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TherapeuTic advances in 
neurological disorders

Introduction
The contribution of dietary factors to the patho-
genesis of multiple sclerosis (MS) and the disease-
modifying potential of dietary interventions are 
topics of increasing interest. Recent studies demon-
strated immunomodulatory effects of diets enriched 
in propionic acid1 or conjugated linoleic acid,2 and 
that a ketogenic diet improved signs of fatigue and 
depression in patients with relapsing–remitting 
multiple sclerosis (RRMS).3 Furthermore, 5.5% of 
American MS patients follow a gluten-free diet 
(GFD) and believe it to be effective.4

Wheat has become the most widely consumed 
food staple worldwide, which has been accompa-
nied by an increase in hypersensitivities to 
wheat.5 With gluten being the clearly identified 
trigger of celiac disease, it has long been sug-
gested that gluten proteins also mediate the 
other hypersensitivities. However, recent find-
ings have highlighted the important role of non-
gluten wheat proteins, the amylase–trypsin 
inhibitors (ATIs), in the underlying pathogenesis 
of intestinal and extra-intestinal inflammatory 
diseases.6–12
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ATIs constitute a small proportion of the protein 
fraction of various gluten-containing cereals (~2–
4%). Thus, a GFD can also be considered ATI-
free.8,13 ATIs act as triggers of the innate immune 
system. In myeloid cells, the binding of ATIs to the 
toll-like receptor 4 (TLR4) results in the activation 
of both the classical and the non-classical nuclear 
factor kappa B (NF-ĸB) pathway.6 Moreover, 
ATIs promote a pro-inflammatory intestinal dys-
biosis by a direct interaction with the microbiota.14 
We hypothesize that the mild pro-inflammatory 
intestinal signal induced by nutritional ATI is 
propagated toward extra-intestinal organs by 
migration of activated myeloid cells out of the gut 
where they can co-stimulate T cell-mediated pre-
existing inflammation.8 This can induce stronger 
antigen-specific adaptive immune responses with a 
consecutive exacerbation of disease activity.7 
Indeed, in murine models of intestinal or allergic 
airway inflammation, and non-alcoholic fatty liver 
disease, ATI feeding in quantities comparable to 
the average consumption of humans, promoted 
airway, liver, and adipose tissue inflammation.8-11,14 
In a recent first clinical pilot trial in patients with 
familial Mediterranean fever, we could show a 
marked pro-inflammatory effect of a wheat- and 
thus ATI-based diet compared to a wheat-free 
diet, both in clinical symptoms and immune-rele-
vant parameters.15 As the described effects of ATIs 
are dose-dependent, a reduction of daily ATI 
ingestion by 90–95% or even less may be sufficient 
to abolish their co-stimulatory effect on chronic T 
cell-mediated inflammation.7

In experimental autoimmune encephalitis (EAE), 
the murine model of MS, a markedly more severe 
disease course paralleled by a shift toward a pro-
inflammatory immune cell phenotype, was observed 
in mice that were fed purified ATI concentrations 
comparable to a standard western diet.16 The aim of 
our current study was thus to evaluate if these prom-
ising preclinical findings could be translated into 
clinical strategies to modulate the immune response 
in MS by reducing dietary ATIs.

Materials and methods

Subjects
Subjects diagnosed with RRMS17 were enrolled 
into this 6-month, crossover, open-label, bicen-
tric pilot study. Among the 20 subjects initially 
included in the study, the 3- and 6-month visits 
were completed by 16 patients. Four patients 

decided to quit the study due to personal reasons, 
such as moving and extended traveling.

To be included, patients had to be aged between 
18 and 60 years and to maintain an unchanged 
mild or moderate disease-modifying therapy 
(DMT). Furthermore, patients had to be relapse-
free for at least 3 months prior to study enroll-
ment. Exclusion criteria were the presence of 
other autoimmune diseases, previous limiting 
dietary habits, organ transplantation, or the intake 
of any other immunosuppressive drugs apart from 
the MS medication.

The primary study endpoint was defined as a 
decrease in pro-inflammatory T cell populations 
in the peripheral blood on a wheat/gluten- and 
therefore ATI-reduced diet (W/G/A−). Secondary 
study endpoints included the decrease in other 
pro-inflammatory immune cell populations in 
peripheral blood, an improvement in health-
related quality of life assessed by the 36-item 
short form survey (SF-36), clinical disease stabil-
ity assessed by the Expanded Disability Status 
Scale (EDSS) score, and a reduction of the annu-
alized relapse rate (ARR). In addition, serum 
neurofilament light chain (sNfL) levels as a bio-
marker of neuroaxonal damage were assessed.

