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Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. How-
ever,mild TBI (mTBI) can be difficult to detect using conventionalMRI or CT. Injured brain tissues inmTBI patients
generate abnormal slow-waves (1–4Hz) that can bemeasured and localized by resting-statemagnetoencephalog-
raphy (MEG). In this study, we develop a voxel-basedwhole-brainMEG slow-wave imaging approach for detect-
ing abnormality in patients withmTBI on a single-subject basis. A normative database of resting-stateMEG source
magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-
resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients
with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected
abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus
with non-blast causes), blast, and non-blastmTBI groups, respectively.We found that prefrontal, posterior parietal,
inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also
showed thatMEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble
concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mecha-
nisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations
of cholinergic transmission inTBI. This studyprovides an effectiveway for usingMEG slow-wave source imaging to
localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1 . Introduction

Traumatic brain injury (TBI) is a leading cause of sustained physical,
cognitive, emotional, and behavioral deficits in the civilian population
tory, University of California at
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(due to motor vehicle accidents, sports, falls, and assaults) and military
personnel (with blast injury as an additional cause). An estimated
5.3 million Americans live with disabilities associated with a TBI
(Thurman et al., 1999). The majority of TBIs are in the “mild” range of
severity. Mild TBI (mTBI) accounts for 75% of civilian TBIs (Centers for
Disease Control, Prevention, National Center for Injury Prevention,
Control, 2003), and 89% of active-duty military personnel and Veterans
wounded in combat in Iraq and Afghanistan with combat-related TBIs
nse (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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(MacGregor et al., 2011). However, the pathophysiology of mTBI is not
completely understood and the long-termeffects ofmTBI are controver-
sial. Post-concussive symptoms (PCSs) in mTBI often resolve within
three months after injury in the majority of individuals (Levin et al.,
1987; Rutherford, 1989). However about 20% (varying from 8 to 33%)
of mTBI patients show persistent long-term cognitive and/or behavioral
impairments (Alexander, 1995; Binder, 1986; Binder, 1997; Bohnen
et al., 1992; Rimel et al., 1981; Rutherford, 1989). At present, it is unclear
why similar acute mTBI events can lead to dramatic neurobehavioral
decompensation with persistent PCS in some individuals, but not in
others (Jeter et al., 2013). It is also unclear what the optimal rehabilita-
tion treatments are for mTBIs, partially due to the limited or lack of in-
formation about the loci of the injury.

Conventional neuroimaging techniques have limited sensitivity to
detect physiological alterations caused by mTBI and are usually
not used to assess the efficacy of mTBI treatments. Mild (and some
moderate) TBI can be difficult to detect because the injuries are often
not visible on conventional acute MRI or CT (Bigler and Orrison, 2004;
Johnston et al., 2001; Kirkwood et al., 2006). Approximately 80% of all
civilian patients with TBI do not show visible lesions using conventional
MRI or CT (Alexander, 1995). Intracranial lesions inmTBI were detected
by conventional neuroimaging techniques in only 4%, 16%, and 28%of ci-
vilian patients with Glasgow Coma Scale (GCS) scores (Teasdale and
Jennett, 1974) of 15, 14, and 13, respectively (Culotta et al., 1996). The
diagnosis of combat-related mTBI is also based primarily on the charac-
teristics of the acute clinical sequelae following the injury; and subtle,
scattered and varied lesion(s) that usually go undetected by conven-
tional CT (Van Boven et al., 2009). The absence of abnormalities on con-
ventional neuroimaging techniques in the majority of mTBI patients,
even with persistent PCS and cognitive and/or behavioral deficits high-
lights the limited diagnostic and prognostic value of conventional CT
and MRI.

Usually, diffuse axonal injury (DAI) is a major contributor to the PCS
and cognitive deficits in mTBI patients. DAI is commonly induced by
sudden acceleration–deceleration or by rotational forces. In a rodent
TBI model, a silver staining technique revealed that axonal injury was
the most prominent feature following blast exposure (Garman et al.,
2011). In humans, the subsequent tissue injury is characterized by axo-
nal stretching, inflammation, disruption, and separation of nerve fibers
in white matter (WM), although complete axotomy has been found to
be relatively rare in even severe TBI (Adams et al., 1989; Basser and
Pierpaoli, 1996; Gennarelli et al., 1982; Niogi et al., 2008a; Niogi et al.,
2008b; Xu et al., 2007). Conventional CT andMRI are primarily sensitive
to blood from nearby torn capillaries, and less sensitive to axonal dam-
age itself, hence they underestimate the presence of DAI, especially in
mTBI cases.

Magnetoencephalography (MEG) is a non-invasive functional imag-
ing technique that directly measures the neuronal current in gray mat-
ter (GM)with high temporal resolution (b1ms) and spatial localization
accuracy (2–3 mm at cortical level) (Leahy et al., 1998). MEG studies
from Lewine et al., and our laboratory showed that MEG is highly
sensitive to abnormal slow-wave signals (delta-band 1–4 Hz, and ex-
tends to theta-band 5–7 Hz) resulting from axonal injuries (Huang
et al., 2009; Huang et al., 2012; Lewine et al., 1999; Lewine et al.,
2007). Neurophysiological studies in animals have established a solid
connection between pathological delta-wave generation in GM and ax-
onal injuries in WM (Ball et al., 1977; Gloor et al., 1977), showing that
cortical deafferentation caused by axonal injury in WM is an important
factor in delta-wave production in GW. We have reported that abnor-
mal MEG slow-waves in mTBI are related to diffusion tensor injury
(DTI) abnormalities in underlying WM tracts (Huang et al., 2009).
Using a region of interest (ROI) automated approach, we also detected
abnormal slow-waves in 87% of patients with persistent PCS in chronic
and sub-acute phases ofmTBI (Huang et al., 2012). Themain limitations
of the ROI-based MEG approach were: 1) the limited spatial resolution
defined by the size of the ROIs, and 2) the volume of the ROI varied
considerably which caused variable sensitivity in detecting abnormal
slow-waves in mTBI.

Voxel-based source imaging approach has the potential of overcom-
ing the limitation of the ROI-based approach. In a study by Wienbruch
(2007), a voxel-based dipole location density function approach with
Z-score statistics was used for assessing resting-state MEG brain
rhythms in human. Building upon previous work in this area, the
present study introduces a new automated voxel-based whole-brain
MEG slow-wave imaging approach for detecting abnormality on a
single-subject basis for individuals with mTBI. The voxel-based MEG
source images are obtained using our recent Fast-VESTAL method (i.e.,
Fast VEctor-based Spatio-Temporal Analysis of L1-minimum) (Huang
et al., 2014) for analyzing resting-stateMEG data. The goals for the pres-
ent study are to: 1) establish and evaluate a normative database for the
voxel-based whole-brain MEG slow-wave imaging approach; 2) exam-
ine the positive detection rates of this new approach for its ability to de-
tect abnormality in patients with mTBI on a single-subject-basis; and
3) study the spatial distribution of abnormal MEG slow-wave loci in
both individual patients and on a group basis to identify the brain
areas that are particularly vulnerable to mTBI.

