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Abstract: Binding of the HIV-1 envelope to its chemokine
coreceptors mediates two major biological events:
membrane fusion and signaling transduction. The fusion
process has been well studied, yet the role of chemokine
coreceptor signaling in viral infection has remained
elusive through the past decade. With the recent
demonstration of the signaling requirement for HIV latent
infection of resting CD4 T cells, the issue of coreceptor
signaling needs to be thoroughly revisited. It is likely that
virus-mediated signaling events may facilitate infection in
various immunologic settings in vivo where cellular
conditions need to be primed; in other words, HIV may
exploit the chemokine signaling network shared among
immune cells to gain access to downstream cellular
components, which can then serve as effective tools to
break cellular barriers. This virus-hijacked aberrant signal-
ing process may in turn facilitate pathogenesis. In this
review, we summarize past and present studies on HIV
coreceptor signaling. We also discuss possible roles of
coreceptor signaling in facilitating viral infection and
pathogenesis.

Introduction

Infection by the human immunodeficiency virus (HIV) causes

severe depletion of the CD4 T cell population, which eventually leads

to acquired immunodeficiency syndrome (AIDS). The selective

nature of the infection immediately prompted speculation and the

subsequent identification of the CD4 molecule as the main surface

receptor for HIV entry [1,2]. Nevertheless, it soon became apparent

that CD4 alone did not seem to be sufficient to permit entry [3,4]. A

hunt for the elusive coreceptors ensued. In 1996, Berger’s group first

identified a G-protein-coupled receptor designated ‘‘fusin’’ as the

elusive cofactor for HIV-1 entry [5]. ‘‘Fusin’’ was later renamed

CXCR4 after the realization that its natural ligand is the CXC

chemokine stromal cell derived factor 1 (SDF1) [6]. Before the

identification of ‘‘fusin’’, chemokines such as the CC chemokines

RANTES, MIP-1a, and MIP-1b had been reported to suppress

infection by the macrophage tropic (M-tropic) HIV-1 [7]. Thus, with

the identification of CXCR4, it took little time to confirm that CCR5,

the receptor for the aforementioned CC chemokines [8], was indeed

also a coreceptor for the entry of M-tropic HIV-1 [9,10,11,12,13].

Following the discoveries of CXCR4 and CCR5, several other G-

protein-coupled receptors have also been identified [14]. Neverthe-

less, the in vivo importance of these other coreceptors in viral

infection and pathogenesis is less studied than that of CXCR4 and

CCR5. This review focuses mainly on CXCR4 and CCR5 signaling.

The Signaling Diversity of the Chemokine
Coreceptors

The discovery of the HIV chemokine coreceptors opened up a

new avenue for AIDS research. The fact that both CXCR4 and

CCR5 are chemokine receptors raised interesting questions

regarding the role of chemokine receptor signaling in viral

infection and pathogenesis [5]. Early studies by Fauci’s group

demonstrated that the envelope from M-tropic but not T-tropic

viruses can trigger calcium flux that was inhibited by pertussis

toxin (PTX) or MIP-1b, which is suggestive of viral envelope-

induced signaling transduction through CCR5 [15]. Subsequently,

Davis et al. demonstrated that similar to SDF-1 and RANTES,

both the T-tropic and M-tropic envelopes can induce rapid

tyrosine phosphorylation of the protein tyrosine kinase Pyk2

through binding to CXCR4 or CCR5 [16]. Pyk2 phosphorylation

is frequently associated with G protein signaling and calcium flux.

These results provided early evidence that binding of the viral

envelope to its chemokine corecptors, both CXCR4 and CCR5,

not only mediates entry but also activates multiple intracellular

signaling cascades, a process mimicking chemokine signaling

through binding to their cognate receptors.

Chemokine receptor signaling is known to be diverse and is

coupled to distinct signaling pathways that mediate cell migration,

transcriptional activation, and cell growth and differentiation

(Figure 1). For example, SDF-1 binding to the G-protein-coupled

receptor CXCR4 activates heterotrimeric G-proteins (Ga and

Gbc). There are numerous classes of Ga (Gas, Gai, Gaq, Ga12/13),

and CXCR4 seems to be specifically coupled to Gai and Gaq. Gaq

proteins activate phosphatidylinositol-specific phospholipases such

as phospholipase C-c (PLC-c), which hydrolyzes phosphatidylino-

sitol-4,5-biphosphate (PIP2) to generate inositol triphosphate (IP3)

and diacylglyerol (DAG). These events lead to calcium flux and

the activation of several PKC isoforms that have been shown to be

important for SDF-1-induced chemotaxis [17,18] (Figure 1A).

