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Computer Coded Verbal Autopsy (CCVA) algorithms are commonly used to

determine the cause of death (CoD) from questionnaire responses extracted

from verbal autopsies (VAs). However, they can only operate on structured data

and cannot e�ectively harness information from unstructured VA narratives.

Machine Learning (ML) algorithms have also been applied successfully in

determining the CoD from VA narratives, allowing the use of auxiliary

information that CCVA algorithms cannot directly utilize. However, most

ML-based studies only use responses from the structured questionnaire, and

the results lack generalisability and comparability across studies. We present

a comparative performance evaluation of ML methods and CCVA algorithms

on South African VA narratives data, using data from Agincourt Health

and Demographic Surveillance Site (HDSS) with physicians’ classifications as

the gold standard. The data were collected from 1993 to 2015 and have

16,338 cases. The random forest and extreme gradient boosting classifiers

outperformed the other classifiers on the combined dataset, attaining accuracy

of 96% respectively, with significant statistical di�erences in algorithmic

performance (p < 0.0001). All our models attained Area Under Receiver

Operating Characteristics (AUROC) of greater than 0.884. The InterVA CCVA

attained 83% Cause Specific Mortality Fraction accuracy and an Overall

Chance-Corrected Concordance of 0.36. We demonstrate that ML models

could accurately determine the cause of death from VA narratives. Additionally,

through mortality trends and pattern analysis, we discovered that in the

first decade of the civil registration system in South Africa, the average life

expectancy was approximately 50 years. However, in the second decade,

life expectancy significantly dropped, and the population was dying at a
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much younger average age of 40 years, mostly from the leading HIV related

causes. Interestingly, in the third decade, we see a gradual improvement in life

expectancy, possibly attributed to e�ective health intervention programmes.

Through a structure and semantic analysis of narratives where experts

disagree, we also demonstrate the most frequent terms of traditional healer

consultations and visits. The comparative approach also makes this study a

baseline that can be used for future research enforcing generalization and

comparability. Future study will entail exploring deep learning models for

CoD classification.
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1. Introduction

More than 65% of the population in the world lacks high

quality information on the cause of death (CoD) since every

year about sixty million deaths worldwide are not assigned a

medically certified cause (1). As such, most of the countries in

the world fail to meet the United Nations 90% death registration

coverage requirement, as deaths in many Low to Medium

Income Countries (LMICs) are not captured in civil registration

systems (2, 3). On the contrary, the CoD information is vital

for public health monitoring, informing critical health policies

and priorities. Therefore, in the absence of clinically oriented

sources, CoD information should be derived from alternative

sources. Verbal Autopsy (VA) is the most used tool worldwide

as an alternative source of CoD information. VA is common in

LMICs and is a process that is used to determine CoD where

deaths occur outside health facilities and is not certified by a

medical practitioner (4). These sentiments are supported by

Mapoma et al. (5), who also reports on the importance of the

VA process in determining CoD in countries where there are no

active civil registration systems. The VA process is conducted by

non-medical personnel who seek to elicit valuable information

using both structured questions and an open narrative section

with the next of kin of the deceased about circumstances and

events that led to death (1). Two doctors are given the full set of

responses, both from structured questions and open narratives

for assessment and to reach a consensus on the CoD and if not

a third physician is consulted, a process known as Physician

Coded Verbal Autopsy (PCVA). PCVA is the most used

process for determining CoD. However, it is widely criticized

because of its lack of robustness, cost, time, inconsistencies,

and inaccuracies as it is subjective and prone to errors among

many drawbacks (6). This results in PCVAs mostly employed

for the training and validation of computational approaches.

The surge of technological advances has availed a plethora

of automated methods for determining CoD which are faster,

efficient, and cost effective (1). Most of the research that reports

on ML applications in the VA domain mainly uses the responses

from the questionnaire as the classical dataset. As such, this

affects comparability and generalisability. In this study, we

validate the performance of variousML techniques using various

VA data types for determining CoD using a comparative

analysis approach. We apply enhanced data standardization

and normalization strategies to achieve optimum transparency

and accuracy through addressing most model limitations and

applying recommendations that are reported in Reeves and

Quigley (7) and Mujtaba et al. (8). We assess the robustness

of several classifiers including; random forest (RF), k-nearest

neighbor (KNN), decision tree (DT), support vector machine

(SVM), logistic regression (LR), artificial neural network (ANN),

Bayes Classifier (BC), bagging and eXtreme Gradient Boosting

(XGBoost) as ensemble classifiers. We also validate our dataset

using the common conventional Computer Coded Verbal

Autopsy (CCVA) algorithm; InterVA.

1.1. Computer Coded Verbal Autopsy
algorithms

Previous studies report on the most commonly used VA

algorithms also known as CCVA algorithms. These CCVA

approaches use expert-driven rules to determine CoD from

VAs (9–13). The VA algorithms make use of the responses

from the standardized structured World Health Organization

questionnaire that denote signs or symptoms based on the

deceased health history prior to death. Most of these VA

algorithms take input from VA data derived from real deaths,

and symptom-cause information (SCI) which is a repository of

information about symptoms that are related to each probable

CoD. Additionally, they make use of logic that entails a logical

algorithm that combines the SCI and VA data to identify

cause-specific mortality fractions (CSMF), so as to assign a

specific CoD.

The InterVA uses the Bayes rule to compute the probability

of cause of death, given the availability of indicators such as SCI

from the VAs. This approach is reported in the study of Clark
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et al. (14), Leitao et al. (15), Miasnikof et al. (13), and Murray

et al. (16).

These VA approaches have been widely criticized in terms

of their credibility and reliability. The study of Kalter et al.

(17) reports on the evaluation of VA expert algorithms and

deduces that population level accuracy is similar to that of ML

approaches with CSMF in the range of 57−96%. Similar findings

are also presented in the study of Quigley et al. (18) who did

a study where they validated data derived algorithms against

the gold standard of physician review using various disease

categories based on the CSMF. Leitao et al. (15) argues that, there

is little evidence to justify the CCVA as a possible replacement

of the gold standard which is the PCVA. Therefore, there is a

need for further investigations and research with large datasets

to train and test models on CoD classification.