2 . Methods and materials

2.1 . Research subjects

Eighty-four (84) mTBI patients who had a chronic/sub-acute TBI
(4 weeks to 5 years, mean 8.7 ± 7.3 months post-injury) with persis-
tent ongoing PCS participated in this study. The mTBI patients were di-
vided into two groups: the mild blast-induced TBI group consisted of
36 mTBI patients (active-duty military service members and OEF/OIF
Veterans) with injuries caused by blast exposure during combat (age
28.3 ± 5.4 years, all males) while the non-blast mTBI group comprised
48mTBI civilian patients injured due to non-blast causes (i.e., motor ve-
hicle accidents, sports, and falls; age 30.2 ± 10.2 years, 34 males). One
essential step in identifying individual TBI patients with abnormal
MEG slow-waves is to first create an age-matched normative database
(see below). For that purpose, 79 healthy control subjects (68 civilians
and 11 active-duty military servicemembers) with no significant histo-
ry of concussion were recruited into the study (age 28.4 ± 8.7 years,
67 males). There were no statistically significant age differences be-
tween the healthy control group and either of the TBI groups. All partic-
ipants gavewritten informed consent for study procedures, whichwere
reviewed and approved by institutional review boards of the VA San
Diego Healthcare System and Naval Health Research Center at San
Diego. The informed consent followed the ethical guidelines of the Dec-
larations of Helsinki (sixth revision, 2008) and additional research re-
quirements for active-duty military personnel and veterans.

All mTBI patients were evaluated in a clinical interview to document
the nature of the injuries and on-going PCS. The diagnosis and classifica-
tion of mTBI patients were based on standard VA/DOD diagnostic
criteria. Inclusion in the mTBI patient group required a TBI that met
the following criteria: 1) a loss of consciousness (LOC) b 30min or tran-
sient confusion, disorientation, or impaired consciousness immediately
after the trauma; 2) post-traumatic amnesia (PTA) b 24 h; 3) an initial
Glasgow Coma Scale (GCS) (Teasdale and Jennett, 1974) between 13
and 15 (if available). Since the GCS assessment was often not available
in theater, military personnel (and some civilians) with missing GCS,
but who met other inclusion criteria, were also recruited.

We examined PCS in all mTBI patients (based on a clinical inter-
view). The symptoms were coded as “1” for the existence of symptoms
and “0” for the absence of symptoms in 21 categories, modified slightly
from the Head Injury Symptom Checklist (HISC, (McLean et al., 1984):
1) headaches, 2) dizziness, 3) fatigue, 4) memory difficulty, 5) irritabil-
ity, lack of patience, lose temper easily, 6) anxiety, 7) troublewith sleep,
8) hearing difficulties, 9) blurred vision or other visual difficulties,
10) personality changes (e.g., social problems), 11) apathy, 12) lack of
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spontaneity, 13) affective lability (quickly-changing emotions), 14 de-
pression, 15) trouble concentrating, 16) bothered by noise, 17) bothered
by light, 18) coordination and balance problems, 19) motor difficulty,
20) difficulty with speech, 21) numbness/tingling.

Tertiary injuries were common in patients with blast-related mTBI.
The tertiary injuries involved a fall, hitting other objects (e.g., hitting
parts of vehicle when the driving vehicle was hit by an IED), or being
hit by other flying objects following the initial blast (Cernak and
Noble-Haeusslein, 2010; Elder et al., 2010). Among our 36 blast mTBI
patients, 25 also reported having tertiary injuries; 5 reported no-
tertiary injuries; 6 were unsure. We use the term “blast-induced
mTBI” or simple “blast mTBI” throughout this study to represent the
group with combined primary blast and tertiary injuries. In the mTBI
group, 2 patients had positive findings on conventional MRI (nonspecif-
ic mild white-matter T2-prolongation, not definitely related to trauma)
and none had evidence of intracranial hemorrhage/hemosiderin during
the chronic phase (i.e., N6 months post-injury). No healthy control sub-
jects showedpositive findings on conventionalMRI. Among allmTBI pa-
tients, 27 had multiple TBIs (14 from the blast group and 13 from the
non-blast group). It is not our intention in this study to use MEG to dis-
tinguish new from old neuronal injuries due to multiple TBIs. Patients
with multiple TBIs were included in the analysis, and a history of the
most recent and all prior TBIs was documented for further exploration.
It is possible that in patients with multiple TBIs, both the old and new
injuries contributed to deafferentation, thus generating abnormal MEG
slow-waves.

Exclusion criteria for study participation were as follows: 1) other
neurological, developmental or psychiatric disorders (e.g., brain
tumor, stroke, epilepsy, Alzheimer disease, or schizophrenia, bipolar
disorder, or history of learning disability). Additionally, participants
with a diagnosis of post-traumatic stress disorder (PTSD) or major de-
pression disorder (MDD) were excluded based on DSV-5 criteria and
for PTSD, a Clinician Administered PTSD scale score ≥30; 2) substance
or alcohol abuse according to DSM-V criteria within the six months
prior to the study; 3) history ofmetabolic or other diseases known to af-
fect the central nervous system (see Dikmen et al., 1995 for similar
criteria); 4) extensive metal dental hardware (e.g., braces and large
metal dentures; fillings are OK) or other metal objects in the head,
neck, or face areas that cause non-removable artifacts in the MEG
data; 5) participants taking certain medications (e.g., some sedative
neuroleptics and hypnotics) known to increase delta-wave power
(Niedermeyer and Lopes da Silva, 2005) were excluded from participa-
tion; 6) potential subjects were administered the Beck Depression
Inventory (BDI-II) to evaluate level of depressive symptoms, and suicid-
al ideation; any participantwho reports a “2” or “3” on the BDI-II: item 9
(suicidal thoughts or wishes) were also excluded. However, depression
symptoms following mTBI are common (Rapoport, 2012); therefore, in
this study, we included subjects with depression symptoms reported
after their injury, but not serious enough to be diagnosed with MDD.