Another pathway activated from SDF-1 binding to CXCR4 is

through Gai protein activation, which inhibits adenylyl cyclases

that in turn lead to a reduction in cAMP levels as well as the

activation of phospholipases and phosphodiesterases. These events

result in the activation of the lipid kinase PI3K via Gai-coupled

Src-family kinases as well as PI3Kc through direct binding of Gbc
to the regulatory subunits of PI3Kc [19,20,21]. Protein kinase B
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(PKB/Akt) and mitogen/extracellular signal-regulated kinase

(MEK-1) and extracellular signal-regulated kinase (ERK1/2) are

downstream of PI3K and function in cell survival and proliferation

[21,22,23]. PI3K also stimulates the tyrosine phosphorylation of

focal adhesion complex components such as proline-rich tyrosine

kinase (Pyk2) [16], paxillin, and Crk [21,24,25], all of which are

important for cell migration and cell adhesion. PI3K is also

upstream of the critical nuclear transcription activator NF-kB,

which regulates gene expression in response to inflammation and

activates HIV proviral gene expression [21,26] (Figure 1B).

SDF-1 binding to CXCR4 also results in GTP-bound Gbc,

which can stimulate guanine nucleotide exchange factors (GEFs)

such as TIAM1 and PREX1 specific for Rho family GTPases such

as Rac, Rho [27,28,29,30], Cdc42 [31], and Ral [32]. These

GTPases activate well-characterized downstream effector path-

ways, all of which modulate the cytoskeleton: Rac activates its

downstream effector p21-activated kinase (PAK), which then

activates LIM kinase (LIMK) [33], leading to the alteration of

cofilin activity, which regulates actin turnover. Cdc42 activation

promotes actin assembly through the Wiskott-Aldrich syndrome

family protein’s (WASP) activation of the actin nucleating protein

Arp2/3 [34]. RhoA activation can lead to microtubule rearrange-

ment through the Rho kinase (ROCK) activation of myosin light-

chain phosphatase (MLCP) (Figure 1C). Finally, SDF-1 has been

shown to activate perhaps some JAKs/STATs [35,36,37,38],

linking SDF-1-induced signaling to cytokine and growth factor–

driven pathways regulating cell proliferation and differentiation.

SDF-1 also activates Cbl/Cbl-b, which functions as an E3 ligase

regulating cell signaling through ubiquitination [39]. In summary,

most of these signaling molecules are components of the signaling

transduction pathways mediating chemotactic responses for

cytoskeleton rearrangement, cell polarization, and migration

[19,20,30], as well as transcriptional activation, cell survival, and

proliferation [21,22,40].