This study was registered in the German Clinical 
Trial Register (No. DRKS00027967).

Study procedures
At the baseline visit, patients were randomly 
assigned to one of the two study arms in a crosso-
ver study design (Figure 1). They were instructed 
to either continue on their normal wheat/gluten- 
and thus ATI-containing diet (W/G/A+) for 
3 months and then switch to the largely wheat- 
and ATI-free diet (reduction of at least 90%) for 
the following 3 months (W/G/A−), or started with 
3 months of the W/G/A− diet with a subsequent 
switch to their normal W/G/A+ diet. Wheat con-
sumption was assessed and monitored by struc-
tured food questionnaires (see supplement) 
before study entry, at diet switch and at study 
end.

Clinical and patient-reported outcomes
At baseline visit, demographic and MS-related 
data, including disease history, history of relapses, 
and past and current DMTs, were collected. The 
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baseline visit and every consecutive study visit in 
6-week intervals included general physical and 
neurological examination and the assessment of 
self-reported quality of life. Weight and height 
were measured, and the body mass index (BMI) 
was calculated. EDSS scores were assessed by an 
experienced neurologist blinded to the diet 
assignments.18 The occurrence of new neurologi-
cal symptoms indicative for a relapse was docu-
mented at each visit. Quality of life was determined 
using SF-36, which is a widely used patient-
reported outcome covering eight domains of 
physical and mental quality of life (physical func-
tioning, role limitations due to physical health, 
role limitations due to emotional problems, 
energy and fatigue, emotional well-being, social 
functioning, pain, and general health).19 Item 
reports were summed without weighting sepa-
rately for each domain, and ranges were trans-
formed to have a common range of 0 (worst 
health) to 100 (best health) as described 
previously.20

Measurement of gluten immunogenic peptides
Diet adherence was monitored by the measure-
ment of gluten immunogenic peptides (GIPs) in 
4-h urine samples at every study visit (Glutenostics, 
Indianapolis, USA). GIPs are degradation prod-
ucts of gluten and can be detected in urine for 
3–34 h after the consumption of at least 25–50 mg 
of gluten.21

sNfL single-molecule array
sNfL levels of study participants were measured 
by sNfL single-molecule array (SiMoA) technol-
ogy as previously described22 (see supplemental 
material).

Immunophenotyping
High-quality peripheral blood mononuclear cells 
(PBMCs) were isolated from all patients at base-
line, and at the end of the respective diet intervals 
at the 3- and 6-month time points. Multiparameter 

Figure 1. Study design.
At baseline visit, patients were randomized to either continue on their normal W/G/A+ diet for 12 weeks and then switch to the W/G/A− diet for the 
following 12 weeks, or vice versa. Clinical outcome and adherence measures were assessed at every study visit, while immunophenotyping was only 
performed at baseline and at the end of each dietary intervention. If not stated otherwise, the consecutive analyses refer to the outcome measures at 
week 12 and week 24.
ATI, amylase–trypsin inhibitor; EDSS, Expanded Disability Status Scale; GIP, gluten immunogenic peptides; SF-36, 36-item short form survey; sNfL, 
serum neurofilament light chain levels; W/G/A, wheat/gluten/ATI.
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flow cytometry of immune cells in peripheral 
blood was performed as described previously.23 
Supplementary Figure 1 illustrates the immune 
cell parameters as determined by conventional 
gating.

Statistical analysis
The data from all subjects completing the 3- and 
6-month time points of the crossover period were 
included into statistical analyses (per protocol 
analysis). Normality of distribution was assessed 
by Kolmogorov–Smirnov test. Changes in clinical 
and laboratory outcomes between the two dietary 
intervals were assessed using two-tailed, paired 
t-tests in case of normally distributed variables, 
and Wilcoxon test for not normally distributed 
variables. A two-sided p-value of less than 0.05 
was defined as statistically significant. Of note, 
due to the explorative character of this pilot study, 
no correction for multiple testing was performed. 
Statistical analyses were conducted using SPSS 
23.0 software (IBM Corp., USA); figures were 
generated using GraphPad Prism 8.0 for Windows 
(GraphPad Software, USA).