2.2 . MEG data acquisition and signal pre-processing to remove artifacts

Resting-state MEG data (spontaneous recording for detecting MEG
slow-wave signals) were collected using the VectorView™ whole-
head MEG system (Elekta-Neuromag, Helsinki, Finland) with 306 MEG
channels in upright position inside a multi-layer magnetically-
shielded room(IMEDCO-AG) (Cohen et al., 2002) at theUCSDMEGCen-
ter. The recording was divided into three 5-minute blocks with eyes
closed, alternating with three 5-minute blocks with eyes open. In the
eyes-closed condition, the subject was instructed to keep the eyes
closed and empty his/her mind. In the eyes-open condition, the subject
was instructed to fix the eyes on a fixation point and empty his/her
mind. The order of blocks was counter-balanced between subjects.
Data were sampled at 1000 Hz and were run through a high-pass filter
with a 0.1 Hz cut-off, and a low-pass filter with a 330 Hz cut-off. Eye
blinks, eye movements, and heart signals were monitored. Precautions
were taken to ensure head stability; foam wedges were inserted
between the subject's head and the inside of the unit, and a Velcro
strap was placed under the subject's chin and anchored in superior
and posterior axes. Head movement across different sessions was
about 2–3 mm. Since the MEG eyes-open data were contaminated
with eye-blinks in many subjects, we focused on analyzing the eyes-
closed data in the present study.

To help ensure that subjects were alert during the MEG recordings,
prior to all of the study sessions, participants completed a questionnaire
about the number of hours they slept the previous night, how rested
they felt, and if there was any reason that they might not be attentive
and perform to the best of their abilities (due to headache, pain, etc.).
Participants were scheduled early in the day to avoid fatigue from
performing daily activities. In addition, eyes closed sessions were
rotated with eyes open sessions to monitor the amount of eye
blinking and eye movement, which MEG technicians monitor online
to gage the cognitive state of subjects. MEG technicians also monitored
online the amount of alpha band oscillations, which is consistently asso-
ciated with tonic alertness. Participants were viewed on a camera,
which also allowed for MEG technicians to monitor alertness of each
subject.

MEG eyes-closed data were first run through MaxFilter, also known
as signal space separation, (Song et al., 2008; Taulu et al., 2004a; Taulu
et al., 2004b) to remove external interferences (magnetic artifacts due
to metal objects, strong cardiac signals, environment noises, etc.), and
to co-register the MEG data by removing the small head movements
across the three 5-min eyes-closed sessions. Next, residual artifacts
near the sensor array due to eyemovements and residual cardiac signals
were removed using Independent Component Analysis. The software is
our customized version of ICALAB (bsp.brain.riken.jp/ICALAB/).

2.3 . Structural MRI, MEG-MRI registration, BEM forward calculation

Structural MRI of the subject's head was collected using a
General Electric 1.5T Excite MRI scanner. The acquisition contains a
standard high-resolution anatomical volume with a resolution of
0.94×0.94×1.2 mm3 using a T1-weighted 3D-IR-FSPGR pulse sequence.
To co-register the MEG with MRI coordinate systems, three anatomical
landmarks (i.e., left and right pre-auricular points, and nasion) were
measured for each subject using the Probe Position Identification sys-
tem (Polhemus, USA). By identifying the same three points on the
subject's MR images using MRILAB (Elekta/Neuromag), a transforma-
tion matrix involving both rotation and translation between the MEG
and MR coordinate systems was generated. To increase the reliability
of the MEG-MR co-registration, approximately 80 points on the scalp
were digitized with the Polhemus system, in addition to the three land-
marks, and those points were co-registered onto the scalp surface of the
MR images. The T1-weighted images were also used to extract the brain
volume and innermost skull surface (SEGLAB software developed by
Elekta/Neuromag). Realistic Boundary Element Method (BEM) head
model was used for MEG forward calculation (Huang et al., 2007;
Mosher et al., 1999). The BEM mesh was constructed by tessellating
the inner skull surface from the T1-weightedMRI into ~6000 triangular
elementswith ~5mmsize. A cubic source gridwith 5mmsizewas used
for calculating the MEG gain (i.e., lead-field) matrix, which leads to a
grid with ~10,000 nodes covering the whole brain. Other conventional
MRI sequences typical for identifying structural lesions in TBI patients
were also performed: 1) Axial T2*-weighted; 2) axial fast spin-echo
T2-weighted; and 3) axial FLAIR; These conventionalMRIswere careful-
ly reviewed by a Board-certified neuroradiologist (R.R. Lee) to deter-
mine if the subject had visible lesions on MRI.

2.4 . MEG slow-wave source magnitude imaging using Fast-VESTAL

The voxel-based MEG source magnitude images were obtained
using our recent high-resolution Fast-VESTAL MEG source imaging
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method (Huang et al., 2014). The Fast-VESTAL technique consists of two
steps. First, L1-minimum-norm MEG source images were obtained for
the dominant spatial (i.e., eigen-) modes of sensor-waveform covari-
ance matrix. Next, accurate source time-courses were obtained using
an inverse operator constructed from the spatial source images of Step
1. This approach has been successfully used to obtain comprehensive
MEG source-magnitude images covering the entire brain for different
frequency bands of resting-state brain rhythms (Huang et al., 2014).

In the present study, each of the artifact-free, 5-minute long, eyes-
closed, resting-state MEG sensor-space data were run through a band-
pass filter with the passing band at 1–4 Hz (delta-frequency band).
After concatenating the three sets of 5-minute band-passed filtered
MEG signal, the sensor-waveform covariance matrix was calculated.
Using such a covariance matrix, MEG slow-wave source magnitude im-
ages that cover the whole brain were obtained for each subject follow-
ing the Fast-VESTAL procedure (Huang et al., 2014). An Objective Pre-
whitening Method was applied to remove correlated environmental
noise and objectively select the dominant eigen-modes of sensor-
waveform covariance matrix (Huang et al., 2014).

2.5 . Establishing voxel-based normative database for MEG slow-wave
magnitude imaging

TheMEG data processing stream in healthy control subjects includes
the following steps: 1) MEG source magnitude imaging volumes obtain-
ed from Fast-VESTAL that cover the whole brain for the 1–4 Hz signals
from each of the 79 healthy control subjects were first spatially
smoothed using a Gaussian kernel with pre-defined full width half max-
imum (FWHM), and then co-registered to an MNI-152 brain-atlas tem-
plate with 2 mm voxel size using FLIRT program in FSL software
package (www.fmrib.ox.ac.uk/fsl/). 2) For each voxel in the MNI space,
the MEG source magnitude data were first run through a logarithm
transformation and then fit with a linear regression model for age and
gender. The linear fitting parameters for age and gender were saved for
each voxel, as parts of the normative database. 3) After adjusting for
the age and gender variables, mean values and standard deviations
(SD) were calculated for each voxel to form the key features of the nor-
mative database. Kolmogorov–Smirnov (K–S) tests were performed for
each voxel to test for Gaussian distribution in the normative database.
A “normativemask” containing all voxels that survived the K–S Gaussian
distribution tests was created for the normative database. Voxels outside
such amaskwere not included for further analysis. 4) The sourcemagni-
tude images were then converted into Z-score images using the mean
values and SDs from the normative database. 5) A standard cluster
analysis was performed for each Z-score imaging volume to control
for family-wise errors, using “3dFWHMx” and “3dClustSim” functions
in AFNI (http://afni.nimh.nih.gov). A voxel in subject's brain was consid-
ered to have statistically abnormal slow-waves if it was part of a Z-score
cluster (Z N 2 for all voxels in the cluster) with the size equal or greater
than the thresholding cluster-size (Rc) provided by “3dClustSim”. The
cluster-size associated with a corrected p = 0.01 threshold was used in
the analysis. 6) For each voxel, a cluster-wise Z-score (Zc) which was
the mean value of Z-score across all neighboring voxels within Rc was
calculated. The maximum value of the cluster-wise Z-score (Zcmax)
across the whole brain volume was obtained for each subject. Investiga-
tions were conducted to determine the optimal smoothing factor in the
pre-defined FWHM, which affected Rc and Zcmax.