Little research exists in the VA domain on the application of

ML to determine CoD fromVA narratives. TheseML algorithms

make use of automated computer programs that can take input

of data to learn new trends and patterns from complex data by

applying optimization techniques for VA classification (19).

1.2. Machine learning in VA

Most ML model predictors commonly use only responses

from the standardized questionnaire, attaining Sensitivity scores

of around 60%for individual CoD classification, using various

numbers of CoD categories. On the contrary, the study

of Jeblee et al. (1) demonstrates that the VA narratives

have valuable rich information that can be used for CoD

determination. ML can avail real-time results that are similar

to that of physicians/experts (20). Alternative complex ML

approaches exist in the literature and can be used as substitutes

for the PCVA and CCVA algorithms as approaches to

determining CoD.

Moran et al. (21) applied the Bayesian hierarchical factor

regression models to infer CoD using VA narratives and report

an improvement in model performance on inferring CoD

and CSMF. However, they used thirty-four disease categories.

Idicula-Thomas et al. (22) applied six different ML algorithms

(SVM, ANN, KNN, DT, C5.0, and gradient boosting). Their

results report the SVM as the best classifier with an Accuracy

of more than 80%. However, they used six disease categories.

Similar results are reported in the study of Mujtaba et al. (23),

with SVM attaining a Precision of 78.1%, Recall of 78.3%, F-

score of 78.2%, and overall Accuracy of 78.25%for 16 disease

categories. Their study used text classification techniques to

predict CoD from forensic autopsy reports. Other studies by

Danso et al. (24), Mujtaba et al. (25), and Koopman et al. (26)

also found similar results and deduce that feature extraction

approaches are grossly affected by variations in words and

word combinations.

The study of Mwanyangala et al. (27) used the LR model

to determine the completion rate of VA and factors associated

with undetermined CoD. They report a completion rate of 83–

89%. They ascertain that 94% of deaths submitted to physicians

were assigned a specific cause, and on the other hand, 31%

were labeled as undetermined. Quigley et al. (28) reports

various common diseases that lead to death using CSMF and

LR classifier and they achieved 80% Specificity. Boulle et al.

(29) applied ANN to classify CoD from VAs and achieved a

Sensitivity of 45.3%. They concluded that more explorations are

needed with large datasets and large training samples to improve

the results of the ANN. The study of Flaxman et al. (30) used

the RF classifier to assign CoD categories and affirmed that the

RF algorithm performed better if not as the PCVA approach.

Additionally, they point out that the RF classifier was better than

PCVA on overall chance concordance and CSMF accuracy for

both adults and children.

Related work that has also used VA data for cause of death

determination is also reported elsewhere in Danso et al. (31).

They conclude that using word occurrences produced better

results as compared to word occurrence features and suggest

using large datasets in order to improve model performance.

Their sentiments are echoed in the study of Pestian et al. (32) and

Murtaza et al. (33). Additionally, Mujtaba et al. (8, 23, 25, 34)

have done vast work in the VA domain and argue that uni-

grams are better feature extraction techniques, Term Frequency

(TF) and TF-IDF are better feature representation schemes, and

Chi-squared is a better dimensionality reduction approach. They

recommend employing effective data cleaning strategies and

feature engineering techniques to get improved performance.

Despite the reported results in the literature, both CCVA

algorithms and ML models applied to VA data to determine

CoD, suffer from challenges and limitations as they lack concrete

evidence where there is a limited expert diagnosis and cannot be

fully utilized to inform health priorities (2). Most of the CCVA

approaches use statistical concepts and scores to determine CoD

(9, 35). Moreover, these approaches are affected in terms of

optimal performance because of their dependency on sample

size, age group, causes of death, and characteristics of the

sample (4, 13, 17, 35, 36). Other issues that affect VA data

quality, emanate from having interviewers being untrained,

incompetent, and unqualified to appropriately elicit relevant

and appropriate symptoms on causes of death. Additionally,

language barriers call for the need for the interviewer and

interviewee to speak the same language so as to derive the best

results. Soleman et al. (4) recommended incorporating fully

trained multiple translators. The other downside is the length

of the recall period which can create a bias in the collected VA

data. The heterogeneity of various autopsies in terms of the

non-intersecting dialects of the English language (terms being

in the native language) compromises data quality as most of

these approaches tend to omit such autopsies in their model

prediction, yet they might entail valuable information.
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All the discussed challenges and limitations affect the VA

data quality that is taken as input to the CCVA and ML

approaches. Therefore, we can deduce that there is a great need

to address these challenges in order to remove room for any

bias and misinterpretations of the models, thereby enforcing

generalisability and comparability. This study demonstrates the

robust assessment of ML approaches and CCVA algorithms in

determining CoD, thus availing a baseline ML framework that

can be used for comparability and generalization across all VA

dataset types.

2. Methods

2.1. Study design

This is a retrospective cross-sectional study that uses

secondary data analysis. All the cleaned VA datasets, model

performance, and classification results of various tasks are

pushed from a Python Jupyter Notebook environment and

housed within a PostgreSQL Version 4.2 object-relational

database management system.

2.2. Population

This study uses VA narrative data from the study area of

the Agincourt Health and Demographic Surveillance System

(HDSS). The HDSS came into existence in 1992 and is located

in the rural Sub-district of Bushbuckridge under Ehlanzeni

District, in Mpumalanga Province, in north-eastern South

Africa. The study area covers approximately 420 km2. According

to the Agincourt fact sheet of 2019, the population was

at 1,16,247 individuals residing in 28 villages with 22,716

households, with men being 55 961, women being 60,280,

children under 5 years being 11,724, and school going children

with ages from 5− 19being 35,928 (37).

2.3. Data source

The source of our data for this study is the Agincourt HDSS.

