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Does therapeutic hypothermia 
during extracorporeal cardiopulmonary 
resuscitation preserve cardiac function?
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Abstract 

Background:  Extracorporeal cardiopulmonary resuscitation (E-CPR) is increasingly used as a rescue method in the 
management of cardiac arrest and provides the opportunity to rapidly induce therapeutic hypothermia. The survival 
after a cardiac arrest is related to post-arrest cardiac function, and the application of therapeutic hypothermia post-
arrest is hypothesized to improve cardiac outcome. The present animal study compares normothermic and hypo-
thermic E-CPR considering resuscitation success, post-arrest left ventricular function and magnitude of myocardial 
injury.

Methods:  After a 15-min untreated ventricular fibrillation, the pigs (n = 20) were randomized to either normother-
mic (38 °C) or hypothermic (32–33 °C) E-CPR. Defibrillation terminated ventricular fibrillation after 5 min of E-CPR, 
and extracorporeal support continued for 2 h, followed by warming, weaning and a stabilization period. Magnetic 
resonance imaging and left ventricle pressure measurements were used to assess left ventricular function pre-arrest 
and 5 h post-arrest. Myocardial injury was estimated by serum concentrations of cardiac TroponinT and Aspartate 
transaminase (ASAT).

Results:  E-CPR resuscitated all animals and the hypothermic strategy induced therapeutic hypothermia within min-
utes without impairment of the resuscitation success rate. All animals suffered a severe global systolic left ventricular 
dysfunction post-arrest with 50–70% reductions in stroke volume, ejection fraction, wall thickening, strain and mitral 
annular plane systolic excursion. Serum concentrations of cardiac TroponinT and ASAT increased considerably post-
arrest. No significant differences were found between the two groups.

Conclusions:  Two-hour therapeutic hypothermia during E-CPR offers an equal resuscitation success rate, but does 
not preserve the post-arrest cardiac function nor reduce the magnitude of myocardial injury, compared to normo-
thermic E-CPR.
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Background
Survival after cardiac arrest is greatly influenced by 
early post-arrest cardiac function [1, 2]. Hence, cardio-
pulmonary resuscitation (CPR) strategies that preserve 

post-arrest cardiac function may improve outcome. 
Extracorporeal CPR (E-CPR) by veno-arterial extracor-
poreal membrane oxygenation (ECMO) is increasingly 
used when standard CPR fails. Promising results have 
been reported by using E-CPR as a rescue method within 
brief timeframes for selected cases [3–6]. Therapeutic 
hypothermia (HT, 32–34  °C) is widely used for patients 
resuscitated from cardiac arrest as it is believed to exhibit 
cardiovascular [7, 8] and neurological benefits [9–11].
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To achieve cardiac benefit from HT the importance of 
early and rapid cooling has been emphasized in experi-
mental studies [12–14]. E-CPR provides the opportu-
nity to rapidly induce HT, but whether hypothermic 
E-CPR preserves post-arrest cardiac function and hence 
improves outcome, is not known.

A severe cardiac dysfunction following normothermic 
E-CPR is recently demonstrated in pigs [15]. The present 
study aimed to investigate if HT during E-CPR improves 
cardiac outcome early post-arrest. We hypothesized that 
hypothermic E-CPR offers an equal resuscitation success 
rate, but with a better preserved post-arrest left ventricu-
lar (LV) function and less myocardial injury compared to 
normothermic E-CPR.

Methods
Design
A prospective controlled block-randomized animal study 
was completed to compare a normothermic (38-ECPR, 
n =  10) and a hypothermic (32-ECPR, n =  10) E-CPR 
group.

Animal welfare
The experimental protocol was approved by the Norwe-
gian National Animal Research Authority and the ani-
mal experiments were performed in accordance with the 
European Convention for the Protection of Vertebrate 
Animals used for Experimental and Other Scientific Pur-
poses (European Council, ETS No. 170). Detailed infor-
mation according to the ARRIVE guidelines is presented 
in Additional file  1: Table S1 [16]. With respect to ani-
mal welfare`s 3R-principle, eight 38-ECPR animals were 
included in a separate methodological study demonstrat-
ing E-CPR associated post-arrest LV dysfunction by car-
diac magnetic resonance imaging (MRI) per se [15].