2.6 . Detecting single-subject-based abnormal MEG slow-waves in mTBI
patients

We developed an approach to identify areas that generate abnormal
MEG slow-wave on a single-subject basis. For each mTBI patient (blast
or non-blast), the MEG source-magnitude-imaging volume was proc-
essed following Steps 1 and 2 in previous section. Then the result was
run through the normative mask and then processed to adjust for the
age and gender using the previously saved linear fitting parameters
from normative database. Next, the resulting imaging volume was con-
verted into a Z-score imaging volume using the mean values and SDs
from the healthy control database (Step 4 in previous section). Clusters
of voxels with abnormal slow-wave generations were identified using
Steps 5 and 6 in previous section, and Zcmax across the whole brain vol-
ume was obtained for each subject. Since the brain areas injured by TBI
are highly heterogeneous with high variability across individuals, and
often without global effect. Using the Zcmax value (across the whole
brain) is equivalent to examining the hypothesis that at least one area
shows abnormal slow-waves.

We assessed the sensitivity and specificity of MEG using the Zcmax

measure and estimated its optimal cutoff. The standard Youden's
index (i.e., sensitivity + specificity − 1) (YOUDEN, 1950) was used to
calculate the optimal cutoff point (threshold of Zcmax) for diagnosing
mTBI using MEG slow-wave measure. The optimal cutoff is usually
around the peak of a curve in which the Youden's index was plotted
against different cutoff values.

2.7 . Assessing the spatial distribution of abnormal MEG slow-wave
generation to identify the brain areas that are vulnerable to mTBI

In addition to the single-subject-based analysis, we also performed
an analysis to identify common brain areas that were likely to generate
abnormal MEG slow-waves in mTBI. In this approach, MEG source im-
aging volume in MNI space from each mTBI patient was converted to
a binary imaging volume: value “1”was assigned to the voxels showing
statistically significance based on cluster-analysis in a single-subject-
based analysis, and “0” to the rest of the voxels. The binary imaging vol-
umes from all mTBI patients were summed up in the MNI space, and
then the result was divided by the total number of mTBI patients to cre-
ate a spatial map for the likelihood of the abnormal MEG slow-wave
generation.

2.8 . Assessing the effect of different spatial smoothing factors

The spatial smoothing with a Gaussian smoothing kernel may also
play an important role to the positive detection rates of abnormal
MEG slow-wave source imaging. Due to the nature of high heterogene-
ity for the location of the abnormal slow-wave generators inmTBI, over-
ly smoothing the MEG Fast-VESTAL result is expected to decrease the
sensitivity (i.e., positive detection rate) of the method. On the other
hand, under-smoothing or no-smoothing may cause many voxels of
the brain in the healthy control database to fail the K–S test for Gaussian
distribution, thus miss some key areas of abnormal slow-wave genera-
tion in mTBI patients. The best smoothing factor is the one that can bal-
ance the above two factors, i.e., having the majority of the voxels in the
healthy control database that pass theK–S test for Gaussian distribution,
while maintaining high positive detection rates for abnormal MEG
slow-waves in patients with mTBI.

2.9 . Correlational analyses of MEG slow-wave measures and PCS

Correlation analyses were performed to examine the neuronal cor-
relates of MEG slow-wave generation and PCS scores in patients with
mTBI. The MEG slow-wave measures include the Zcmax value and
voxel-based MEG source magnitude Z values in MNI-152 atlas coordi-
nates, after correction for age and gender. The PCS scores were the
HISC symptomcategories. The voxel-based analysismayprovide impor-
tant spatial information of the slow-wave generation related to each
PCS category. False discovery rate (FDR) controlled family-wise error
(Benjamini and Hochberg, 1995) with corrected p b .05. To examine po-
tential differences between blast versus non-blast causes, correlational
analyses were performed separately for the blast mTBI and non-blast
mTBI groups.

http://www.fmrib.ox.ac.uk/fsl/
http://afni.nimh.nih.gov


Fig. 2. Zcmax values obtained from MEG source imaging for 1–4 Hz are plotted separately
for 1) healthy control, 2) mild blast-induced TBI, and 3) mild non-blast-induced TBI,
groups respectively. The embedded plot: the Youden index is plotted as a function of
the Zcmax cutoff. The solid and dashed lines in both plots indicate cutoff values of 2.50
and 2.35, respectively.
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3 . Results

3.1 . Positive detection rates of MEG slow-wave imaging for different groups
of mTBI patients

MEG sourcemagnitude images obtained from Fast-VESTAL in the 79
healthy control subjects were used to establish the voxel-based whole-
brain normative database in MNI space. We examined the effects of
different spatially smoothing factors by applying Gaussian smoothing
kernels with different FWHMs at 2 mm, 3 mm, and 8 mm respectively.
Logarithm transformation was performed for the MEG source mag-
nitude images, and the effects of age and gender were regressed
out when constructing the normative database (see Methods and
materials section). Fig. 1 showed all brain voxels in the normative data-
bases with different smoothing factors that survived the K–S test for
Gaussian distributionwith the alpha value of 0.05. For a smoothing ker-
nel of 2mmFWHM,many cortical voxels did not meet the requirement
of K–S test for Gaussian distribution, indicating under-smoothing. In
contrast, for a smoothing kernel of 3 mm FWHM, the majority of brain
areas in the normative database met the requirements of the K–S test.
Some deep brain areas did not satisfy the requirement of Gaussian dis-
tribution for this smoothing kernel. This smoothing kernel provided the
best positive detection rates of abnormalMEG slow-waves in mTBI (see
below). For a smoothing kernel of 8mmFWHM, almost the entire brain
met the requirement of K–S test for Gaussian distribution. However, the
detection rates of MEG abnormal slow-waves decreased using such a
kernel (see result below), which indicated over-smoothing.