The Signaling Diversity of the HIV-1
Envelope–Coreceptor Interaction

Consistent with the signaling diversity of chemokine–coreceptor

interaction, binding of HIV-1 gp120 to CCR5 or CXCR4 has also

Figure 1. Chemokine receptor signaling pathways. SDF-1 binding to CXCR4 or RANTES/MIP-1a/MIP-1b binding to CCR5 activates G proteins
(Ga particularly Gai, Gaq, and Gbc) and multiple downstream pathways. (A) Gaq activates phospholipases such as phospholipase C-c (PLC-c), which
hydrolyzes phosphatidylinositol-4,5-biphosphate (PIP2) to generate inositol triphosphate (IP3) and diacylglyerol (DAG), triggering calcium influx and
the activation of kinases such as protein kinase C (PKC). (B) Gai activates phospholipases, phosphodiesterases, and the lipid kinase PI3K via Src-family
kinases. Gbc also activates PI3Kc. PI3K activation stimulates downstream targets such as protein kinase B (PKB/Akt), NF-kB, mitogen/extracellular
signal-regulated kinase (MEK-1), and extracellular signal-regulated kinase (ERK1/2). PI3K also triggers the tyrosine phosphorylation of focal adhesion
complex components such as proline-rich tyrosine kinase (Pyk2), paxillin, Crk, and p130Cas. (C) GTP-bound Gbc stimulates guanine nucleotide
exchange factors (GEFs) such as TIAM1 and PREX1 specific for the Rho family GTPases (Rac/CDC42/RhoA). These GTPases activate pathways
regulating cytoskeleton: Rac activates p21-activated kinase (PAK), which then activates LIM kinase (LIMK), leading to cofilin phosporylation and actin
polymerization. CDC42 promotes actin assembly through the Wiskott-Aldrich Syndrome family protein (WASP) and actin-nucleating protein Arp2/3.
RhoA activates Rho kinase (ROCK) , leading to myosin light-chain (MLC) phosporylation and microtubule rearrangement. (D) SDF-1 may also trigger
Gai-independent activation of the JAK-STAT pathways.
doi:10.1371/journal.ppat.1000520.g001
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been shown to trigger the activation of Pyk2 [16], PI3K, Akt

[41,42], Erk-1/2 [42], and CD4/CXCR4-dependent NFAT

(nuclear factor of activated T cells) nuclear translocation [43]

(Figure 2). Recently, gp120 was demonstrated to mediate

chemotaxis, actin cytoskeleton rearrangement [42,44], and the

activation of an actin depolymerization factor, cofilin, to increase

the cortical actin dynamics in resting CD4 T cells [44].

Given this array of targets that can be activated by gp120 in

vitro, one question is whether these signaling events are

physiological at the low gp120 dosages present in vivo. The

presumption based on plasma viral load is that the physiological

levels of gp120 are likely to be significantly lower than most of

those used in in vitro experiments [45]. However, the in vivo

concentrations of gp120, particularly the local gp120 concentra-

tions in tissues, are difficult to measure, and a large percentage of

the virus in the body is present in lymphoid tissues. Therefore, the

compartmentalized viral concentrations could be very high

regardless of the plasma viral loads [46]. Thus, the judgment of

whether or not an experimental gp120 dosage is physiological is

largely arbitrary at best. On the other hand, a recent experiment

suggested that a few HIV particles might be sufficient to trigger

signaling through CXCR4 [47].

In our recent studies of gp120 signaling in peripheral resting

CD4 T cells, we did notice dosage- and conformation-dependent

differences in gp120 signaling [44,48]. At high gp120 dosages,

gp120 acts more like SDF-1, triggering rapid cofilin phosphory-

lation and actin polymerization that was followed by cofilin

dephosphorylation and actin depolymerization [42,44]. At lower

dosages, gp120 was incapable of triggering such rapid changes, but

was able to mediate gradual cofilin dephosphorylation and actin

depolymerization [44,48]. These differences may play different

roles in various settings during the course of HIV infection.

Roles of HIV-1 Envelope–Coreceptor Signaling in
HIV Infection

The direct involvement of chemokine coreceptor signaling in

HIV infection has been speculated right from the identification of

the chemokine coreceptors [5]. Within a year of the initial

discovery, multiple groups started to test the requirement of

coreceptor signaling in HIV entry and subsequent replication

steps. Cocchi and colleagues were the first to demonstrate that

inhibition of coreceptor signaling through PTX neither inhibited

HIV-1 replication nor the ability of chemokines such as RANTES

to block HIV-1 entry into PM1 cells [49]. Similarly, Farzan et al.