Results

Patient characteristics
At the baseline visit, patients were randomly 
assigned to one of the two study arms in a crosso-
ver study design (Figure 1). In total, 16 patients 
completed the 3- and 6-month visits [15 females, 

median 42.0 (interquartile range, IQR 35.5–
51.5) years, details in Table 1].

Effects of wheat-reduced diet on cell 
populations of the adaptive immune system
The primary study endpoint defined as a decrease 
in pro-inflammatory T cell populations in the 
peripheral blood on W/G/A− diet was negative. 
We observed no significant changes in the fre-
quency of pro-inflammatory Th1 [Figure 2(a)] 
and Th17 cells [Figure 2(b)] on the wheat-
reduced diet. However, the CD8+ TEMRA (ter-
minally differentiated effector memory T cells 
re-expressing CD45RA) subset (gated by CD3+ 
CD8+ CD45RO− CD27−) displayed significant 
alterations during the wheat-reduced diet, as the 
frequency of granulocyte-macrophage colony-
stimulating factor (GM-CSF)-producing [Figure 
2(c)] and interleukin (IL)-17A-producing [Figure 
2(d)] TEMRA cells was lower on the W/G/A− 
diet. However, the overall proportion of these cell 
populations was low and the data of six patients 
had to be excluded from the analysis since cell 
counts were too low for cytokine measurement 
(Supplementary Figure 2).

Within the B cell compartment, there was a 
decrease in transitional B cells (gated by CD19+ 
CD27+ IgD+ IgM+ CD38+ CD21+ CD24+) 
[Figure 2(e)] and an increase in class switch 
memory B cells (CD20+ CD19+ CD27+ IgD− 
IgM−) [Figure 2(f)] during the wheat-reduced 
diet.

Table 1. Baseline characteristics of study cohort.

Parameter Patients completing the study (n = 16, per 
protocol analysis)

Age [median (IQR)] 42.0 (35.5–51.5)

Sex (female/male) 15/1

Disease duration in years [median (IQR)] 7.0 (4.0–14.5)

DMT (none/Copaxone/Interferon/other) 1/2/11/2

EDSS [median (IQR)] 2.5 (1.0–3.0)

No. of relapses in 2 years before screening [median (range)] 0 (0–3)

ARR in the 2 years before screening 0.34

ARR, annualized relapse rate; DMT, disease-modifying treatment; EDSS, Expanded Disability Status Scale; IQR, 
interquartile range.
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Effects of wheat-reduced diet on cell 
populations of the innate immune system
While there was no difference in the overall 
CD14+ monocyte frequency [percentage of line-
age-negative (linX−) HLA-DR+ cells] between 
the two diet intervals, we observed relevant  
alterations of their composition. There was a 
reduction of circulating CD14+ CD16++ non-
classical monocytes during the wheat-reduced 
compared to the wheat-containing diet [Figure 
3(a)]. Correspondingly, the frequency of classical 
CD14++ CD16− monocytes increased [Figure 
3(b)], whereas intermediate CD14++ CD16+ 
monocytes remained unchanged [Figure 3(c)].

Furthermore, there was an increase in type 3 
innate lymphoid cells (ILCs) bearing the natural 
cytotoxicity receptor (NCR+ ILC3, gated by 

CD45+ linX− NCR+ CD117+) expressing both 
NKp44 and CD62L [Figure 3(d)]. There were 
no significant changes within the dendritic cell 
compartment.

Patient adherence
In the dietary questionnaires, all patients declared 
a reduced consumption of wheat and other glu-
ten-containing foods (as proxy for ATI consump-
tion since both are highly correlated) by about 
88% (from an estimated 6.6 ± 6.3 to an estimated 
0.8 ± 2.4 g of gluten daily). However, 3 patients 
went on a strict GFD and 10 consumed gluten-
containing foods less than once a week. Another 3 
patients reported to be consuming gluten-con-
taining foods more than once a week. Urinary 
GIP levels of 10 patients were reduced during the 

(c)(a) (b)

(f)(d) (e)