Fig. 2 shows the Zcmax values (see Methods and materials section)
obtained from MEG source magnitude source imaging, plotted sepa-
rately for 1) healthy control, 2) mild blast-induced TBI, and 3) mild
non-blast TBI. There was minimal overlap of the Zcmax values between
each TBI group and the healthy control group, with the patients in all
TBI groups showing markedly higher slow-wave Zcmax values than the
healthy control subjects. Such results provide the foundation for
R

Fig. 1. Brain voxels that survived the K–S test for Gaussian distribution in the normative
MEG slow-wave database. Top row (yellow) was for 2 mm FWHM, middle row (green)
for 3 mm FWHM, and bottom row (blue) for 8 mm FWHM. Left column (transverse
plane), middle column (coronal plane), right column (sagittal plane).
assessing abnormality in mTBI using MEG slow-wave source imaging
on a single-subject basis.

The optimal cutoff (threshold) for Zcmax was obtained from the
Youden's index curve (embedded plot in Fig. 2) using 79 healthy con-
trols and 84mTBI patients (blast plus non-blast). The cutoff value asso-
ciated with the peak of the Youden's index was 2.35 (dashed lines in
Fig. 2 and embed) which corresponded to specificity (1 — false-
positive rate) of 98.7%. We chose a little more conservative cutoff
value of 2.50 (solid lines in Fig. 2 and embed) which corresponded to
specificity of 100% (i.e., 0 false positive rate, no healthy control subjects
showed Zcmax value above this threshold). With this threshold (solid
horizontal line in Fig. 2), the positive detection rates (i.e., sensitivity
values) were 86.1%, 83.3%, and 84.5% for blast-induced, non-blast, and
combined (blast-induced plus non-blast) mTBI groups, respectively.

With such positive detection rates of the MEG slow-wave source im-
aging approach, the difference between eachmTBI group and thehealthy
control group was expected to be highly significant (but not necessarily
among differentmTBI groups). Two-tailed t-tests confirmed that in com-
parison to the healthy control group, the Zcmax values are indeed signifi-
cantly higher in the mild blast-induced TBI (t = 9.3, p b 10−14), and in
the mild non-blast TBI (t = 10.4, p b 10−17) groups. However, there
were no significant differences in the Zcmax values between the two
mTBI groups.

3.2 . Results from individual mTBI cases using single-subject-based analysis

Although the analysis using Zcmax provides crucial information for
positive detection rate that may assist in diagnosis, it does not address
the loci and characteristics of abnormal slow-wave generation in indi-
vidual TBI patients. The voxel-based framework based on Fast-VESTAL
MEG source images (see Methods and materials section) provides a vi-
able single-subject-based analysis for identifying the sources of abnor-
mal MEG slow-wave generation in individual mTBI patients. Fig. 3
shows the results of single-subject-based analysis revealing statistically
abnormal MEG slow-wave generation from 6 representative mTBI
cases. The results were shown in MNI space. The abnormal MEG slow-
wave sources were heterogeneous in locations across these mTBI pa-
tients. In Case 1, single-subject-based analysis showed abnormal MEG
slow-waves from two right superior frontal areas. In Case 2, the abnor-
mal slow-waves were from right dorsal–lateral pre-frontal cortex
(DLPFC) and right ventral temporal pole areas. In Case 3, bilateral frontal
pole, DLPFC, and right occipital areas showed abnormal slow-waves. In
Case 4, two areas within left DLPFC and one area in ventral posterior
temporal lobe generated abnormal MEG slow-waves. In Case 5,
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Fig. 3. Single-subject-based analysis showing statistically abnormal MEG source-wave sources in representative mTBI cases. Left column (transverse plane), middle column (coronal
plane), right column (sagittal plane).
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posterior parietal lobe, DLPFC, frontal pole (FP), and cerebellum, all in
right hemisphere generated abnormal slow-waves. Finally, bilateral in-
ferior temporal lobe and midline orbital frontal cortex (OFC) showed
abnormal slow-waves in Case 6.

3.3 . Percent likelihood maps of abnormal MEG slow-wave generation in
mTBI

Although the location of slow-wave generation is highly heteroge-
neous in locations acrossmTBI patients, analysiswas performed to iden-
tify common brain areas that likely generate abnormal MEG slow-
waves in mTBI, by following the procedure described previously in
Methods and materials section. The percent likelihood maps of abnor-
mal MEG slow-wave generation shown in Fig. 4 revealed that the
overall percent likelihood level from any specific brain area was low
(5%–15%, see color scale). However, the following areas showed higher
likelihood than the rest of the brain for generating abnormal slow-
waves: bilateral DLPFC, bilateral ventral lateral prefrontal cortex
(VLPFC), bilateral FP, right OFC, left inferior–lateral–posterior parietal
lobe, bilateral inferior temporal lobes, right hippocampus, and bilateral
cerebella.

3.4 . The effects of over-smoothing

In the previous section we observed that the under-smoothing with
a Gaussian a kernel of 2mmFWMH resulted inmany voxels not surviv-
ing the K–S test for Gaussian distribution in the normative database.
Here,we examined the impact of the over-smoothing to the positive de-
tection rates in MEG slow-wave source imaging approach, using a
smoothing kernel of 8mm FWMH.With this smoothing kernel and cut-
off value chosen at 100% specificity, the positive detection rates of MEG
slow-wave imaging as measured by Zcmax decreased to 27.7% for the
blast mTBI group, 31.3% for the non-blast mTBI group, and 29.8% for
the combined mTBI group. These values are markedly lower than
those obtained using the 3 mm FWMH Gaussian smoothing kernel re-
ported in previous section. Nevertheless, even with this 8 mm FWMH
smoothing kernel, both the blast mTBI and non-blast mTBI groups
still showed significantly higher Zcmax than the healthy control group:
t = 3.8, p b 10−3 for blast mTBI patients versus control subjects; t =
5.1, p b 10−5 for non-blast mTBI patients versus control subjects.
There was no significant group difference in Zcmax between blast and
non-blast mTBI groups with the 8 mm smoothing kernel.
3.5 . MEG slow-wave measures correlated with PCS in mTBI

Correlational analyses of MEG slow-wave measures and PCS were
performed in the blast as well as non-blast mTBI groups. In the blast
mTBI group, the Zcmax values positively correlated with anxiety (r =
0.41, p b 0.05 uncorrected), and apathy (r= 0.37, p b 0.05 uncorrected).
In the non-blast mTBI group, the Zcmax values positively correlated with
trouble with sleep (r = 0.29, p b 0.05, uncorrected). However, none of
the correlations survived FDR correction.