It is a surveillance site that specifically provides evidence based

health monitoring that seeks to strengthen health priorities,

practice and inform policy. The VA narratives data is from 1993

to 2015. However, physician diagnosis was done from 1993 to

2010, and this target variable of the doctors’ diagnosis is enough

for model training and prediction.

In this study, we used three types of datasets such as

the responses from the standard questionnaire, narratives,

and a combination of the responses and the narratives.

The whole dataset had 287 columns/features and 16,338

records/observations. For the responses only, we took all

TABLE 1 Twelve disease classes and the number of data samples

before and after data balancing.

Class labels and corresponding number of samples

Disease category Label Samples before

data balancing

Samples after

data balancing

HIV/TB 0 3,388 3,388

Other infectious 1 964 3,388

Metabolic 2 242 3,388

Cardiovascular 3 140 3,388

Indeterminate 4 1,468 3,388

Maternal and Neonatal 5 121 3,388

Abdominal 6 117 3,388

Neoplasms 7 93 3,388

External causes 8 89 3,388

Neurological 9 57 3,388

Respiratory 10 46 3,388

Other NCD 11 21 3,388

features that had responses from the standard questionnaire as

our predictors and the CoD assigned by physicians using the

International Classification of Diseases-10 (ICD-10) code for

each record in the dataset as our target variable. Ultimately, we

had 231 predictors (all symptoms, age at death, and gender)

and 1 target variable, and all our features were in English. The

predictions using the narratives were done using age at death,

gender, the narrative feature, and 1 target variable.

For the combined VA dataset, we used 232 predictors and 1

target variable. We only added the VA narrative feature to the

responses dataset in order to have our combined dataset. We

further created 12 CoD categories with corresponding labels,

and class distribution with the number of samples for each

class before and after data balancing for our training dataset,

as shown in Table 1. The CoD categories were derived based on

the InterVA user guide and literature studies of Byass et al. (11),

Danso et al. (24), King and Lu (38), and Jeblee et al. (1).

Figure 1 illustrates the logical steps that we follow for this

study’s experiments. We first do data acquisition of our VA

narratives as a comma separated value text file (csv), followed

by data exploration and cleaning. Additionally, we do feature

engineering and data balancing and feed our data to our

models for training, validation, and testing. Finally, we do

CoD classification.

2.4. Data pre-processing and encoding

For the questionnaire responses dataset, we cleaned and

replaced all nulls with zeros, implying that there was no

symptom assigned for a missing value in a record. All symptoms

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.990838
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Mapundu et al. 10.3389/fpubh.2022.990838

FIGURE 1

Schematic diagram of ML process followed.

that had a ‘Y’ were encoded as a 1 meaning that the record had

a present symptom value. On the other hand, all symptoms that

had an ‘N’, were encoded as a 0 meaning that those records had

no symptoms present. In order to normalize and standardize

the narrative feature used with the combined dataset, we pre-

processed in order to retain with only relevant data. Data were

first imported in comma separated value format, followed by

pre-processing. The pre-processing stage entailed converting

all text to lowercase and removing all punctuation, spaces,

numbers, and special characters. Tokenisation was done by

splitting a document (seen as a string) into tokens. Stopword

removal was then applied to do away with insignificant words

using the NLTK library of English stopwords. We applied

normalization using the Python spacy package, a process known

as lemmatization. Lemmatization uses a dictionary of known

word forms and considers the role of a word in a sentence

with the aim of extracting some normal form of a word.

Finally, we applied feature engineering to determine the most

representative features, as we then aimed at retaining only

relevant words in the vector space by applying a weighting

scheme (39). All categorical data was encoded using the one-

hot encoding technique to create numeric vectors. This was

followed by concatenating the narratives and the questionnaire

response datasets using horizontal stacking which was pushed to

our models for training, validation, and testing.

2.5. Feature engineering

We did feature engineering in order to derive new input

features from existing ones. This process was done in three

phases namely; feature extraction, feature selection, and feature

value representation. Feature extraction was applied in order to

get only relevant and useful features from textual data using n-

gram models. The n-grams are a set of words that are sequential

as they make use of the continuous number of items such as

characters or words from a given sequence of narratives. n-gram

models can be of the form; a) n = 1 (unigram), b) when n =

2 (bigram), c) n = 3 (trigram), and d) hybrid-grams (mixture

of unigram, bigram, and trigram) (8, 23). This was followed

by the feature value representation stage employing the TF-

IDF approach. In this phase, we sought to create a numeric

vector of features, where each feature will have a corresponding

numeric value that can be used for model learning. TF-IDF

considers a feature important if it occurs frequently in the VA

narratives belonging to one class and less frequently available

in narratives belonging to another class. Finally, we applied

feature selection in order to attain the most useful subset of

features from the narratives. This was achieved using Singular

Value Decomposition (SVD) as a selection approach to reduce

the dimensionality of our feature space, thus removing noise in

our dataset. This dimensionality reduction technique creates a

matrix that only has relevant information producing an exact

representation of data in a low dimensional space without any

loss of data (40, 41).

2.6. Data balancing and feature scaling

We applied data balancing to the training set to address data

imbalance where one or more classes are less represented than

the other classes, meaning that the majority classes have more

samples as compared to other minority classes. As such, this

creates a bias in the minority classes as they will have fewer

data points that can cause large misclassification errors. The

ratio of the majority against the minority class was 1 : 160. In

order to address the issue of data imbalance, we explored various

techniques (under sampling, over sampling, threshold, and class

weight). We attained optimal results when using the Random

Over Sampling Examples (ROSE) and Synthetic Minority

Oversampling Technique (SMOTE). After our experiments,

we chose SMOTE as the best choice for our dataset. This
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possibly suggests that our dataset was well suited for SMOTE

as a data balancing technique. Moreover, our balanced datasets

behaved better than imbalanced datasets. SMOTE was applied

by generating artificial samples for the minority class, through

interpolation between the positive instances that lie together.