Figure 2. Effects of dietary ATI reduction on peripheral blood cell subsets of the adaptive immune system in 
patients with RRMS. There was no significant change in (a) Th1 (CCR4−CCR6−CXCR3+) cells or (b) Th17 cells 
during the ATI-reduced diet interval. The proportion of (c) GM-CSF-producing and (d) IL-17-producing TEMRA 
cells was lower during the ATI interval. (e) Proportions of transitional B cells were decreased during the ATI-
reduced diet interval, whereas (f) the proportion of class switch memory B cells (CD20+ CD19+ CD27+ IgD− 
IgM−) was increased.
Connected dots depict intra-individual changes. Bars comprise means, and whiskers correspond to the SD.
ATI, amylase–trypsin inhibitor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL, interleukin; NS, non-
significant; RRMS, relapsing–remitting multiple sclerosis; TEMRA, terminally differentiated effector memory T cells re-
expressing CD45RA.
*p < 0.05.
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W/G/A− interval compared with the W/G/A+ 
interval, while there was no difference in GIP lev-
els between the W/G/A− diet and W/G/A+ diet in 
4 patients. Two patients had GIP levels below the 
detection limit at both time points. Overall, the 
median GIP levels were lower during the W/G/A− 
diet compared with the W/G/A+ diet 
(Supplementary Figure 3).

Wheat-reduced diet is tolerated well and leads 
to an improvement in pain-related quality of life 
in RRMS patients
The EDSS scores during the wheat-reduced diet 
interval did not differ from those during the wheat-
containing diet interval. One patient suffered from 
an MS relapse with new gait ataxia during the W/G/

A+ diet interval, while no MS relapses were 
reported during the W/G/A− diet interval. Levels of 
sNfL remained stable throughout the study inde-
pendent of diet assignments. In total, the occur-
rence of 11 adverse events was reported (Table 2).

In the SF-36, we observed a significant improve-
ment in the category ‘pain’ during the wheat-
reduced diet (72.3/100 ± 30.4 versus 
79.5/100 ± 25.6, p = 0.008). The self-reported 
perception of the the other categories did not dif-
fer significantly between the wheat-reduced and 
the wheat-containing diets.

A comparison of clinical outcome measures 
between wheat-reduced and wheat-containing 
diet is reported in Table 2.

(a) (b)

(c) (d)

Figure 3. Dietary ATI reduction impacts peripheral blood cell subsets of the innate immune system in 
patients with RRMS. A reduction of dietary wheat/gluten and ATIs (W/G/A−) led to (a) a decreased proportion 
of CD14+ CD16++ non-classical monocytes (% of CD14+ monocytes), whereas (b) the proportion of CD14++ 
CD16− monocytes increased. (c) No change in the proportion of intermediate CD14++ CD16+ monocytes was 
observed. (d) The proportion of circulating type 3 innate lymphoid cells (ILCs) expressing NKp44 and CD62L 
(percentage of ILC3) was increased by ATI reduction.
Connected dots depict intra-individual changes. Bars comprise means, and whiskers correspond to the SD.
ATI, amylase–trypsin inhibitor; ILC, innate lymphoid cell; NS, non-significant; RRMS, relapsing–remitting multiple sclerosis; 
SD, standard deviation; W/G/A, wheat/gluten/ATI.
*p < 0.05; **p < 0.01.
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Discussion
In this proof-of-concept study, we were able to 
translate some of our preclinical findings on the 
immunomodulatory effects of reducing dietary 
wheat consumption, and thus nutritional ATIs, 
to a potential clinical application in RRMS 
patients. While the study’s primary endpoint 
(decrease in circulating pro-inflammatory T cell 

populations) was negative, we observed a reduc-
tion in non-classical monocytes, an ILC subset 
(ILC3), and two small TEMRA subpopulations 
in the peripheral blood of RRMS patients during 
the > 90% wheat- and thus ATI-reduced diet 
interval. Furthermore, the wheat-reduced diet 
was tolerated well and led to an improvement in 
pain-related quality of life.

Table 2. Comparison of outcome measures between wheat-containing (W/G/A+) and wheat-reduced (W/G/A−) 
diet.