Animal preparation
The animal preparation included premedication in the 
pig enclosure and total intravenous anaesthesia in the 
operating theatre, mechanical ventilation and a succeed-
ing surgical tracheotomy and placements of intravascular 
catheters and ECMO-cannulas as recently described [15]. 
Ringer’s acetate solution was infused at 10 ml/kg/h.

Experimental protocol
Baseline assessments
After the preparation and a following 30-min stabiliza-
tion period, baseline cardiac MRI (Philips Achieva 3 
Tesla, Philips Medical Systems, DA Best, Netherland) and 
haemodynamic measurements of LV function (MPR-500, 
Millar Instruments, Houston, TX, USA) were obtained. 
Arterial and mixed venous blood samples were analyzed 
(ABL 800 Flex, Bergman Diagnostika, Kjeller, Norway) 

and serum concentrations of cardiac Troponin T (cTnT) 
and Aspartate aminotransferase (ASAT) were measured.

ECMO and cardiac arrest
After baseline assessments, the pig was connected to a 
Ringer’s acetate-primed femoro-jugular veno-arterial 
ECMO circuit (Biopump  +  BPX-80/Affinity NT/Bio-
medicus 550, Medtronic Inc, Minneapolis, MN, USA) 
featuring an oxygen/air mixer (Sechrist Model 20090, 
Sechrist Industries, Anaheim, CA, USA) to adjust sweep 
gas oxygen content and sweep gas flow rate. A connected 
heat-exchanger (Stöckert Heater-Cooler System 3T, 
Sorin Group, Milano, Italy) enabled animal blood tem-
perature control.

After an intravenous injection of 2 mg/kg heparin, an 
electrical stimulator connected to a right ventricular 
pacing lead (Qstim 5Fr, VascoMed GmbH, Binzen, Ger-
many) induced ventricular fibrillation (VF), confirmed by 
ECG shape and aortic blood pressure drop.

E‑CPR
After 15  min of untreated VF the animals received 
either normothermic [pulmonary artery blood tempera-
ture 38.0  °C (normothermia in the pig)] or hypothermic 
(32.0–33.0  °C) E-CPR at maximum ECMO blood flow 
rate with a 100% oxygen sweep gas set at the same flow 
rate as the ECMO blood flow rate.

HT in the 32-ECPR group was achieved using 20.0  °C 
priming solution with later adjustments at the heat-
exchanger. The heat-exchanger thermostat at 38.0  °C 
ensured normothermia in the 38-ECPR group.

After 5  min of E-CPR 360 Joule monofasic defibrilla-
tions (CodeMaster XL  +  Hewlett Pachard, Lexington, 
KY, USA) were provided until regain of spontaneous car-
diac beating (ROSB) with extracorporeal support con-
tinuing at unchanged blood flow rate and temperature 
target for 120  min. In the 32-ECPR group a 30-min 
warming period followed, whereas a corresponding 
30-min continued run at 38.0  °C was provided in the 
38-ECPR group.

The mean aortic blood pressure (MAP) target 
(≥50  mmHg) and pulse-pressure target (≥15  mmHg) 
after ROSB were met using repeated 10–25  µg adrena-
line (epinephrine) intravenously followed by dobutamine 
infusion if needed [17].

Weaning from ECMO
After the 120  +  30-min extracorporal support, with 
all animals being normothermic, a step-wise separa-
tion from ECMO (weaning) was completed during a 
60-min period, and the animals were allowed to stabilize 
after weaning for another 60 min before the post-arrest 
assessments.
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Post‑arrest assessments
At 285  min post-arrest LV function was re-assessed by 
LV pressure measurements and MRI. Finally, a second 
arterial and mixed venous blood sample were analyzed 
and blood samples for cTnT and ASAT measurements 
were collected, before the pig was euthanized.