further created three CCR5 mutants that abolished its signaling

ability to mobilize calcium but detected minimal effects on viral

entry and replication in Hela-CD4 cells [50]. These results were

corroborated by several other groups using cell lines transfected

with either CCR5- or CXCR4-signaling-defective mutants

[51,52,53,54,55]; the results largely suggested that the signaling

function of the chemokine coreceptors is an independent function

not required for viral entry or replication. Nevertheless, in the

following decade, a significant number of studies have been

published describing modulation of cellular functions by HIV

gp120 signaling, ranging from causing neurotoxicity to promoting

apoptosis. Therefore, the relevance of chemokine coreceptor

signaling to viral infection itself remained an open question. With

this significant issue unresolved, there were also sporadic findings

implying that chemokine coreceptor signaling might be important

for viral replication. For example, prestimulation of macrophages

or CD4 T cells with CC-chemokines was found to enhance HIV

replication [56,57]. Similar stimulation with viral gp120 can even

induce viral replication in cultures of resting CD4 T cells of

infected patients [58]. These positive effects of coreceptor signaling

were also reflected in facilitating HIV infection of non-natural

targets; the replication of some HIV-1 isolates in macaque cells

was blocked at a step after entry and reverse transcription but

prior to the nuclear import of the preintegration complex, and this

block could be relieved by the expression of human coreceptor

CCR5 or CXCR4 in macaque cells [59]. These results suggested a

possible involvement of coreceptor signaling in a post entry step.

In agreement with this hypothesis, Mori and colleagues demon-

strated that three to nine amino acid changes in the envelope of

SIVmac293 conferred upon the virus the ability to replicate 100–

1,000 times more efficiently in macrophages. Importantly, the

amino acid changes in the envelope did not enhance virus entry,

but rather affected some post entry steps [60]. Furthermore,

Arthos and colleagues [61] demonstrated that there was a direct

correlation between the capacity of viral envelopes to initiate

signaling and the ability of the same viruses to infect cells. They

also demonstrated that a signaling-deficient R5 HIV-1,

92MW959, entered macrophages but failed to replicate, and the

block was at a post entry step. In parallel, the density of CCR5 on

the cell surface also appeared to correlate with the capacity of the

coreceptor to transduce signals, and this capacity directly impacted

viral post entry processes such as reverse transcription and

integration [62]. Recently, Grainger and Lever [63] used a family

of new chemokine inhibitors to block chemokine receptor

Figure 2. Components of the chemokine coreceptor signaling
pathways activated by HIV-1 envelope. HIV-1 gp120 binding to
CXCR4 or CCR5 activates a number of signaling molecules common to
chemokine-mediated signaling pathways, including (A) PLC-c-depen-
dent calcium flux and NFAT nuclear translocation; (B) PI3K-dependent
activation of FAK, PyK2, AKT, and ERK1/2; (C) the downstream targets of
the Rho family GTPases such as LIMK1 and cofilin for actin
rearrangement.
doi:10.1371/journal.ppat.1000520.g002
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signaling without affecting receptor binding. When tested in HIV-

infected cells, these inhibitors inhibit HIV-1 infection without

blocking gp120/CCR5 interaction [63], and presumably, these

inhibitors also inhibited viral replication at steps post binding and

entry.

Despite growing evidence supporting a possible role for

coreceptor signaling, contradictory findings remained. Amara et

al. compared R5 HIV infection of CCR5 wild-type and signaling-

deficient T cells derived from CCR5D32 individuals [55]. In this

study, signaling-deficient CCR5 supported R5 HIV replication to

an extent similar to the wild-type CCR5, suggesting again that G

protein signaling through CCR5 plays no role in R5 HIV-1

replication. An important aspect of this study was the use of PHA

to activate primary T cells for transduction. In contrast, Lin et al.

used unstimulated primary T cells in a similar experiment and

showed that the signaling-deficient CCR5 T cells were impaired in

their support of HIV-1 infection [64]. Importantly, in order to

observe the inhibition, cells in this experiment had to be rested for

ten days after transduction before HIV-1 infection. These data are

consistent with an earlier observation that the B-oligomer of PTX,

although not directly inhibiting coreceptor signaling thourgh Gai,

diminishes the R5 virus-mediated receptor capping and reverse

transcription [65]. These inhibitory effects can only be observed in

primary monocyte-depleted PBMCs but not in transformed PM1

cells [65]. It is likely that much of the seemingly contradictory

observations in different studies may arise from the use of cells in

different activation states. When studies used activated T cells or

transformed cell lines, they largely observed that HIV-1 envelope–

coreceptor signaling was dispensable. Since a majority of T cells

and macrophages in vivo are in resting and noncycling states, it is

critical that the study of HIV-initiated signaling is investigated

using similar cells.

Recently, we examined the requirement for CXCR4 signaling

in HIV-1 latent infection of human resting CD4 T cells using an in

vitro system to mimic in vivo latent infection of resting T cells [44].