In contrast, significant correlations (Fig. 5) were found with the
voxel-based correlational analysis between MEG source magnitude
(Z values in MNI-152 coordinates) and PCS scores. In the blast mTBI
group, personality change symptoms (e.g., social problems) positively
correlatedwithMEG slow-wave generation in bilateral OFC and ventro-
medial prefrontal cortex (vmPFC); trouble concentrating and affective
lability (quickly-changing emotions) symptoms both positively corre-
lated with slow-wave generation in right OFC; blurred vision or other
visual difficulties symptoms positively correlated with slow-wave gen-
eration in right fusiform gurus. Fig. 5 also shows that in the non-blast
mTBI group, depression symptoms positively correlated with slow-
wave generation in anterior cingulate cortex (ACC). When combining
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Fig. 4. Voxel-based maps showing the percent likelihood of abnormal MEG slow-wave generation across the whole brain.
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the blast and non-blast mTBI groups, only MEG source magnitude from
the right OFC was positively correlated with the symptoms of trouble
concentrating in the combined pool (not shown). The threshold of the
voxel-based analyses was at the corrected p = 0.05 by FDR.
4 . Discussion

4.1 . Detection sensitivity on an individual level

Using the automated voxel-based MEG source imaging approach
(Fig. 2), we found abnormal delta-waves in 86.1% of blast mTBI, 83.3%
the non-blast mTBI, and 84.5% for all mild TBI patients (blast-induced
plus non-blast causes). All mTBI patients were symptomatic with ongo-
ing PCS at the time of the MEG exam. These positive detection rates
weremarkedly higher than the b10% rate using the conventional neuro-
imaging approach (i.e., MRI) in the same mTBI patients. Furthermore,
the positive MRI findings in our mTBI patients could not be attributed
to the head trauma alone because similar MRI abnormalities were also
shown in subjects without a history of TBI. Our results are consistent
with findings from previous MEG studies in mTBI using dipole fit to
hand-selected slow-wave epochs (Lewine et al., 1999; Lewine et al.,
2007). The resting-state MEG recording procedure is spontaneous,
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Fig. 5.MEG slow-wave source magnitude significantly correlated with PCS in blast mTBI g
requires minimal effort from TBI patients, and is thus insensitive to pa-
tients' performance and effort. We controlled for any other factors that
may increase slow-wave power such as neuroleptic, sedative, or hyp-
noticmedications, sleep deprivation, aswell as other neurological disor-
ders (stroke, epilepsy, brain tumor, etc.). These results corroboratewell-
documented EEG findings reporting that focal delta-waves signify the
presence of brain injury in alert, awake adults (Fisch, 1999; Rowan
and Tolunsky, 2003). Thus, our findings underscore the diagnostic util-
ity of our automated and voxel-based MEG slow-wave source imaging,
based on Fast-VESTAL, particularly for mTBI.
4.2 . MEG slow-wave activity associated with PCS

It is also interesting that the voxel-based correlational analyses
(Fig. 5) showed that slow-wave generation in areas that are part of
the ventral prefrontal cortex (i.e., OFC and vmPFC) positively correlated
with personality change, trouble concentrating, and affective lability
symptoms in the blast mTBI group. In addition, slow-wave generation
from the ACC positively correlated with depression in the non-blast
mTBI group.Many of these symptoms are psychiatric-based risk factors.
Present findings are consistent with studies showing that mTBI in-
creases the likelihood of developing psychiatric-based symptoms, or
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roup (first 4 panels) and non-blast mTBI group (last panel). FDR corrected p b 0.05.
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in some patients, is associated with the development of psychiatric dis-
orders (for reviews, see Bryant et al., 2010; Schwarzbold et al., 2008).

Present findings are also consistent with knowledge that damage to
the prefrontal areas may affect executive functions, emotion, mood, as
well social behavior regulation (Carlson, 2013; Kandel et al., 2000).
This may be because these areas have rich connections to many cortical
and subcortical areas. For example, the vmPFC is connected to and re-
ceives input from the ventral tegmental area, amygdala, temporal
lobe, olfactory system, and dorsomedial thalamus. In turn, the vmPFC
sends signals to amygdala, temporal lobe, lateral hypothalamus, hippo-
campal formation, cingulate cortex, and other regions of the prefrontal
cortex (Carlson, 2013). On the other hand, the OFC shares extensive re-
ciprocal connections with primary and associated somatosensory, audi-
tory, and visual cortices, as well as areas in the limbic system (e.g.,
hippocampus, amygdala, thalamus, hypothalamus, and cingulate
gyrus), and projects to the motor areas reflecting integration for execu-
tivemotor control (Carlson, 2013). The abnormal slow-wave generation
from the OFC that was associated with trouble concentrating may sug-
gest a deficit of sensory integration due to mTBI. In addition, the associ-
ation between slow-wave generation from the right fusiform gyrus and
the symptoms of blurred vision or other visual difficulties in the blast
mTBI group is consistent with studies showing that the fusiform gyrus
is important in face, object, and body recognition and processing
(Downing et al., 2001; Kanwisher et al., 1997; Sergent et al., 1992;
Weiner and Grill-Spector, 2010). Ameta-analysis showing that facial af-
fect recognition difficulty is common after TBI (Babbage et al., 2011) is
also consistent with present findings.

Using the dipole location densitymethod, Wienbruch (2007) exam-
ined healthy subjects and reported that male subjects had significantly
higher frontal-centralMEG slow-wave generation near ACC than female
subjects. The present study corrected for both age and genderwhen cal-
culating the Fast-VESTAL source-magnitude Z scores. As such, our find-
ing of ACC MEG slow-wave activity positively correlation with
depression in the non-blast mTBI group was controlled for gender and
age. Nevertheless, there were more males than females (67 versus 12)
in our healthy control group (same for the twomTBI groups)when con-
structing our normative database. This was because we needed to bal-
ance our blast mTBI group which contained all males by using the
same normative database for assessing patients in both the blast and
non-blastmTBI groups. Future studywith symmetrical design (more fe-
males) in all three groups will be needed to thoroughly address if and
how gender modulates these findings.

Using the same dipole location density method, Rockstroh and col-
leagues examined MEG slow-waves in inpatients with schizophrenia
and affective disorders (Rockstroh et al., 2007). They found that inpa-
tients with schizophrenia had more slow-wave generators with maxi-
ma in frontal and central areas, whereas inpatients with affective
disorder had fewer slow-wave generators in similar frontal and central
regions. In the present study, MEG slow-wave activity in ACC positively
correlated with depression symptoms in the non-blast mTBI patients.
Although depression is a common symptomacross schizophrenia, affec-
tive disorders, and mTBI, direct comparison between findings from the
study by Rockstroh and colleagues and the present study is difficult
due to the following two factors: 1) these are three different brain dis-
orders; 2) all subjects with schizophrenia and affective disorder in the
study by Rockstroh and colleagues were inpatients treated by a variety
of medications including the neuroleptics, whereas all of our mTBI out-
patients were free of sedative, neuroleptic, and hypnotic medications
(see exclusion criteria). Future studies in which the effects of medica-
tions are controlled will be needed to address the correlation between
abnormal slow-wave generation and common symptomology (such as
depression) across different disorders.