Measurements
MRI and haemodynamic measurements
Magnetic resonance imaging was used to assess LV 
volumes and function (end-systolic volume (ESV), 
end-diastolic volume (EDV), stroke-volume (SV = EDV–
ESV), ejection fraction (EF  =   SV/EDV), cardiac output 
[CO = SV heart rate (HR)] mid LV radial wall thickening, 
mitral annular plane systolic excursion (MAPSE), and 
peak global systolic LV circumferential strain) together 
with LV pressure measurements (maximum systolic LV 
pressure (LVPmax), maximum positive and negative first 
time derivate of LV pressure (dP/dtmax and dP/dtmin), 
end-diastolic LV pressure (EDP), end-systolic LV pres-
sure (ESP), isovolumetric relaxation constant (tau), and 
arterial elastance (Ea  =   ESP/SV)) [15, 18]. Continuous 
measurements of blood temperature (Figs. 1, 2), HR and 
MAP (Fig. 3) outside the MRI were recorded throughout 
the experiments.

cTnT and ASAT
The serum concentration measurements of cTnT and 
ASAT pre-arrest and 6 h post-arrest were performed by 
an electro-chemiluminescence immunoassay (Troponin 
T hs, Roche Diagnostics, Rotkreuz, Switzerland) and by 
an UV-test with pyridoxal phosphate activation (ASAT, 
Roche Diagnostics) using an automated clinical chemis-
try analyzer (Modular analytical platform, module E170 

and P800, Roche Diagnostics) to estimate myocardial 
injury.

Myocardial tissue staining
Eleven (38-ECPR n = 5, 32-ECPR n = 6) hearts excised 
immediate post-mortem were sliced and stained in 1% 
triphenyl tetrazolium chloride (TTC, Sigma Chemical 
Co., St. Louis, MO, USA) in phosphate buffer and exam-
ined for myocardial infarction [19, 20].

Statistical analysis
Statistical analyses were made using Graphpad prism 
6.04 (GraphPad Software, La Jolla, CA, USA). Data are 
reported as mean ±  standard deviation if not otherwise 
stated. The statistical significance level α was set to 0.05 
and power 1 −β to 0.80.

The study sample size was estimated by a prospective 
power analysis. The least detectable difference consid-
ered as clinically significant between cardiac function 
variables was 15% of baseline values. Cardiac function 
variability in range of 5–15% of baseline values in pilot 
experiments made a calculated sample size of 20 neces-
sary to achieve the desired power.

Fig. 1  Blood temperature. After a 15-min untreated ventricular 
fibrillation (VF) the animals were randomized to either normothermic 
(38 °C) or hypothermic (32–33 °C) extracorporeal cardiopulmonary 
resuscitation (E-CPR). A 30-min rewarming period (between dotted 
lines) started in the hypothermic group after 120 min of extracorpor-
eal support. Blood temperature (mean, connecting line) was recorded 
every 30 s

Fig. 2  Induction of therapeutic hypothermia. The temperature 
dropped after initiation of hypothermic extracorporeal cardiopul-
monary resuscitation (E-CPR) to the targeted 32–33 °C within the 
1st min after defibrillation. Blood temperature [mean (connecting 
line) ± standard deviation (shaded)] was recorded every 30 s
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A paired two-tailed Student’s t test (t) was used to com-
pare baseline and post-arrest measurements within each 
treatment group, and an unpaired two sample t-test (T) 
was used to compare post-arrest measurements between 
the two different treatment groups. Alternatively, a 
two-tailed Mann–Whitney test (MW) of group differ-
ences with exact p-value was used for data not normally 
distributed.

Results
Animal weight (49.2  ±  2.8  kg), preparation time 
(122 ± 22 min) and cardiac MRI scan time (63 ± 15 min) 
were similar in the two groups. Neither activated clot-
ting-time prior to cardiac arrest (330 ± 76 s) nor ECMO 
circuit priming volume (544 ±  22  ml) differed between 
the two groups, and the experiment durations were also 
similar, averaging 762 ± 63 min (32-ECPR 777 ± 58 min 
vs. 38-ECPR 745 ± 67 min; T, p = 0.27).

One animal in the 38-ECPR group was euthanized 
after ROSB, and was thus excluded from further analyses, 
because MAP could not be sustained as dictated by the 
protocol, due to ECMO venous cannula malfunctioning.

At initiation of VF the blood temperature was 
38.0  ±  0.2  °C and was maintained at this level in the 
38-ECPR group (Fig. 1). In the 32-ECPR group the tem-
perature quickly dropped after initiation of hypothermic 
E-CPR and was 33.3 ± 1.0 °C at the time of defibrillation 
(Fig. 2). It further dropped to the targeted 32–33 °C within 
the 1st min after defibrillation (5.25 ± 4.8 min from start 
E-CPR) and was kept stable at this level until warming.