Using this system, we observed an absolute requirement of

CXCR4 signaling for HIV-1 latent infection of resting CD4 T

cells. This requirement was even maintained in resting T cells

exposed to certain cytokines such as IL-2 and IL-7, suggesting that

CXCR4 signaling could potentiate infectivity even in certain

cytokine-enriched microenvironments, such as lymphoid tissues.

We also identified the molecular mechanism of this signaling

requirement, and demonstrated that the static cortical actin in

noncycling, resting CD4 T cells represents a unique barrier for

viral post entry migration. To overcome this restriction, HIV-1

relies on viral envelope and the Gai-dependent signaling from the

chemokine coreceptor CXCR4 to activate a cellular actin-

depolymerizing factor, cofilin, to increase the cortical actin

dynamics (Figure 3). This unique requirement for coreceptor

signaling can only be observed in noncycling, resting CD4 T cells

because in transformed or activated T cells cofilin is constitutively

active to facilitate the cell cycle–driven actin remodeling that

renders CXCR4 signaling unnecessary [44].

With the identification of the molecular mechanism of CXCR4

signaling, the remaining issues are to confirm the requirement for

CCR5 signaling, and to determine the molecular basis for this

requirement. There appears to be a clear distinction in the

requirement for signaling between R5 and X4 viruses. For

example, the B-oligomer of PTX inhibits R5 virus at entry and

reverse transcription, but inhibits the X4 virus at multiple steps

post reverse transcription [65,66]. The R5 virus predominates at

the early time of HIV infection, largely infecting macrophages and

active memory CD4 T cells [67] in the gastrointestinal (GI) tract

and lymph nodes [68]. Both types of cells support productive viral

replication and do not have the restrictions usually seen in resting

CD4 T cells. It is unknown whether HIV-mediated cofilin

activation through CCR5 may also occur in active memory T

cells and macrophages, since cells that are actively cycling and

Figure 3. HIV-1 envelope-CXCR4 signaling triggers cofilin activation to promote cortical actin dynamics and HIV nuclear migration.
(A) HIV-1 envelope binding to CD4 and the chemokine coreceptor, CXCR4, triggers membrane fusion and signaling transduction. The initial viral
contact with CD4 and then CXCR4 may trigger rapid actin polymerization to facilitate CD4/CXCR4 cocapping for fusion and entry. Following fusion,
the viral preintegration complex (PIC) may be directly anchored onto F-actin to facilitate reverse transcription. Subsequent actin activity mediated by
cofilin activation through CXCR4 promotes viral nuclear migration. (B) Model of HIV PIC migration along the cortical actin filaments. It is possible that
cofilin activation increases actin treadmilling, which promotes the movement of the viral PIC across the cortical actin barrier, allowing PIC to gain
access to the perinuclear or nuclear region. The number is arbitrarily assigned to an actin monomer to demonstrate the actin movement during
treadmilling. (Figure 3 is modified from [44] with permission).
doi:10.1371/journal.ppat.1000520.g003
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migrating normally disassemble actin cytoskeleton themselves,

leaving the cells naturally susceptible to HIV-1 infection. If

required, the CCR5 signaling might be involved in several early

processes: initial fusion and entry, uncoating, viral DNA synthesis,

or subsequent viral gene transcription. Chemokine receptor

signaling also triggers rapid actin polymerization [42,44], which

may be important for the cocapping of CD4 with CCR5 or

CXCR4 [69] and for the efficient synthesis of viral DNA [44,70].

This early actin polymerization appears to be involved in

assembling high concentrations of CD4 and CCR5 or CXCR4

at the plasma membrane, which facilitate gp120 binding and viral

entry (for a review, please see [71]). Nevertheless, it is unlikely that

this immediate actin activity is triggered through CCR5 or

CXCR4 exclusively. Rather, it may be mediated through the

initial gp120 contact with CD4 and then facilitated through

further gp120 contact with CCR5 or CXCR4 [72] (Figure 3).