It is not clearwhat accounts for the different correlation patterns be-
tween MEG slow-wave source imaging and TBI symptomatology in the
blast versus non-blast mTBI groups (Fig. 5). In particular, it is not clear
why more brain areas showed a significant correlation between MEG
and mTBI symptoms in the blast mTBI group than in the non-blast
mTBI group. We speculate that as a common cause in the former
group, blast may contribute to our findings. However, future study is
needed to confirm or disprove this hypothesis.

4.3 . Diffused nature and “vulnerable” regions for mTBI

Thepresent study also revealed thediffuse nature of theneuronal in-
juries in TBI patients (Figs. 3 and 4). Such findings are consistent with
the mechanism of diffuse axonal injury in TBI due to a combination of
linear and rotational acceleration and deceleration (Adams et al.,
1989; Arfanakis et al., 2002; Basser, 1995; Huisman et al., 2004; Niogi
and Mukherjee, 2010; Niogi et al., 2008a; Xu et al., 2007). The results
are also consistent with our previous findings that abnormal MEG
slow-waves are generated from cortical gray-matter areas that connect
towhite-matter fiberswith reducedDTI fractional anisotropy due to ax-
onal injury in patientswithmTBI (Huang et al., 2009). The diffuse nature
ofMEG slow-wave generation is also consistentwith a DTI study in blast
mTBI subjects which showed reduced FA in a diffuse, widespread, and
spatially variable pattern (Davenport et al., 2012).

Although the location of slow-wave generation is highly variable
across mTBI patients (see Fig. 3), in the present study analysis was per-
formed to identify common brain areas that likely generate abnormal
MEG slow-waves in mTBI (see Fig. 4). Multiple regions in the frontal
lobes (i.e., DLPFC, VLPFC, FP, and OFC) were more likely than other
brain regions to generate abnormal MEG slow-waves, which suggested
that the frontal lobe is probably the most vulnerable lobe to head trau-
ma. In addition, the posterior parietal lobe, inferior temporal lobes, hip-
pocampus, and cerebella also have a relatively higher likelihood for
generating abnormal MEG slow-waves than other brain areas, indicat-
ing that these regions are also particularly vulnerable to head trauma.
A forthcoming study that correlates the MEG slow-wave with cognitive
functions inmTBIwill examine the connection of slow-wave generation
and abnormal brain function (Robb et al., in preparation).

4.4 . Neuronal mechanisms of abnormal slow-waves

Neurophysiological studies in animals have shown that cortical deaf-
ferentation caused by axonal lesions in WM is an important factor in
pathological delta-wave production in GW (Ball et al., 1977; Gloor
et al., 1977). We believe that the cortical deafferentation caused by ax-
onal injury is themainmechanism for abnormalMEG slow-wave gener-
ation inmTBI. However, pathological delta-wave production can also be
induced by deafferentation following the administration of atropine in
WM in animals (Schaul et al., 1978). It is known that atropine is a com-
petitive antagonist of acetylcholine receptors and can block and/or limit
the cholinergic pathway. So the electrophysiological similarity of lesion-
induced and atropine-induced slow waves raises the possibility that a
defect in cholinergic pathways plays a role in pathological slow-wave
generation (Schaul, 1998). It is possible that the abnormal MEG slow-
waves in mTBI from the present study were partially due to blockage
and/or limitation of cholinergic transmission after TBI, in addition to ax-
onal injury in WM. In the human brain, the projections of cholinergic
pathways highly overlap with the WM fiber tracts (Selden et al.,
1998), which make the cholinergic pathways similarly susceptible as
WM tracts to rotational forces during head trauma. Like axonal injury,
blockage and/or limitation of cholinergic transmission may result in
cortical deafferentation and pathological slow waves that are expected
to affect human brain function in mTBI patients.

Abnormal slow waves are not the only abnormal findings in TBI. A
recent MEG study in a group with mixing mild, moderate, and severe
TBI patients showed reduced functional connectivity primarily in bilat-
eral frontal and left greater than right parieto-temporo-occipital regions
as well as the right thalamus (Tarapore et al., 2013). Another recent
MEG study in sensor space also showed a reduced level of complexity
inmild TBI patients (Luo et al., 2013). In a future study, wewill examine
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the relationships between MEG slow-wave generation and functional
connectivity in different frequency bands in mTBI.

4.5 . Voxel-based versus ROI approaches

The MEG results using the new voxel-based Fast-VESTAL approach
were similar to our previous ROI-approach frequency-domain VESTAL
which showed positive detection rate of 87% (Huang et al., 2012), how-
ever larger groups ofmTBI patientswere examined in the present study.
Furthermore, the voxel-based Fast-VESTAL approach overcomes the
main limitations of variable sensitivity associated with our previous
ROI-based approach using frequency-domain VESTAL (Huang et al.,
2012). The spatial-sensitivity of the voxel-based approach is more uni-
formly distributed across the brain volume whereas the sizes of 96 cor-
tical ROIs in previous ROI-based approach varied substantially from one
ROI to another. Second, as shown in Fig. 3, the voxel-based MEG source
images can be informative, with good spatial resolution, in assessing the
abnormal slow-waves on a single-subject-basis. In mTBI patients, it was
common that multiple regions generated abnormal slow-waves. It has
been shown that VESTAL and Fast-VESTAL approaches can localize
neuronal sources with a variety of spatial profiles (e.g., focal, multi-
focal, dipolar, and distributed) and a variety of temporal profiles (e.g.,
uncorrelated, partially-correlated, and 100% correlated source time-
courses) (Huang et al., 2006; Huang et al., 2014). Generators of abnor-
mal slow-waves in mTBI patients can be in one or more of the above
spatial-and-temporal profiles (Huang et al., 2009), and Fast-VESTAL
based MEG source imaging is ideal to handle such variability. Third,
the voxel-based framework of MEG source imaging using Fast-VESTAL
(Huang et al., 2014) allows us to implement many imaging-processing
and statistical-analysis tools from existing software packages (FSL,
AFNI, Freesurfer, etc.) that were previously designed for other function-
al (e.g., fMRI and PET) or structural neuroimaging techniques.

4.6 . Effect of spatial-smoothing factor

In the present study we have shown that the spatial smoothing fac-
tor inMEG source imaging plays an important role in the positive detec-
tion rate of abnormal slow waves. Although group differences were
preserved, high spatial smoothing using 8 mm FWHM kernel markedly
reduced the positive detection rate of abnormal slow waves compared
with the result using the 3 mm smoothing kernel. This finding suggests
that the abnormal MEG slow-wave generation may be more of a local
effect, and MEG source analysis methods with high spatial resolution
may be essential in detecting abnormal slowwaves inmTBI. In the pres-
ent study, a MEG source imaging method with high spatial resolution
(i.e., Fast-VESTAL) was used to analyze resting-state MEG data in
mTBI. Previous MEG studies by Lewine and colleagues used dipole
modeling (another MEG source analysis with focal source modeling)
and found abnormal slow waves in 65%-86% of mTBI patients (Lewine
et al., 1999; Lewine et al., 2007). Despite the robust group differences
in scalp EEG, the positive detection rate of abnormal slow-waves using
scalp EEG was substantially lower than that with MEG (Lewine et al.,
1999). Differences in positive detection rates may be due to the
smearing effect of the skull tissue, whichwith its poor conductivity sub-
stantially distorted the electric fields and reduced the spatial resolution
of the EEG signal during scalp recording; whereas, head tissues are es-
sentially transparent to MEG signals.