Defibrillation
All animals were successfully defibrillated by a median 
of 1 shock (range 1–6) with no significant differences 
between the groups (MW, p =  0.99). After ROSB three 
animals in the 38-ECPR group spontaneously had a sec-
ond VF, and immediately received a median of 1 (range 
1–3) additional defibrillations. No additional defibrilla-
tions were needed in the 32-ECPR group (MW, p = 0.21).

MAP at the time of defibrillation was 54 ± 9 mmHg in 
the 38-ECPR group and 60 ±  5 mmHg in the 32-ECPR 
group (T, p = 0.082) (Fig. 3) with an ECMO blood flow 
rate of 4.6 ±  0.1  l/min and 4.4 ±  0.2  l/min in the two 
groups, respectively (T, p = 0.055).

Fig. 3  Heart rate and mean aortic blood pressure. Continuous measurements (mean, connecting line) of heart rate and mean aortic blood pressure 
in the two different treatment groups. VF ventricular fibrillation
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Inotropes
The adrenaline dosage [median (range)] was 100  µg 
(0–340 µg) in the 38-ECPR group vs. 183 µg (50–1700 µg) 
in the 32-ECPR group (MW, p = 0.074). The dobutamine 
requirements differed between the groups [38-ECPR 
dobutamine [median (range)] = 15.8 mg (0–31.2 mg) vs. 
32-ECPR dobutamine  =  36.2  mg (10–93.6  mg)] (MW, 
p  =  0.0076), but the dosages after ECMO weaning to 
the end of the experiments were not significantly dif-
ferent; four of nine animals in the 38-ECPR group and 
five of ten in the 32-ECPR group received dobutamine 
dosages [median (range)] of 2  mg (0.5–2.2) and 2.6  mg 
(0.01–5 mg), respectively, after weaning (MW, p = 0.40).

Haemodynamic measurements and blood gas analyses
HR increased similarly post-arrest in both groups 
(Table  1), limiting the reductions in CO. The increased 
Ea post-arrest did not differ between the groups, and the 
dP/dtmax, dP/dtmin, EDP, EDP/EDV relationship, and tau 
did not change significantly from baseline values in either 
group.

Mixed venous oxygen saturation dropped consider-
ably and group-similarly post-arrest (Table  1). A small 
decrease in haemoglobin content, base excess and pH 
was also measured post-arrest, with an accompanying 
increase in arterial lactate.

Cardiac MRI
In both groups the LV function was severely affected 
post-arrest (Fig.  4). EF decreased from 61  ±  4% to 
33 ±  8% (t, p < 0.001) and SV decreased from 61 ±  10 
to 30 ± 6 ml (t, p < 0.001) in the 38-ECPR group. In the 
32-ECPR group EF decreased from 65 ± 7 to 34 ± 7% (t, 
p < 0.001) (T, p = 0.94) and SV decreased from 61 ± 13 
to 29 ± 8 ml (t, p < 0.001) (T, p = 0.60). In the 38-ECPR 
group the lowered EF was only related to the increase in 
ESV from 38 ± 6 to 61 ± 14 ml (t, p = 0.001) as the EDV 
was maintained at 92 ± 14 ml from a baseline EDV value 
of 99 ± 13 ml (t, p = 0.44). There was a similar increase 
in ESV in the 32-ECPR group from 34 ± 10 to 56 ± 11 ml 
(t, p  <  0.001). In this group, however, EDV was moder-
ately reduced from a baseline EDV value of 95 ± 18 ml 
to post-arrest EDV 85 ±  14  ml (t, p =  0.0044). Despite 
severe tachycardia CO was reduced in most animals 
post-arrest (six of nine in the 38-ECPR group; nine of 
ten in the 32-ECPR group), but CO did not significantly 
differ between the two groups post-arrest; 38-ECPR 
CO = 4.5 ± 1.0 l/min vs. 32-ECPR CO = 4.1 ± 0.9 l/min 
(T, p = 0.38).