This approach addresses the issue of over-fitting caused by the

general oversampling approach that replicates existing positive

cases (8). We ended up having 3, 388samples per class. We did

feature scaling using the Python Standard scaler library in order

to get all our features within the same range as the target variable.

After data balancing and feature scaling, we fed the data into our

12 models for training and validation.

2.7. Machine learning models for CoD
prediction

We specifically applied supervised ML techniques to predict

our target variable given input data. We aimed at predicting the

related CoD by taking input of; questionnaire responses only,

narratives only, and combined questionnaire responses and

narratives. The input was then fed into nine classifiers (SVM,

DT, XGBoost, KNN, RF, Bagging, LR, BC, and ANN). These

ML approaches are reported elsewhere (1, 22, 23, 27, 33, 34, 39–

47). Using the questionnaire responses only, we created a feature

space made up of binary responses as predictors and our target

variable was a categorical ICD-10 code for CoD. Similarly, we

did the same for the narratives only dataset. For the combined

dataset only, we added the narrative column to the list of

our predictors.

2.8. Model training, validation, and testing

In this study, we perform multi-class classification, where

we generated individual prediction models for each of the

12 disease categories. Data were split into 70% training, 20%

validation, and 10% testing on unseen or new data, for all our

nine models. We evaluated model performance by assessing

the robustness of the nine classifiers by applying 10-fold cross-

validation supplemented by the GridSearch algorithm. The k-

fold cross-validation (k=10 in our study) is advantageous in

that, it uses all observations for both training and validation,

with each observation used for validation exactly once. On

the contrary, this approach has the disadvantage of having to

define the number of folds manually. In order to address the

limitations of the k-fold cross-validation technique, we also

used the automated GridSearch approach that eliminates the

random setting of parameters and chooses optimum parameters

automatically for a specific model.

In order to attain a better estimate of the generalization

performance, we used 10-fold cross-validation to evaluate the

performance of each parameter combination, instead of using

TABLE 2 Model optimal hyperparameters.

Selected hyperparameters

Model

name

Hyperparameters

XGBoost L1, max_depth=10, objective=multi:softmax, learning_rate =0.1,

alpha=0

RF gini, max_depth =10, n_estimators=100, min_samples_leaf=1

ANN relu, alpha=0.0001, solver=adam

KNN minkowski, n_neighbors=5, p=2

SVM gamma=scale, kernel=rbf, C=1.0

Bagging KNN, max_samples, max_features

DT gini, min_samples_split=2, min_samples_leaf=1,

LR L2,C = 1.0

BC alpha=1.0, fit_prior=True, class_prior=None

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural

Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT,

Decision Tree; LR, Logistic Regression; BC, Bayes Classifier.

a single split into a training and validation set. First, we specified

the parameters for searching stored in a dictionary. GridSearch

cross validation function then performed all the necessarymodel

fits. All dictionary keys were the names of the parameters that we

wanted to tune, and the values were the parameter settings that

we wanted to test out. Applying cross-validation, we managed

to choose the optimal parameters that gave us the best model

performance based on the accuracy of the test set or unseen data.

We used optimisation parameters such as; cost complexity

pruning and tuning parameter alpha through k-fold validation

(tree based models). Moreover, we also used the Mean Squared

Error (MSE) and Cross Entropy Error (CEE), Minkowski and

Gini as cost functions to compute the minimal cost error

between our predictor and the response using the k-fold cross-

validation approach to optimize model performance. These cost

functions are described in Zaki and Meira (40). Additionally,

we also employ L1and L2regularization approaches to further

optimize some of our models. L1regularization involves

eliminating features that are not useful for model prediction

by setting some weights close to zero. On the contrary,

L2regularization tends to penalize large weights more and

small weights less (41). Table 2 depicts some of the model

hyperparameters used in our models.

3. CCVA algorithms

We followed the same preprocessing steps of our dataset and

fed it into our commonly applied CCVA algorithm InterVA. The

data preprocessing steps entailed de-duplication based on the

identifier field (ID), dropping observations with peculiar IDs,

filtering out observations with recorded age at death above 110

years, and any observation with the year of death before 1992
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and after 2016. All records with unspecified sex were dropped

from the raw dataset. All modeling for the InterVA was done

in R. Libraries such as knitr were used for dynamic report

generation, lubridate was used for date and time functions, tidyr

for organizing and tidying of data, tidyverse for loading core

packages, ggplot for plotting graphs, readxl for reading our excel

raw data, and InterVA for our CCVA algorithm. In order to

determine the most probable CoD, we used the InterVA libraries

for analysis in our R-statistical analysis software guided by the

study of Li et al. (48) and McCormic et al. (12). Since InterVA

and InSilico are correlated, we decided to only validate the

InterVA algorithm for comparability with ML approaches.

4. Identification of contradicting
cases and best model predictors

In order to identify contradicting cases, where physicians

were not agreeing on the diagnosis, we extracted a separate

dataset. We used simple text mining techniques known as n-

gram models for identifying the contradicting cases and best

features for our models (refer to Section 2.5).

4.1. ML techniques model evaluation

Performance evaluation of classifiers is evaluated using

various metrics and we report the metrics based on studies by

Mujtaba et al. (23, 34). We validated our results using one vs.

all with Accuracy, Precision, Recall, F-score, and AUROC as our

metrics for evaluation.

Accuracy denotes all classes with classified results that have

been predicted correctly in fraction terms. Precision also known

as the Positive Predictive Value (PPV) defines the proportion

of VA narratives correctly predicted as positive to the total

of positively predicted VA narratives. Recall also known as

Sensitivity or True Positive Rate (TPR) defines the proportion of

VA narratives correctly predicted as positive to all VA narratives

in the actual positive category. F-measure computes the average

or harmonic mean of Precision and Recall.

True Positives (TP) and True Negatives (TN) represent the

number of outcomes in which our prediction model correctly

classifies positive and negative cases, respectively. In our case,

TP denotes predicted positive VA narratives with a particular

disease category from the 12 classes and are actually positive and

TN denotes predicted negative VA narratives with a particular

disease category from the 12 classes and are actually negative.