4.7 . MEG source imaging with Fast-VESTAL versus other approaches

In the present study, Fast-VESTAL method plays an essential role in
assessing the source magnitude differences in mTBI. It was shown that
Fast-VESTAL can: 1) provide high resolution source images for multiple
correlated sources; 2) faithfully recover source time-courses; 3) per-
form robustly in poor SNR conditions; 4) handle correlated brain
noise; and 5) effectively create resting-state MEG source images that
are highly consistent with known neurophysiology findings (Huang
et al., 2014). We have also shown that for resting-state MEG signals,
the source magnitude images obtained with beamformer technique (a
popular MEG source analysis method)were not as consistent with neu-
rophysiology findings as those from Fast-VESTAL (Huang et al., 2014).
This is likely due to beamformer's intrinsic limitation which assumes
that the neuronal sources are uncorrelated (Robinson and Vrba, 1999;
Sekihara et al., 2001; Van Veen et al., 1997), a questionable assumption
when dealing with resting-state MEG signals.

Wienbruch introduced a different voxel-based resting-state MEG
source analysis approach, in which a sequential single dipole model
was used to fit MEG signal for each time point (i.e., single equivalent
current dipoles were fitted for each time point). The dipoles with
goodness-of-fit (GoF) N 0.9 were kept. Then, voxel-based dipole loca-
tion density measure was used to establish a normative database, and
a Z-score statistics was used to assess abnormalities. Our Fast-VESTAL
source imaging approach improves upon the seminal work in this area
by Wienbruch (2007) in two ways. First, the approach by Wienbruch
is less able to handle time points where multiple sources contribute si-
multaneously to the MEG measures. For example, in many such cases,
the GoF with a single sequential dipole model would be less than the
0.9 threshold, and such that those time points would be discarded
from further analysis in Wienbruch's approach. With the Fast-VESTAL
approach, all time points free of artifacts are used in the analysis since
Fast-VESTAL is designed to model multiple highly correlated sources si-
multaneously. Second, the dipole location density measure from
Wienbruch's approach does not directly take into consideration of the
strength differences in the sequential dipoles. For example, two dipoles
with different strengths (e.g., one is twice as strong as the other) that
both meet the GoF threshold would contribute equally to the dipole lo-
cation density measure. In contrast, Fast-VESTAL directly assesses the
source magnitude differences at all grid locations, which is also a key
feature that differentiates the MEG signals from one subject to another.

In the dipole-fitting approach, the basic assumption is that the neu-
ronal generators of MEG signals are focal and can be modeled by one or
a few dipoles. The dipole location and dipole moment parameters are
determined by an over-determined non-linear optimization procedure.
In fact, an automated multi-dipole approach “multi-start spatio-
temporal”method was developed in our lab in the past to model multi-
ple dipoles without the requirements of the initial guess of the dipole
locations (Huang et al., 1998; Huang et al., 2005). However, all
dipole modeling techniques require the number of dipoles to be pre-
estimated, and the non-linear optimization procedure becomes ex-
tremely high in computational cost and may be trapped into local min-
imawhen the number of dipoles increases. Usually, 8–10dipoles are the
upper limit that the dipole-fitting methods can handle (Huang et al.,
2005).

In the Fast-VESTAL approach, the brain volume, or just the cortex is
pre-divided into a source gridwith several thousandnodes, and a dipole
is assigned to each grid node. Fast-VESTAL fits the MEG sensor wave-
formswhile minimizing the total current across all grid nodes to reduce
the ambiguity of themultiple plausible solutions. Fast-VESTAL identifies
the grid nodes with neuronal activity with high resolution, and sup-
presses themagnitude at the grid nodeswithout neuronal activity to es-
sentially zero (Huang et al., 2014). The Fast-VESTAL procedure is
efficient in computational cost, can handle many correlated as well as
uncorrelated dipolar sources, and is not trapped in the “local minima”.
Robust control mechanisms were built into the Fast-VESTAL algorithm
to fit the brain signal and to prevent the algorithm from fitting correlat-
ed and/or uncorrelated noise (Huang et al., 2014).

In theMEG responses that are known to contain a few focal neuronal
generators (e.g., in the case of human somatosensory responses evoked
bymedian-nerve stimuli), both Fast-VESTAL andmultiple-dipole fitting
approaches produced sparse solutions that are very similar in location
and source time-course, and both solutions are consistentwith previous
neurophysiological findings (Huang et al., 2005; Huang et al., 2014). In a
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sense, Fast-VESTAL is a more effective and improved way in finding a
sparse solution over the multiple-dipole fit. However, systematic com-
parisons of Fast-VESTAL, dipole-fitting methods including the single-
sequential-dipole fit (Wienbruch, 2007) and multiple-dipole fit
(Huang et al., 1998; Huang et al., 2005), and physiology approaches
are an interesting research topic for the future, but are currently beyond
the scope of the present study.

In summary, the present study examined the sensitivity of our new
automated voxel-based whole-brain MEG slow-wave imaging ap-
proach based on Fast-VESTAL for detecting abnormality in patients
with mild TBI on a single-subject basis. The results show that this
MEG slow-wave source imaging method achieves a positive detection
rate of 84.5% for the mTBI group (blast-induced plus non-blast) with
the threshold chosen at a zero false positive rate. The results showed
that although abnormal MEG slow-wave generations in individual
mTBI patientswere highly variable in spacewith a diffuse characteristic,
the prefrontal lobe, posterior parietal lobe, inferior temporal lobe, hip-
pocampus, and cerebella were particularly vulnerable to head trauma.
The result also showed that MEG slow-wave generation in prefrontal
areas positively correlated with personality change, trouble concentrat-
ing, affective lability, and depression symptoms. In addition, we found
that a high spatial smoothing factor can reduce the positive detection
rate of abnormal MEG slow-waves in mTBI, which suggests that MEG
source analysis methods with high spatial resolution may be essential
for mTBI study. We believe the potential neuronal mechanisms of
MEG slow-wave generationwere the deafferentations caused by axonal
injury and/or blockages/limitations of cholinergic transmission in TBI.
This study provides support for using MEG slow-wave source imaging
to localize affected areas and highlights the potential use of this meth-
odology for the clinical diagnosis of mTBI.
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