W/G/A+ W/G/A− p value

EDSS 2.0 ± 1.5 2.3 ± 1.3 0.096

No. of relapses (total number) 1 0 N/A

sNfL (pg/ml) 11.1 ± 7.0 11.4 ± 7.9 0.187

Weight (kg) 69.4 ± 16.1 68.7 ± 15.5 0.074

BMI (kg/m2) 24.2 (22.0–26.0) 24.2 (20.6–25.7) 0.313

SF-36

 Physical functioning 85.0 ± 20.9 85.8 ± 19.8 0.684

 Role limitations due to physical health 87.5 ± 31.1 81.3 ± 35.6 0.276

 Role limitations due to emotional problems 83.3 ± 38.9 94.4 ± 13.0 0.285

 Energy/fatigue 55.0 ± 20.6 56.7 ± 24.1 0.403

 Emotional well-being 77.0 ± 18.7 77.7 ± 15.5 0.720

 Social functioning 88.5 ± 18.0 90.6 ± 17.8 0.655

Pain 72.3 ± 30.4 79.5 ± 25.6 0.008

 General health 62.5 ± 18.8 62.7 ± 16.4 0.968

 Any adverse events 6 (37.5%) 5 (31.3%) 0.709

 Upper respiratory infection 1 (6.3%) 2 (12.5%) N/A

 Urinary tract infection 0 (0%) 1 (6.3%) N/A

 Diarrhea 1 (6.3%) 0 (0%) N/A

 Edema of the legs 1 (6.3%) 0 (0%) N/A

 Not specified 3 (18.8%) 2 (12.5%) N/A

BMI, body mass index; EDSS, Expanded Disability Status Scale; SD, standard deviation; SF-36, 36-item short form survey; 
sNfL, serum neurofilament light chain; W/G/A, wheat/gluten/ATI.
Comparison of mean clinical outcome measures during the W/G/A+ and the W/G/A− diet interval. During the W/G/A− diet 
interval, patients scored higher in the category ‘Pain’ of the SF-36 questionnaire, indicating a higher quality of life with 
regard to pain. If not stated otherwise, results within this table represent mean ± SD. Statistically significant differences 
are marked in bold.
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Rodent studies have shown that oral ingestion of 
wheat or purified ATIs as active ingredient leads 
to the activation of pro-inflammatory monocytes, 
macrophages, and dendritic cells (DCs) in the 
intestine via activated TLR4-signaling, resulting 
in elevated numbers of (activated) myeloid cells 
in the intestinal lamina propria and mesenteric 
lymph nodes as compared to animals on a wheat- 
and ATI-free control diet6,8–12,14 Moreover, this 
activation exacerbated inflammatory diseases of 
the intestine, the liver, and the lungs in mice, 
including mice with a humanized immune sys-
tem10–12,14 This supported the hypothesis that 
after local activation of intestinal myeloid cells by 
nutritional ATIs, these myeloid cells may migrate 
to the mesenteric lymph nodes, where they may 
encounter already primed autoreactive T cells to 
aggravate tissue-specific inflammation at distant 
sites.8 In our preliminary data on the role of ATI 
in EAE, this translated into a more severe disease 
course.16

Depending on their expression of CD14 and 
CD16, myeloid cells can be subdivided into clas-
sical CD14++ CD16−, non-classical CD14+ 
CD16++, and intermediate CD14++ CD16+ 
monocytes.24 Functionally, the roles of these 
monocyte subsets are still a matter of controver-
sial debate. Some have described the classical 
monocytes as mainly phagocytic with few inflam-
matory attributes,25 while others have suggested 
that they are critical for initial inflammatory 
response.26,27 Non-classical monocytes display 
antigen-presenting properties and are usually 
described to express an inflammatory pheno-
type,25 although they can also be viewed as anti-
inflammatory as they were found to maintain 
vascular homeostasis.28,29 Intermediate mono-
cytes show both moderate phagocytic and inflam-
matory features.25 In the current study, the 
reduction of dietary ATIs was associated with 
decreasing frequencies of circulating non-classi-
cal monocytes and a concomitant increase in clas-
sical monocytes. This is of interest as in 
comparison to healthy controls, MS patients 
show an elevation of non-classical and a reduc-
tion of classical monocytes in peripheral blood.24 
Furthermore, a recent study identified higher 
numbers of classical monocytes as a predictor of 
therapeutic efficacy in dimethyl fumarate-treated 
MS patients,30 which might argue for a favorable 
effect of avoiding wheat/nutritional ATIs in MS. 

Notably, classical monocytes display a lower 
expression of toll-like receptors than intermediate 
and non-classical monocytes.25 Since ATIs stim-
ulate myeloid cells via TLR-4 signaling, this pro-
vides a mechanistic link to our observation of a 
shift from non-classical to classical monocytes 
during the diet low in TLR4-activating ATI.