Consistent with the reduced SV the strain decreased 
group-alike; from −17 ± 4 to −5 ± 3% (t, p < 0.001) in 
the 38-ECPR group and from −18 ±  3 to −7 ±  4% (t, 
p < 0.001) in the 32-ECPR group (T, p = 0.22). MAPSE 

in the 38-ECPR group was reduced from 12  ±  1 to 
6 ±  1  mm (t, p  <  0.001) and likewise in the 32-ECPR 
group from 12  ±  2 to 6  ±  1  mm (t, p  <  0.001) (T, 
p  =  0.98). Correspondingly, the wall thickening in the 
38-ECPR group was severely affected by a reduction from 
54 ±  11 to 18 ±  7% (t, p  <  0.001). A similar reduction 
from 57 ± 14 to 13 ± 24% (t, p < 0.001) was found in the 
32-ECPR group (T, p = 0.87).

cTnT and ASAT
The serum concentrations of cTnT and ASAT remained 
minimal after the surgical preparation (38-ECPR cTnT 
(median (range))  =  13 (10–32) ng/L vs. 32-ECPR 
cTnT=  16 (7–28) ng/L; 38-ECPR ASAT  =  27 (18–
33) U/L vs. 32-ECPR ASAT  =  28 (18–31)) U/L, but 
increased considerably post-arrest without significant 
differences between the groups; 38-ECPR cTnT = 2295 
(782–5203) ng/L vs. 32-ECPR cTnT = 2452 (925–5475) 
ng/L (MW, p =  0.44) and 38-ECPR ASAT =  123 (61–
1630) U/L vs. 32-ECPR ASAT  =  266 (112–969) U/L 
(MW, p = 0.13).

TTC staining post mortem
The assessment of myocardial infarction by TTC staining 
post mortem did not demonstrate regional infarctions.

Discussion
In the present controlled animal study comparing 
hypothermic and normothermic E-CPR considering 
resuscitation success, post-arrest LV function, and myo-
cardial injury, surprisingly, and contrary to our hypoth-
esis, no beneficial effects of HT during E-CPR could be 
demonstrated.

A better preserved LV function would be desirable in 
resuscitated patients as post-arrest cardiac function is 
related to patient survival. In the present study, HT dur-
ing E-CPR was hypothesized as being beneficial because 
HT has demonstrated cardioprotective effects in various 
animal studies with regional myocardial ischaemia (i.e. 
coronary occlusion) [21, 22].

The best strategy of E-CPR to preserve early post-
arrest cardiac function is not known and no guidelines 
exist to assist clinicians deciding on an E-CPR strategy 
for patients in refractory cardiac arrest. To date HT is 
not recommended as a cardioprotective intervention in 
patients with acute myocardial infarction without asso-
ciated cardiac arrest [22, 23]. In resuscitated patients, 
however, HT is an established treatment due to neuro-
logical benefits, irrespective of any cardioprotection [9–
11]. Whole body cooling targeting 32–36 °C is the latest 
recommendation (preferably a constant temperature in 
this range) and a HT induction time-frame of 4–6 h post-
arrest is usually accepted [24]. A delay of several hours 
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from resuscitation to target temperature may exclude a 
cardioprotective effect of hypothermia per se. HT may 
nevertheless be favorable to the cardiovascular function 
as it may reduce cardiac work load as a consequence of 
reduced whole body metabolism during HT [25].

Correct timing of HT has been emphasized in recent 
years as HT is claimed to be cardioprotective only if 
induced either shortly before or at the time point of 
myocardial reperfusion [12, 13, 26, 27]. Maeng and co-
workers found that HT induced at the time of coronary 
reperfusion did not reduce myocardial infarct size in 
pigs [28]. Despite the efficient HT induction, the pre-
sent study did not demonstrate cardioprotection by 
hypothermic E-CPR (i.e. reperfusion) of the fibrillating 
heart. Cooling the myocardium prior to myocardial rep-
erfusion may thus be a crucial procedure, but effort is 
needed to achieve hypothermia this early in the clinical 
coronary occlusion scenario [29, 30]. Correspondingly, 
a rationale for cardioprotective intra-arrest HT (i.e. HT 
induced before ROSB) exists in cardiac arrested patients, 
and is supported by animal studies [13, 31, 32], but the 

suggested post-arrest cardiac function benefits are not 
specifically investigated in humans. If interventions to 
reperfuse the myocardium are postponed until HT is 
established, the harm of prolonged ischaemia may can-
cel any benefits of HT. This issue could be further investi-
gated experimentally using topical cooling of the arrested 
heart prior to reperfusion.

