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Abstract

Background

About 90% of drugs fail in clinical development. The question is whether trials fail because
of insufficient efficacy of the new treatment, or rather because of poor trial design that is
unable to detect the true efficacy. The variance of the measured endpoints is a major,
largely underestimated source of uncertainty in clinical trial design, particularly in acute viral
infections. We use a clinical trial simulator to demonstrate how a thorough consideration

of the variability inherent in clinical trials of novel therapies for acute viral infections can
improve trial design.

Methods and Findings

We developed a clinical trial simulator to analyse the impact of three different types of varia-
tion on the outcome of a challenge study of influenza treatments for infected patients,
including individual patient variability in the response to the drug, the variance of the mea-
surement procedure, and the variance of the lower limit of quantification of endpoint mea-
surements. In addition, we investigated the impact of protocol variation on clinical trial
outcome. We found that the greatest source of variance was inter-individual variability in the
natural course of infection. Running a larger phase Il study can save up to $38 million, if an
unlikely to succeed phase lll trial is avoided. In addition, low-sensitivity viral load assays
can lead to falsely negative trial outcomes.

Conclusions

Due to high inter-individual variability in natural infection, the most important variable in clini-
cal trial design for challenge studies of potential novel influenza treatments is the number of
participants. 100 participants are preferable over 50. Using more sensitive viral load assays
increases the probability of a positive trial outcome, but may in some circumstances lead to
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false positive outcomes. Clinical trial simulations are powerful tools to identify the most
important sources of variance in clinical trials and thereby help improve trial design.

1. Introduction

The cost of drug development has increased steadily over the past twenty years. It has been esti-
mated that the total cost of developing a new small molecule drug in North America and West-
ern Europe is now running at an average of $2.558 billion [1, 2]. At the same time, the number
of drugs approved per year has declined [3]. Consequently, the cost efficiency of pharmaceuti-
cal development has today reached an all-time low [4]. The major part of the total cost is
incurred on projects that fail in clinical development [5]. Therefore, reducing the failure rate of
clinical trials is arguably the most important step in lowering the cost of drug development [6].

The highest failure rate occurs in phase III clinical trials. The main reason for failure is that
the efficacy of a potential novel treatment cannot be demonstrated [3]. It is therefore very
important to ascertain if clinical trials fail because the tested treatment is not effective, or
because of poor trial design that makes it very difficult to detect the true efficacy of a treatment.

To shed light on these issues, clinical trial simulators can be employed prior to the imple-
mentation of a trial, to ascertain what factors in trial design, endpoint definition and variability
in measurements might prevent the detection of the true effect. They are rarely used at present,
but the cost savings generated by such an approach can be very large, since developing a simu-
lator is relatively cheap by comparison with the recruitment of patients and trial execution.

A successtul trial outcome is defined as detecting a statistically significant difference in end-
point measurements between the treatment and the placebo group, in favour of the treatment
group. Possible reasons for trial failure (in phase I and IIT) include too small sample sizes,
inadequate endpoints that are unable to detect the impact of a potential treatment, underesti-
mation of individual variation among patients (this includes genetic and environmental varia-
tion, and additional demographic factors such as age), underestimation of the complexity of a
disease, and measurement variance or experimental error [7, 8]. The concept of variance both
in patient characteristics and in endpoint measurements is important to understand why clini-
cal trials fail. There are many sources of variance in clinical trials, and some of them are often
unappreciated (Table 1).

Measurement and patient variation always reduces the power of the trial and diminishes the
reproducibility of results. If there was an unlimited supply of identical patients and measure-
ment techniques were perfect, detecting the true efficacy of a potential treatment would not be
a problem. Considering the major sources of variance when planning a clinical trial can obvi-
ously increase the robustness of trial design. Robust trial design should allow investigators to
reliably reproduce the outcome of a trial [8]. It should also reduce the incidence of false positive
or false negative results. Simulating virtual clinical trials before running them in the real world
can be used as a tool to assess the robustness of trial design. The variability of different aspects
of a clinical trial can be represented as probability functions in the simulation.

Table 1. Sources of variances in clinical trials of potential novel therapies for influenza A. Applicable to all acute viral infections.

Individual variability among patients

In natural course of infection, In response to treatment

doi:10.1371/journal.pone.0156622.t001

Measurement variability of viral load assay Protocol variability

Measurement error, Sensitivity Number of Measurements, Day of treatment
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In this study, we use a clinical trial simulator to show how the consideration of different
sources of variance inherent in clinical trials of possible therapies for acute viral infections can
improve trial design and the chances of trial success. We use the example of a phase II clinical
trial of a putative new influenza treatment. The setup of challenge studies is less complex than
that of phase IT and III trials. Consequently, they offer the opportunity to assess several com-
mon sources of variance that affect all clinical trials. We investigate the impact of three differ-
ent types of variance on trial outcome: i) individual patient variability in the natural course of
infection and in the response to treatment, ii) the variance of the measurement procedure, and
iii) variability of the lower limit of quantification of the endpoint measurements. In addition,
we consider how variation in the protocol of the endpoint measurement affects trial outcome.

Although our simulation model and the conclusions we draw from our analysis are specific
to infectious disease-related trials, the types of variance we analyse play a role in all clinical tri-
als. Their impact on trial outcome should be analysed using appropriate disease and measure-
ment models prior to trial implementation. The framework of our simulator is adaptable to
trials of other diseases by exchanging the disease and measurement models.