Apart from monocytes and DCs, the innate 
immune system also comprises ILCs, which func-
tion as potent immune effector cells during 
inflammation. ILC3 can promote an immuno-
logically tolerogenic state in the intestine in 
response to nutrients, commensal bacteria, or 
bacterial metabolites that limits the magnitude of 
potentially damaging T cell responses.31 In the 
current study, the reduction of dietary ATIs led 
to an increase in activated (NKp44+) ILC3, 
which are prominent in the intestine and which 
are able to invade lymphoid tissues via CD62L+. 
While the exact consequence of this finding is 
unclear, it might indicate that the reduction of the 
modest intestinal immune cell activation during 
the wheat (ATI)-reduced diet, which has been 
observed in murine models, might be partly medi-
ated by a recruitment of ILC3 to the mesenteric 
lymphoid tissue. Studies on the contribution of 
ILCs in the pathogenesis of MS remain inconclu-
sive so far.23,32,33

Based on the aforementioned rodent studies on 
the effects of wheat or ATI consumption,6,8–12,14 
we hypothesized that reducing dietary ATIs might 
diminish pro-inflammatory T cell responses in 
the periphery. Although we did not observe a gen-
eral reduction of peripheral inflammatory T cell 
populations, there was a decrease in two small T 
cell subpopulations, namely GM-CSF- and 
IL-17A-producing CD8+ TEMRA cells. These 
cells, which represent the most differentiated type 
of memory cells, express high levels of cytotoxic 
effector molecules, such as perforin and Fas 
ligand.34 An increased occurrence of clonally 
expanded CD8+ TEMRA cells in the blood of 
MS patients has been reported,35 and the 
decreased proportion of subsets producing the 
pro-inflammatory cytokines GM-CSF and 
IL-17A on the ATI-reduced diet may reflect a 
downregulation of detrimental adaptive immune 
responses. However, the absolute number of 
TEMRA cells was low and therefore our findings 
should be interpreted with caution.
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Clinically, we did not detect any evidence of 
increased MS disease activity, with stable EDSS 
scores and unchanged sNfL levels as a marker of 
neuroaxonal damage. There were no reported 
relapses during the wheat-reduced diet interval, 
whereas one patient suffered from a relapse dur-
ing the wheat-containing diet (difference not sta-
tistically significant). However, in the 
patient-reported quality of life assessment, the 
wheat-reduced diet was associated with a reduc-
tion of pain. A plausible pathomechanistic expla-
nation might be a reduction of ATI-mediated 
activation of intestinal myeloid cell TLR4 and 
downstream adaptive effector functions. This is 
in line with growing evidence suggesting that 
TLR4-signaling plays an important role in the 
induction, conversion, and maintenance of 
chronic systemic and neuropathic pain in MS.36 
Therefore, our current finding argues for a com-
plementary role of reducing dietary ATIs in the 
symptomatic treatment of chronic pain and pos-
sibly also long-term sequelae in MS patients.

In an effort to verify dietary compliance, we used 
a validated test to quantify urinary gluten  
peptides (GIP). These peptides were indeed 
decreased in the majority of patients on the 
wheat-reduced versus the wheat-containing diet, 
but still detectable in the majority of patients on 
the wheat-reduced diet. Recent studies showed 
that urinary GIP have a high sensitivity – but a 
low specificity – to detect minor gluten ingestion 
in patients with celiac disease who need to com-
ply with a strict gluten-free diet.37,38 In contrast, 
participants of our study were allowed to con-
sume some gluten as long as the total amount was 
reduced by at least 90%. This explains why we 
were able to detect GIP in the majority of patients 
even during the wheat-reduced diet and under-
lines that urinary GIP cannot be considered a 
reliable biomarker to monitor dietary compliance 
in studies where minor amounts of wheat and 
gluten are allowed.

It should be noted that due to the explorative 
character of this pilot study, we did not employ 
corrections for multiple testing. Furthermore, 
the observed changes in immune cell populations 
are partly small or driven by outliers. Thus, sta-
tistically significant differences in these immune 
cell populations do not necessarily imply physio-
logical relevance. Therefore, a larger-scale clini-
cal trial is necessary to validate the currently 

observed shifts within the PBMC compartment 
and to evaluate the impact of a reduction of 
wheat consumption, and thus dietary ATIs on 
the clinical disease course of MS. This trial 
should also enroll patients with more severe MS 
and follow-up MRT to further classify CNS dis-
ease activity.

To conclude, this pilot study suggests that reduc-
ing dietary wheat/ATIs may be helpful for some 
RRMS patients as a complementary treatment. 
Along with good tolerability, following a wheat/
ATI-reduced diet improved pain-related quality 
of life and exerted a potentially immunomodulat-
ing effect, which was most pronounced in the 
myeloid cell compartment.
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