Also, sufficient actin contact with the core following fusion is

probably critical for rapid uncoating, or a subsequent particle

conformational change that is necessary for optimal reverse

transcription. Indeed, excessive actin depolymerization inhibits

viral replication, and artificially increasing the cortical actin

density through small interfering RNA (siRNA)-mediated cofilin

knockdown enhances viral DNA synthesis [44]. In transformed

cell lines, the requirement for CCR5 signaling in viral replication

was not observed, likely because the cortical actin itself is dynamic

and minimally affected by inhibiting CCR5 signaling [44]. In

addition, the presence of CD4 signaling may also compensate

some of the early requirements for actin activity. Interestingly,

when the density of CCR5 was artificially increased on

transformed HOS-CD4 cells, a direct correlation between

CCR5 density and viral DNA synthesis was observed, and this

correlation was dependent on PTX-sensitive Gai signaling [62].

CCR5 signaling has also been known to trigger distinctive

signaling cascades that activate kinases and transcription factors

associated with cell activation [43,73,74]. For example, R5

envelopes can induce the expression of genes belonging to MAPK

signal transduction pathways and genes regulating the cell cycle

[74]. R5 envelopes can also activate NFATs and induce their

translocation into the nucleus [43]. Because the HIV long terminal

repeat (LTR) encodes NFAT recognition sites, NFAT activation

likely enhances viral transcription directly from the LTR

promoter, especially at early time points when cellular conditions

are limiting. For example, the microenvironment in the GI tract

where the R5 viruses infect active memory T cells is filled with

inhibitory cytokines such as TGF-b [75], which can reorganize

cytoskeletal structure [76] and inhibit the activation of major

transcription factors such as NFkB [77]. The contribution of

CCR5 signaling to viral transcription could probably be observed

in suboptimally activated cells, but may not be seen in highly

active transformed cell lines.

Possible Roles of HIV-1 Envelope–Receptor
Signaling in Viral Pathogenesis

It has long been suggested that HIV-1 envelope plays a central

role in HIV-mediated CD4 T cell depletion and pathogenesis.

Prior to the identification of the chemokine coreceptors, gp120

was proposed to directly trigger activation-dependent T cell

apoptosis through its binding to surface CD4 [78]. Later, when the

chemokine coreceptors were discovered, gp120 binding to CCR5

or CXCR4 was also proposed to trigger the apoptosis of CD4

cells, CD8 T cells [79,80], and neurons [81]. There was

considerable complexity and discrepancy regarding possible

mechanisms of gp120-mediated apoptosis in T cells, in terms of

possible involvements of Gai-dependent pathways and caspases

[80,82], as well as the involvement of autophagy [83]. Envelope-

primed apoptosis has been implicated as directly contributing to

the depletion of either infected or uninfected CD4 T cells during

disease progression [78,84,85]. Nevertheless, latently infected

resting T cells were frequently detected persisting in patients

[86], and the half life of these cells can be as long as 3 to 4 years

[87]. These in vivo findings suggested that although gp120 can

trigger T cell apoptosis in certain circumstances, there must be

mechanisms that may prevent this process from occurring during

the initial virus–cell engagement [88].

HIV envelope–chemokine receptor signaling has been shown to

mediate chemotaxis in both CD4 and CD8 T cells

[15,42,44,89,90], a property directly related to the role of

chemokine receptor signaling. The viral envelope has also been

suggested to do the opposite by repelling T cells [89], a process

resembling chemofugetaxis, in which high concentrations of

chemokines such as SDF-1 drive away T cells [91]. It has been

proposed that this capacity of gp120 repels antigen-specific

cytotoxic T lymphocytes from viral infection sites to evade

immune effector mechanisms [89]. Similar functions of gp120 in

modulating the immune system have also been suggested. For

example, persistent gp120 stimulation induces CXCR4-dependent

T cell anergy [92], as well as CCR5- and CXCR4-dependent

macrophage activation and the secretion of proinflammatory

cytokines [93]. Many of these gp120-induced phenotypes resemble

the pathogenic features of HIV-induced T cell dysfunction and

chronic immune activation [92,94,95,96,97]. However, the

molecular targets and signaling mechanisms directly responsible

for these phenotypes remain largely uncharacterized. Recently, we

identified cofilin as one of the primary downstream targets of

gp120–CXCR4 signaling in human resting CD4 T cells [44]. We

also found that in the resting CD4 T cells of infected patients,

cofilin activity is aberrantly upregulated [48]. HIV-mediated

cofilin activation likely results from a bystander effect since a

majority of resting CD4 T cells in the peripheral blood of infected

patients contain no virus (0.2–16.4 cells latently infected with HIV

per 106 resting CD4 T cells [98]). Although not directly infected,

these residual CD4 T cells in patients are also known to carry

numerous functional abnormalities such as loss of T helper

function [94], anergy [92,95], increased T cell proliferation [99],

and abnormal T cell homing and migration [89,100].