Conversely, False Positives (FP), and False Negatives (FN)

denote the number of outcomes where our models incorrectly

predict the positive and negative classes, respectively. As in our

case, the FP implies predicted positive VA narratives with a

particular disease category from the 12 classes but are actually

negative and FN depicts the predicted negative VA narratives

with a particular disease category from the 12 classes but are

actually positive.

The AUROC visualizes the TPR against the false positive rate

(FPR). The area under the ROC curve applies the principle of

plotting a curve specific to a machine learning algorithm where

the classifier is evaluated relative to a weighting on the area

under the curve. Good performance of the algorithm is given

a weight of close to 1, thus graph is AUROC closer to the upper

left corner and the poor performance of an algorithm is given

a weight of 0.5 and below. Specificity computes the ratio of

negative VA narratives that are correctly predicted as negative.

4.2. CCVA techniques model evaluation

We explicitly validated the InterVA algorithm using CSMF

accuracy and Overall Chance-Corrected Concordance (CCC).

CCC computes the accuracy of individual cause assignment and

ranges from 0 to 1 and the lower the CCC, the larger the error

type on the accuracy of the underlying cause (14, 49). On the

other hand, CSMF accuracy defines accuracy as having a value

between 0and 1. This metric assumes the worst possible case

for predicting CSMF and assigns a weight on the least possible

CSMF value that matches the total absolute error (50).

5. Statistical analysis

We applied statistical tests for comparing the performance of

our nine algorithms. We computed the variance of our models

using descriptive statistics such as mean and standard deviation

based on the results of our AUROC. Moreover, we computed

some tests using 10-fold cross-validation using the mean and

standard deviation. Furthermore, we conducted some non-

parametric tests since our data distribution was non-normal

using the Kruskal-Wallis test, to test if the model’s mean is

different or the same. For the Kruskal-Wallis test, we considered

p < 0.005statistically significant. We applied the pairwise model

comparisons using McNemar statistical tests, in order to be able

to state objectively whether one model performs better than

the other (51). Since we did eight different tests, we used the

Bonferroni corrected p-value of 0.0065, derived from 0.05/8,

where the denominator is the total number of tests. We used

Python version 5.2.2 and STATA version 17 SE edition for all

these statistical tests.

6. Results

In this section, we present the results attained from CCVA

algorithms and various classification techniques employed to

determine CoD from various VA datasets (using only narratives

as predictors, using questionnaire responses only, and results of

the combined features).
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TABLE 3 Comparison of nine ML models using narratives only.

Model evaluation

Model name Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROCMIA AUROCMAA

XGBoost 96 96 96 96 0.927 0.906

RF 96 96 96 96 0.998 0.996

ANN 94 94 94 94 0.982 0.964

KNN 93 93 93 92 0.989 0.987

SVM 92 92 92 92 0.917 0.917

Bagging 91 91 91 91 0.997 0.995

DT 85 84 85 84 0.910 0.910

LR 82 82 82 82 0.977 0.959

BC 71 75 71 72 0.921 0.920

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT, Decision Tree;

LR, Logistic Regression; BC, Bayes Classifier; AUROCMIA, Area Under Receiver Operating Characteristics Micro Average; AUROCMAA, Area Under Receiver Operating Characteristics

Macro Average.

6.1. Performance evaluation of ML
classifiers

We validated our results using one vs. all with Precision,

Recall, Accuracy, F1-score, and AUROC. We report on

Precision, Recall, Accuracy, F-score measure, and AUROC

for our nine classifiers in the CoD categorization of the 12

disease classes for narratives only in Table 3, questionnaire

responses only in Table 4, combined questionnaire responses

and narratives in Table 5.

6.1.1. Results from only the VA narrative
predictors

The XGBoost and RF classifier outperformed all the other

classifiers with a Precision of 96%, Recall of 96%, F1-score of

96%, and Accuracy of 96%, respectively. The least performing

classifier was the statistical BC classifier with an Accuracy of

71%. Overall, our nine models had an AUROCMIA (Area

Under Receiver Operating Characteristics Micro Average) and

AUROCMAA (Area Under Receiver Operating Characteristics

Macro Average) between 0.910 − 0.998and 0.910 − 0.996,

respectively. Table 3 shows the detailed performance evaluation

results of our nine models using VA narratives only.

6.1.2. Results from using questionnaire
responses only as predictors

The ANN and XGBoost outperformed all the other

classifiers when using questionnaire responses from the

standardized questionnaire attaining a Precision, Recall,

F1-score, and Accuracy of 100%, respectively. It was followed

by Bagging our ensemble classifier and KNN both recorded a

Precision, Recall, F1-score, and Accuracy of 98%, respectively.

Our statistical classifiers LR and BC were on the lower ranking

of our evaluation recording an Accuracy in the range of

74–83%, respectively. All of our models attained the highest

AUROCMIAs within the range of 0.869and 1, respectively. Our

nine models XGBoost, RF, ANN, Bagging, SVM, LR, DT, and

KNN record high scores and the BC a bit lower AUROCMIA of

0.869. Additionally, the same nine models attained the highest

AUROCMAAs within the range of 0.976and 1, respectively.

On the other hand, the BC achieved an AUROCMAA score of

0.884. Table 4 shows the detailed performance evaluation results

of our nine models using questionnaire responses only.

6.1.3. Results from using combined narratives
and questionnaire responses

The XGBoost, ANN, and the RF classifier outperformed all

the other classifiers with a Precision of 96%, Recall of 96%,

F1-score of 96%, and Accuracy of 96%, respectively. On the

contrary, BC and SVM were the least performing classifiers

with Accuracy in the range of 68 − 72%. All of our models

attained the highest AUROCMIAs within the range of 0.910and

0.998, respectively. The RF, XGBoost, ANN, Bagging, and KNN

recorded high scores and the rest a bit lower scores. Additionally,

our models attained the highest AUROCMAAs within the range

of 0.907and 0.996, respectively. Similarly, the RF, XGBoost,

ANN, Bagging, and KNN recorded high scores and the rest

a bit lower comparable scores. However, the BC attained the

lowest AUROCMIAs of 0.869and 0.884, respectively. Table 5

shows the detailed performance evaluation results of our nine

models using combined questionnaire responses and narratives.