Two-hour HT duration was investigated as brief cool-
ing has been sufficient to achieve cardioprotective effects 
in previous animal studies [12] and 3-h cooling has made 
myocardial damage worse [33]. Whether a longer HT 
duration would be beneficial in our study is not known, 
but cannot be excluded. On the other hand, extracorpor-
eal circulatory support by ECMO is not without compli-
cations and side effects, and clinical practice is to wean as 
soon as the heart is capable to independently handle the 
circulation.

Compared to our study, rewarming of patients after 
cardiac arrest is slow (0.3–0.5  °C/h), tailored for neu-
roprotection [24]. In cardiac surgery, however, a quick 
rewarming is well tolerated by the heart even after 

Table 1  Haemodynamic measurements and blood gas analyses

Values are expressed as mean ± standard deviation. Comparison post-arrest to baseline within group by paired student’s t-test

Post-arrest comparison of groups by unpaired two-sample student’s t-test. MD mean difference, CI 95% confidence interval

HR heart rate, MAP mean aortic blood pressure, CVP central venous pressure, LVP max systolic left ventricular pressure maximum, EDP end-diastolic pressure, dP/dt max 
maximum left ventricular pressure first time derivate, dP/dt min minimum left ventricular pressure first time derivate, tau isovolumetric relaxation constant, Ea arterial 
elastance, SVO2 mixed venous oxygen saturation

* p ≤ 0.05

Variable Normothermic E-CPR group Hypothermic E-CPR group Post-arrest, difference 
between groups

Baseline Post-arrest Baseline Post-arrest MD (95% CI) p value

a. Haemodynamic measurements

 HR (beats/min) 88 ± 23 152 ± 31* 101 ± 26 148 ± 33* −4 (−35 27) p = 0.79

 MAP (mmHg) 84.2 ± 12.0 73.6 ± 16.1 93.1 ± 14.4 65.6 ± 14.1* −8.1 (−22.6 6.5) p = 0.26

 CVP (mmHg) 5.7 ± 2.8 6.1 ± 3.1 6.9 ± 1.6 8.7 ± 2.9 2.6 (−0.3 5.5) p = 0.078

 LVPmax (mmHg) 99.6 ± 7.0 91.0 ± 13.5 107.7 ± 13.2 86.4 ± 14.8* −4.6 (−18.4 9.2) p = 0.49

 EDP (mmHg) 14.0 ± 4.7 14.9 ± 2.4 12.9 ± 3.7 11.7 ± 3.7 −3.2 (−6.3 −0.1) p = 0.041

 dP/dtmax (mmHg/s) 1427 ± 207 1963 ± 557 1786 ± 414 2398 ± 1466 435 (−663 1533) p = 0.41

 dP/dtmin (mmHg/s) −2112 ± 270 −1683 ± 404 −2225 ± 315 −1792 ± 832 −109 (−755 537) p = 0.73

 tau (ms) 32.4 ± 3.0 33.3 ± 6.8 32.3 ± 3.2 28.5 ± 8.3 0.68 (−5.7 7.1) p = 0.19

 EDP/EDV (mmHg/ml) 0.14 ± 0.04 0.16 ± 0.03 0.14 ± 0.04 0.14 ± 0.04 −0.02 (−0.06 0.01) p = 0.15

 Ea (mmHg/ml) 1.08 ± 0.25 1.65 ± 0.44* 1.16 ± 0.35 1.68 ± 0.72* 0.03 (−0.56 0.62) p = 0.91

b. Blood gas analyses

 Hb (g/dl) 8.3 ± 0.9 8.1 ± 0.7* 8.7 ± 0.8 7.8 ± 1.1* −0.3 (−1.3 0.6) p = 0.45

 PaO2 (kPa) 22.5 ± 1.9 20.6 ± 3.7 22.6 ± 1.4 21.5 ± 2.4 0.90 (−2.1 −3.9) p = 0.53

 PaCO2 (kPa) 5.4 ± 0.7 5.4 ± 0.3 4.9 ± 0.4 4.9 ± 0.4 −0.45 (−0.82 −0.08) p = 0.019

 pH 7.49 ± 0.04 7.47 ± 0.03 7.51 ± 0.05 7.48 ± 0.05 −0.01 (−0.03 0.06) p = 0.63

 BaseExcess (mmol/l) 6.77 ± 1.15 4.97 ± 1.82* 6.23 ± 2.38 3.56 ± 2.12* −1.41 (−3.39 0.56) p = 0.15