In the human immune system, cofilin is involved in two

hallmark activities of T cells, namely chemotaxis and T cell

activation [101]. In chemotaxis, cofilin is the driving force for

promoting the cortical actin dynamics central to cell migration

[33]. In antigen-specific T cell activation, cofilin is activated

through CD2/CD28 co-stimulation, and plays a critical role in

actin reorganization and the formation of the immunological

synapse that is required for sustaining T cell activation [102]. It is

possible that cofilin dysregulation could result in CD4 T cell

abnormities that may contribute to T cell depletion and immune

deficiencies. Severe effects of altered actin dynamics on the human

immune system have been well documented. For instance, a

genetic defect of WASP that affects actin dynamics causes

immunodeficiency [103]. HIV-mediated aberrant activation of

cofilin strikingly resembles the activation of cofilin detected in

migratory T lymphoma cells [104]. This resemblance may

indicate a similar abnormal migratory behavior that could result

in the eventual destruction of peripheral CD4 T cells in lymph

nodes or tissues of HIV patients.

The utilization of different chemokine coreceptors, either

CCR5 or CXCR4, for entry largely differentiates HIV into two

distinctive phenotypes with either M- or T-tropism. The high
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pathogenic potential of the late emerging T-tropic viruses in

causing rapid CD4 depletion is clearly a demonstration of the

pathogenic significance of the CXCR4-engaging viruses

[105,106,107]. Nevertheless, a remaining question for the

importance of CXCR4 signaling in HIV pathogenesis is the lack

of X4 viruses in some patients. There are only approximately 50%

patients who experience the conversion from R5 to X4 viruses at

later stages of disease. It is possible that in these patients, a

complete viral switch from M- to T-tropism may never occur, but

constant viral mutation may generate intermediate viruses that can

engage and signal through CXCR4. It has been known that one or

two amino acid changes in the V3 loop of the viral envelope may

confer CXCR4 binding [108], although successful fusion and

entry often require more than two mutations or mutations even

outside of the V3 loop [109]. It is also possible that these

hypothetical X4-signaling viruses may trigger signaling transduc-

tion and cause CD4 T cell dysfunction without actually replicating

in them (for further reading on this hypothesis, please see [110]).

In comparison with the highly pathogenic T-tropic viruses, these

M-tropic, X4-signaling viruses may cause slower CD4 depletion

and disease progression.

Conclusions and Perspectives

Understanding HIV envelope–coreceptor interaction holds the

key to unlocking the mystery of HIV-mediated CD4 depletion and

pathogenesis. The signaling capacity of the viral envelope, along

with its pathogenic potential, has been a subject of great interest

and intense investigation. Yet, the critical role of the coreceptor

signaling in HIV disease had not been clearly defined. This lack of

appreciation has been largely attributed to the complexity of the

chemokine signaling network itself, as well as the complication of

many in vitro systems used, in which cellular states are derailed

from the genuine signaling circuitries of natural viral targets in the

body. Given these complexities, a critical function of the

coreceptor signaling in promoting viral infection has only recently

been demonstrated in the latent infection of human resting CD4 T

cells. The deciphering of the molecular mechanisms involved starts

to offer exciting fresh perspectives and opens a new avenue for

examining HIV pathogenesis. However, a great deal is yet to be

tested regarding the in vivo importance of coreceptor signaling in

mediating CD4 T cell dysfunction and pathogenesis.

Gene Accession Numbers

Human CXCR4 – Entrez Gene ID # 7852; Human CCR5 –

Entrez Gene ID # 1234; Human non-muscle Cofilin 1 – Entrez

Gene ID # 1072.
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