Additionally, Figure 2 shows the model validation done using

AUROC.

We report on the performance validation of our nine

algorithms using descriptive statistics such as the mean and

SD based on the Micro and Macro averages of our AUROC
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TABLE 4 Comparison of nine ML models using questionnaire responses only.

Model evaluation

Model name Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROCMIA AUROCMAA

XGBoost 100 100 100 100 1 1

ANN 99 99 99 99 1 1

Bagging 98 98 98 98 0.998 0.998

KNN 98 98 98 98 0.997 0.997

RF 97 97 97 97 0.999 0.998

DT 97 97 97 97 0.976 0.976

SVM 94 94 94 94 0.990 0.988

LR 83 83 83 83 0.990 0.980

BC 74 77 74 75 0.869 0.884

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT, Decision Tree;

LR, Logistic Regression; BC, Bayes Classifier; AUROCMIA, Area Under Receiver Operating Characteristics Micro Average; AUROCMAA, Area Under Receiver Operating Characteristics

Macro Average.

TABLE 5 Comparison of nine ML models using combined narratives and questionnaire responses.

Model evaluation

Model name Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROCMIA AUROCMAA

XGBoost 96 96 96 96 0.994 0.990

RF 96 96 96 96 0.998 0.996

ANN 96 95 96 95 0.995 0.991

Bagging 93 92 93 92 0.994 0.994

KNN 91 91 91 90 0.982 0.981

DT 87 87 87 87 0.928 0.928

LR 76 76 76 76 0.985 0.973

BC 72 73 72 73 0.910 0.907

SVM 68 68 68 66 0.969 0.958

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT, Decision Tree;

LR, Logistic Regression; BC, Bayes Classifier; AUROCMIA, Area Under Receiver Operating Characteristics Micro Average; AUROCMAA, Area Under Receiver Operating Characteristics

Macro Average.

reported in Table 5.We report on 0.010282and 0.010105variance

for AUROCMAA and AUROCMIA for our dataset, respectively.

Table 6 shows the mean and standard deviation scores for

each model throughout the 10-fold cross-validation training of

the algorithms. The rank sums for each model column depict

the Kruskal-Wallis test conducted. The test revealed that the

mean observation was not the same (Chi = 85.383, p =

0.0001)across the ninemodels. This, therefore, implies that there

was a statistically significant difference in mean observation

between the nine models. We also report a p-value greater than

the significance level of 0.05, hence, we fail to reject the null

hypothesis and conclude that the nine model observations are

not normally distributed. All model variances are very low or

insignificant, implying that our dataset had a low degree of

spread. Therefore, we can confidently state that our models were

consistent in making predictions, thus even if different training

data were used, they could still make a good estimate of the

target variable. Additionally, we can infer that our sampled data

points were very close to where our nine models predicted they

would be.

The results of the McNemar tests on validating the

performance of our nine models suggest good performance on

the XGBoost and RF classifiers. The pairwise tests on XGBoost

and RF suggest that there is a significant difference between the

classifiers (p < 0.0001), which is smaller than our significance

threshold (α = 0.0065). Therefore, we reject our null hypothesis.

We discovered that the XGBoost got 868 predictions right that

RF got wrong. On the contrary, RF got 555predictions correct

that XGBoost got wrong. As such, based on this 1.5 : 1ratio, we

may conclude that XGBoost performed substantially better than

RF. Additionally, we performed comparative pairwise tests on

all our models (LR, KNN, DT, SVM, ANN, BC, and Bagging)
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FIGURE 2

Area Under Receiver Operating Characteristics (AUROC) of our nine classifiers using combined questionnaire responses and narratives. (A)

AUROC for ANN. (B) AUROC for KNN. (C) AUROC for RF. (D) AUROC for DT. (E) AUROC for SVM. (F) AUROC for LR. (G) AUROC for XGBOOST.

(H) AUROC for BG. (I) AUROC for BC. XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural Network; KNN, K-Nearest

Neighbor; SVM, Support Vector Machine; BG, Bagging; DT, Decision Tree; LR, Logistic Regression; BC, Bayes Classifier.

and our best classifiers XGBoost and RF. Based on the tests, we

can objectively reject our null hypothesis and state that there

is a significant difference between our two best classifiers and

the other seven classifiers in terms of model performance (p <

0.0001)smaller than our significance threshold (α = 0.0065).

7. CCVA algorithm evaluation using
CSMFs

This extract highlights how the InterVA and InSilico

algorithms were evaluated using CSMFs. We also present CSMF

and CCC as evaluation metrics for the InterVA algorithm.

Figure 3 presents the 12 leading causes of death over time as

determined by the InterVA algorithm using only one CoD. We

observe that between the years 1993 and 2015, HIV/AIDS was

the leading CoD across the population (CSMF=0.2739). This was

closely followed by Pulmonary Tuberculosis (CSMF=0.1987)

and Other Infectious/parasitic diseases (CSMF=0.1385). These

three causes alone accounted for up to 61% of all deaths

in the population during this period. The InterVA algorithm

performance using CSMF accuracy and CCC attained values of

83% and 0.36, respectively.

8. Trend and pattern analysis using
ML and CCVA approaches

8.1. CCVA algorithms

This section presents mortality trend and pattern analysis

using conventional CCVA algorithms based on gender

(Figure 4A), age (Figure 4B), and population over time
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(Figure 4C), using data from structured questions. The

visualizations are given in Figure 4.

We investigated the average age at death for the 12 leading

causes of death. We discovered that both men and women

TABLE 6 Statistical tests of our nine models.

