhancers and mouse genetics has revealed that the seed
enhancer in the Wap super-enhancer was reliant on the
combined function of STAT5, NFIB and ELF5 (21). The
concept that these super-enhancers rely on a specific set of
mammary-enriched transcription factors was further sup-
ported by our findings that STAT5, GR, ELF5 and NFIB
bind to the majority of these enhancers. Approximately two
thirds of the highly sensitive class 1 enhancers do not con-
tain bona fide GAS motifs suggesting that STAT5 binding
is aided by above mentioned mammary enriched transcrip-
tion factors. In addition to GR, NFIB is a prime candi-
date to facilitate the binding of transcription factors as it
has been shown to facilitate chromatin accessibility (43).
On a transcriptional level, NFIB cooperates with STAT5
in mammary tissue (44,45) and also associates with the an-
drogen receptor and FOXA1 in prostate (46). All together
these findings support the concept that mammary-specific
enhancers are platforms for mammary enriched transcrip-
tion factors, and possibly other components, which pro-
mote the induction of genes up to several thousand fold
during pregnancy. Notably, individual enhancers within
super-enhancers are not necessarily equivalent (21) with dis-
tinct transcription factor composition. Similarly to the Wap
super-enhancer, the constituent enhancers in the �-globin
super-enhancer are bound by different combinations of cell
lineage enriched transcription factors and also distinct lev-
els of MED1 (47). However, constituent enhancers in the
�-globin super-enhancer appear to act independently and
additively, suggesting that there is likely no unifying con-
cept of super-enhancers.

STAT3 and STAT5 are largely activated by distinct cy-
tokines and frequently play opposing roles, both in mam-
mary epithelium (11,13) and hematopoietic cells (17). No-
tably, in T cells IL-2 activates STAT5 and inhibits differenti-
ation of Th17 cells through directly competing with STAT3
binding to the IL-17 locus (16). Similarly, the ratio of IL-
21 induced STAT3 and GM-CSF-induced STAT5 is criti-
cal for dendritic cell expansion (17). Thus, at least in the
immune system, the balance between STAT3 and STAT5
is critical for lineage decision-making. In mammary epithe-
lium STAT5 binding to a set of highly sensitive enhancers
is rapidly and specifically replaced by STAT3 within hours
following termination of lactation, coinciding with the swift
inactivation of these genes. It can be hypothesized that cy-
tokine activation of STAT3 (12,14) at the end of lactation
and preceding involution aids to rapidly replace STAT5
from mammary-specific enhancers and is required to ef-
fectively inactivate these enhancers and shut down milk
production. However, some rapidly decommissioned en-
hancers, such as one in the Wap super-enhancer, become re-
fractory to STAT3 binding suggesting that their chromatin
immediately acquires a closed status upon loss of STAT5
binding.

In summary, the mammary gland uses at least three dis-
tinct mechanisms to uniquely regulate cytokine-responsive
genes, an autoregulatory enhancer to control STAT5 levels,
regulatory elements that differentially respond to STAT5
levels and possibly the ability to inactivate enhancers
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through the replacement of STAT5 by STAT3. These mech-
anisms permit the induction of milk-producing genes up
to 1000-fold and their rapid inactivation without compro-
mising expression of universal cytokine-regulated genes re-
quired for maintaining cell metabolism.
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