 Lactate (mmol/l) 0.85 ± 0.19 1.28 ± 0.54* 1.34 ± 0.85 2.8 ± 1.57* 1.52 (0.36 2.68) p = 0.013

 Ca2+ (mmol/l) 1.30 ± 0.06 1.27 ± 0.06 1.25 ± 0.06 1.27 ± 0.06 0.003 (−0.06 0.06) p = 0.91

 SvO2 (%) 65.7 ± 14.8 42.4 ± 8.7* 68.4 ± 7.4 42.3 ± 13.4* −0.2 (−11.2 −10.9) p = 0.98
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long-lasting cardioplegic arrest, and we have no indica-
tions that a longer and slower rewarming period would 
have influenced our results.

Inotropes
Inotropic support is regularly used during VA–ECMO to 
sustain aortic ejections with a sufficient pulse-pressure 
to avoid LV distention and failure. The increased dobu-
tamine requirements observed during HT may be related 
to altered pharmacologic properties of dobutamine with 
a reduced effect [34] as supported by the similar require-
ments in the two groups after rewarming. HT also affects 
LV function, causing slower LV contraction and relaxa-
tion velocities [35], and may thus increase the need for 
inotropic stimulation to reach preset targets. The optimal 
MAP target during HT is not known, and could possibly 
differ from MAP target at normothermia, but for com-
parison, they were set at the same level.

LV function
In the present study, the 50–70% reductions in SV, EF, 
wall thickening, strain and MAPSE were consistent, 
demonstrating a severe global systolic LV dysfunction 
post-arrest with uniform impairments in all directions of 
systolic LV motion, and with no differences between the 
two treatment groups.

The diastolic LV function assessed by dP/dtmin, tau and 
EDP/EDV relationship was preserved in both groups 
post-arrest, and neither EDV (preload) nor Ea (afterload) 
differed between the two groups.

Myocardial injury evaluation
The post-arrest LV dysfunction indicated a severe and 
global myocardial injury as was confirmed by the con-
siderable increase in serum concentrations of cTnT and 
ASAT in both groups. A global injury without distin-
guished regional areas was also confirmed by the TTC 
assessment, as no regional infarctions could be dem-
onstrated, excluding coronary thrombus or embolic 
complications.

The success rate of resuscitation by hypothermic 
E-CPR was not inferior to the normothermic strategy, 
and neither LV function nor myocardial injury was exac-
erbated. E-CPR initiated by a room tempered ECMO may 
be convenient, as a normothermic ECMO (or a circuitry 
heating device) will not always be available in clinical 
emergency settings that may include emergency rooms, 
ambulance transfers and even pre-hospital use.

Limitations
The clinical scenario of E-CPR differs from a controlled 
animal experiment as the period of no-flow is usually 

Fig. 4  Cardiac MRI measurements. The systolic left ventricle function variables did not differ between the normothermic and the hypothermic 
E-CPR group at baseline or post-arrest. Strain, peak global systolic left ventricular circumferential strain; Wall thickening, radial mid left ventricular 
wall thickening; MAPSE, mitral annular plain systolic excursion. Line at mean ± standard deviation (short line)
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short (preferably  <5  min) and the patient is cannulated 
at ongoing CPR in a low-flow period of varying dura-
tion. In the present study, a healthy pig heart suffered an 
electrically induced VF and the total ischemic insult was 
prepared to be substantial and consistent to assure a sig-
nificant post-arrest cardiac dysfunction and injury that 
could be compared between the two different treatment 
groups. The duration of no-flow thus exceeded usual 
clinical limits, and the low-flow period was bypassed.

Conclusions
E-CPR is an effective resuscitation technique for pro-
longed cardiac arrest that may rapidly induce HT. In the 
present animal study, 2-h HT during E-CPR offered an 
equal resuscitation success rate, but did not preserve the 
post-arrest cardiac function nor reduce the magnitude of 
myocardial injury, compared to normothermic E-CPR.
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