Model scores

Model name Mean Standard deviation Rank sum

XGBoost 0.9622614 0.003209 836.00

RF 0.9566394 0.0030548 735.50

ANN 0.9530553 0.0025771 663.50

Bagging 0.9216445 2.91e+07 585.00

KNN 0.9015075 0.0033769 447.00

DT 0.8671503 0.003984 255.00

LR 0.7509405 0.0124037 155.00

BC 0.698092 0.0081906 55.00

SVM 0.6783361 0.0054433 50.00

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural

Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT,

Decision Tree; LR, Logistic Regression; BC, Bayes Classifier.

were more likely to die from any disease at an average age

of 40 years (mean=40, median=39, IQR=36, SD=26), despite

the sex. We notice more women’s deaths from HIV and

circulatory diseases. On the contrary, we notice more male

deaths from other infectious diseases, tuberculosis, and external

causes (refer to Figure 4A). However, these differences were not

statistically significant.

Figure 4B depicts percentages of mortality trends across

all age groups. To determine mortality across age groups,

the data were grouped into five bins “0–4,” “5–14,” “15–

49,” “50–64,” and “65+.” We significantly notice a declining

trend in the number of deaths among persons aged between

0 and 4 years over time. In the earlier years of the

Agincourt HDSS, there appears a declining trend in the

number of deaths among individuals 65 years and above.

However, this pattern is reversed and the mortality in the

same age category is gradually increasing since the mid-

2000s. Similarly, we also notice an almost comparable trend

in the 50–64 age group to that of the 65+ group but the

trend is gentle and stable. Among the 5–14 and 15–49 age

groups, the number of deaths is appearing to be constant

over time.

FIGURE 3

Top 12 CoD diseases.
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FIGURE 4

Computer Coded Verbal Autopsy (CCVA) mortality trends based on age, population, and gender. (A) Cause of death by sex. (B) Percentage of

deaths by age group. (C) Yearly mortality trends by gender.
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FIGURE 5

Gender and age group counts graphs. (A) Gender count. (B) Age group count per gender. (C) Age group count.
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FIGURE 6

Mortality trends across age groups. (A) Number of deaths over time. (B) Age at death count. (C) Yearly death count across age groups. (D) Age

group CoD count. (E) CoD and age death. (F) Age at death per year.

Figure 4C showsmortality trends based on gender over time.

A total of 16,063 observations was collected, and composed of

52% men (n = 8,354) and 48% women (n = 7,709). We observe

a gentle but steady increase in mortality between the years 1993

and 2000. This pattern rapidly accelerates among men between

2001 and 2008 before gradually declining.

8.2. ML techniques

Figures 6A–C depict the number of deaths over time, age

at death count and yearly death count across age groups

respectively. In this section, we present the results of our trend

and pattern analysis using ML approaches to mortality based

on gender, age, and population over time using narrative data

combined with structured questions. We start by looking at

the general distribution of our population based on gender,

as depicted in Figure 5A, age groups (Figures 5B,C). All these

graphs are depicted in Figure 5.We observe that there weremore

male deaths than female deaths. Most of the deaths were within

the 15–49 and 65+ age groups.

We analyzed our mortality trend and pattern based on age

groups as in Figure 5. We observe that most deaths are within

the 15–49 and 65+ age groups. The 65+ age group had more

deaths recorded in the 1990s with a gradual increase till 2014.

We also discovered that the 15–49 age group trend sharply

increases till 2008 and then steadily goes down till 2015. We

notice a constant trend for the 5–14 year age group over time.

There is a high number of deaths from HIV causes affecting

mostly the 15–49 age group. We also notice that most deaths

appear to be common in the 0–10 year age group and 30–

80 years age groups. Conversely, we notice fewer deaths for

80+ years.

Figures 6E,F depict our boxplots on CoD and age at death

over time and age at death per year. On average, the population

died of HIV/AIDS or tuberculosis which was the leading CoD at

amedian age of 38 years. The plots depict an average death age of

66 years succumbed to cardiovascular, neoplasm, metabolic, or

abdominal diseases.Worth taking note of is the death from other

infectious disease causes that show a dissimilar trend across all

age groups. Additionally, on average, most of the cases died

of metabolic causes at an elderly age of 65 years. Other Non

Communicable Diseases (NCDs’) causes of death were more

prevalent in the 30–35-year-old age group and neonatal and

maternal causes in their first year (shown by the narrow IQRs).

CoD from neurological and respiratory causes show a mortality
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FIGURE 7

Yearly CoD based on gender. (A) CoD based on gender. (B) Yearly CoD based on gender.

trend and pattern that illustrates an average age at death of 50

years. We observe that there were more deaths in men than

women, despite the cause. There is a gradual up-trend from

1992 (less than 100 deaths) to 2008 (almost 500 deaths) and

a steady decline in the number of deaths from 2009 (refer to

Figures 7A,B). Figure 6D illustrates that between the years 1993

and 1997, the average life expectancy was approximately 50

years. However, from 1998 to 2010, life expectancy significantly

dropped and the population was dying at a much younger age

of 40 years on average. From the year 2011, we see a gentle

improvement in life expectancy.

8.3. Analysis of contradicting cases

The extract details an analysis of the structure and semantics

of features in cases where the doctors are in disagreement. We

discovered that approximately 16%of the observations in the

VA dataset denote cases where the experts are in disagreement.

Further analysis of the structure and semantics availed insights

that in most cases the narratives entail information related to

traditional healers’ visits and consultations. Additionally, we

deduced that also this is a result of cases where the captured

information entails the imminent loss of weight, vomiting,

and having a fever leading to an unexplainable sudden death.

Figure 8 below shows our n-gram model of what was mined

from the contradicting narratives.

8.4. Model best predictors

This part discusses how the most important narrative

features where identified as the best predictors of our models.

We chose the bi-grams as they show an evenly distributed
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FIGURE 8

Tri-gram model showing frequently occurring contradicting cases.

frequency analysis of features (refer to Figure 9). As nincreases

the features start having more or less the same frequency.

9. Discussion

The process of determining causes of death using VAs

still remains a manual task and suffers from many drawbacks

(refer to Section 1). This negatively affects the VA reporting

process, despite it being vital for strengthening health priorities

and informing civil registration systems. Therefore, under

such circumstances, there is a great need for innovative novel

automated approaches to address these problems thereof.

In this study, we explore various VA data types, despite

most studies in literature reporting results based on the classical

dataset for CoD determination using ML approaches. Our aim

is to investigate if the narratives can improve or enhance model

prediction if they are added to the responses from the structured

questionnaire. Our deductions suggest that the VA narratives

have vital valuable information that should be used in model

prediction. Consequently, we identify the best model predictors

from the narratives. We further do a mortality pattern and trend

analysis based on age, population, and gender over time.We also

do a structure and semantic analysis of narratives in cases where

the experts agree and also disagree. To add to our findings, we

also investigate the best features that contribute to our models

from the narratives.

Generally, the results of all our ML models used in

this study, demonstrate that our models exhibited consistent

superior performance on all datasets. This further reinforces

the notion that ML approaches can be used as alternatives to

conventional approaches for CoD determination using VAs.

Ensemble classifiers (XGBoost, bagging), tree based models

(DT, RF), ANN and KNN performed exceptionally well on all

datasets. Our results of the combined dataset do not exhibit

a consistent model performance, as most models slightly drop

in model performance. This can be attributed to the fact that

the combined dataset creates high dimensionality of the feature

space and this triggers model complexity with too many noisy

data points. The CCVA approach, InterVA, attained a CSFM

accuracy of 83% and CCC of 36%.

Our CCVA approaches andML techniques produced similar

mortality trends and patterns based on age, population, and

gender. Interestingly, we observed that in the first decade

of the civil registration system, the average life expectancy

was approximately 50 years. However, in the second decade,
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FIGURE 9

Bi-gram model of our best model predictors.

life expectancy significantly dropped and the population was

succumbing to death at a slightly lower average age of

40 years. This suggests CoD mostly from the leading HIV

and tuberculosis related causes. Interestingly, in the third

decade, we see a gradual improvement in life expectancy,

possibly attributed to the implementation of effective health

intervention programmes. We notice that cardiovascular,

neoplasm, neurological, respiratory, and metabolic CoD mainly

affected the elderly. We observe that other infectious diseases

and external causes affected the population disproportionately

across all age groups, with the latter having an average

age at death of 30 years. Despite the expected CoD from

neonatal and maternal causes, we can also infer that those

with HIV had a lower life expectancy as compared to the

other CoDs. Of interest, is that most undetermined causes

of death are found within the 65+ age group. This suggests

that as the elderly population grows older, their health state

deteriorates and they succumb to many symptoms that can

lead to untimely hard to explain deaths. Other NCDs, causes

of death were more prevalent in the younger age groups.

We also discovered that sudden deaths are common in the

elderly, suggesting symptoms, such as imminent loss of weight,

vomiting, and having a fever leading to an unexplainable

premature death. Generally, we notice more deaths in men

than women.

We, therefore, propose that optimal model performance

should be set at 80% accuracy. In cases where the ML

model fails to reach a threshold value of 80% accuracy in

terms of performance, we propose an expert’s intervention

for further exploration and assessment. Conversely, in cases

where the experts are failing or do not reach a consensus,

we recommend the help of the machine to make predictions.

Most of these cases where the machine can assist, entail

narratives where the interviewee details most content about

the deceased circumstances and events that led to death based

on traditional healer visits and consultation. Interestingly,

we still found out that traditional healer consultations are a

common practice in the population as they occurred frequently

in our model best predictors. This cements the notion that

most people in the HDSS seek traditional ways for their

terminal illnesses, rather than western means. This finding

opened exciting avenues for future study, which will focus on

sequential text modeling with the aim of fully understanding

treatment sequences for terminal illnesses. Nevertheless, in cases

where the physicians were in agreement, these narrations about

traditional healer’s consultations were supplemented by enough
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symptoms that made it possible for the experts to give a proper

diagnosis. We also discovered that our model’s best predictors

entail matching symptoms with those in the responses to the

structured questionnaire.

The results of this study, consistent with several studies that

used VA data to determine CoD, suggest that ML approaches

can accurately classify CoD from VA narratives. However, in

most cases, statistical approaches and CCVA approaches are

always outperformed by ML approaches (1, 8, 9, 13, 23, 25,

34). Therefore, it is imperative for future research studies to

incorporate effective data handling strategies (8). This study

adds to the existing body of literature, suggesting that automated

approaches can be used as alternatives to PCVA in a cost effective

way, producing real-time results that are consistent, accurate,

and error free, thus strengthening health priorities. As such, VA

processes are still key in capturing civil registration data where

death occurs outside health facilities, up until a point when

deaths start to take place in areas where it can be documented.

Given these complexities, there is a great need for novel

automated approaches that can be used as alternatives (22).

The strength of this study lies in the application of

various ML and CCVA algorithms to various VA data types.

Moreover, our sample size was large and representative of

deaths that occurred at Agincourt HDSS that were captured

in a standard way. Moreover, our mortality trend and

pattern analysis gave us valuable insights into our HDSS

and this can be used to inform policy and practice. This

enforces generalization and comparability across studies. On the

contrary, this study had limitations of data quality described in

Section 1.2.

10. Conclusion

In general, this study demonstrates that ML techniques

can be used as alternatives in determining CoD from VA

narratives producing results comparable to physician diagnosis.

Our findings should be used to inform policy and practice and

enforce effective health intervention programmes and resource

prioritization to reduce the mortality rate and prolong life

expectancy. As such, they can help close the gap in civil

registration systems. Our comparative analysis of the ML

models on various VA datasets enforces comparability and

generalization, thus availing a baseline study for future research.

Future work will entail exploring deep learning methods

and employing novel techniques such as transfer learning to

determine CoD.
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