2. Methods
Ethics Committee Approval

Written informed consent was obtained from each participant in a form approved by the insti-
tutional review boards of the University of Virginia, Charlottesville, and the University of
Rochester, Rochester, NY, and subjects were compensated for participation.

2.1. Trial simulator design

We have developed a clinical trial simulator (CTS) for challenge studies of novel treatments
against influenza A. The purpose of the simulator is to evaluate the probability of running a
successful trial, given a specified trial design and varying assumptions about the mode of action
and efficacy of the novel treatment. We examine in detail varying assumptions on the error dis-
tribution of clinical endpoint measurements. Here we will briefly outline the design and func-
tionality of the simulator. For full details please refer to S1 File.

The trial simulator itself is based on a stochastic, individual-based model of a clinical trial.
Each patient in the trial is simulated as an individual entity (object) and runs his/her own
instance of the within-host model of influenza A infection. At the same time each patient is
part of the overall patient population participating in the trial and the trial group to which he/
she has been randomised. For a short description of the within-host model see 2.2. The within-
host model is deterministic and the same for all patients. However, the model parameters for
each patient are drawn individually from random number distributions, derived based on data
from real volunteer challenge studies (for details see 2.3).

During each simulation run the simulated viral load curve over time post infection and post
treatment for each patient can be recorded as a reference. In addition, viral load measurements
at time points specified by the trial protocol are recorded for each patient. We simulate viral
load measurements with qPCR and TCIDs, assays. As our viral load data consisted only of
TCIDs5o measurements and did not include qPCR measurements, we assume the same viral
dynamics for qPCR and TCIDs, curves. This is an oversimplification, and in reality gPCR and
TCIDs, dynamics differ, as [9] have shown. However, here our main purpose is to compare the
error distributions of the two assays, rather than their dynamics, and these should not be
affected by the dynamics. We explain in the Discussion how this oversimplification may affect
our results. We also simulate patient temperature measurements (as a reliable quantifiable
symptom measurement) taken at the same time points as viral load measurements. The viral
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load and temperature measurements can then be used to calculate relevant quantities, such as
the area under the viral load curve or reductions in patient temperature, to statistically compare
different trial groups.

(The source code of the simulator is included as S3 File CTSCode.zip under the GNU
GPLv3 license.)

2.2. Within-host model

The within-host model of influenza A infection is a deterministic ordinary differential equation
model and has been discussed in depth and validated against patient data in [10].

dar
BT
dt prv

‘fi_‘t/ =rfTV —yV
Here, T is the number of susceptible target cells at time ¢, and V'is the amount of free virus
at time t. The parameter B is the infection rate of target cells by free virus, r is the rate at which
infected cells produce virus, and y is the virus clearance rate. In this model, y subsumes both
clearance by the host immune response and non-specific virus decay. Treatment can be incor-
porated into this model in the following way:

Z—f =—(1—¢g)pTV
av
at (1—&)(1—&)rBTV — (y — In(1 — &,))V

Here g, (i = 1, 2, 3) is the efficacy of the treatment acting on different stages of the viral life
cycle. The efficacy here is defined as the fraction by which a parameter is increased/decreased
by the therapy/treatment. Thus, it can be interpreted as the reduction/increase in the rate of
the transition in the viral life cycle that the treatment acts on. In particular, efficacy €, describes
the strength with which a potential treatment reduces the infection rate of target cells. Efficacy
€, quantifies the strength with which a potential treatment reduces the virus production rate.
Efficacy €5 captures by how much a potential treatment increases the virus clearance rate.

The efficacy in the model is not to be confused with the clinical efficacy of the treatment,
defined as the reduction in viral load or the overall reduction in symptoms, that may be mea-
sured as an outcome of the trial. In the equations above, the treatment acts on all parts of the
virus life-cycle (a realistic assumption for e.g. monoclonal antibodies targeting viral antigens
[11, 12]). We assume that the strength with which the treatment acts on each model parameter
is the same (g, = £, = £3). If the treatment only acts on one model parameter, only the relevant
efficacy term is added to the model. This should also approximate the scenario where one
mode of action of the treatment is considerably stronger than others. (For example, the treat-
ment mainly acts on the infection rate, but also has minor effects on the virus production and
clearance rates). We assume that the efficacy of the treatment is constant, i.e. the half-life of the
treatment is longer than the duration of infection (again a realistic assumption for monoclonal
antibodies or daily antiviral drug therapy where drug concentrations remains at a high thera-
peutic level [11]). Treatment can be introduced at different time points post infection in the
simulation.
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2.3. Data used to inform the simulator

The distributions of the within-host model parameters have been estimated from placebo-
group data of volunteer challenge studies by Roche using Markov Chain Monte Carlo methods
(Table 2). The data were viral load measurements (TCIDs,/ml) of individual participants
infected with human influenza A (strain A/Texas/36/91), taken twice daily from day 1 to 3 post
infection and once daily thereafter up to day 9. All volunteers in the study were young healthy
adults aged 18-27 years (non-smokers). Volunteers were screened for HAI titre against the
challenge strain. The parameter estimation methods are described in detail in [13]. We assume
a linear relationship between the log;, of the viral load (V) and body temperature values, as sug-
gested by patient data analyses and previous publications [14]. A linear regression model for
temperature dependent on log10 viral load values was fitted to the data using the Im() function
of the R package [15]:

Temperature = 36.44°C + 0.133°C * log10(V)

We also assume that body temperature does not fall below the baseline of 36.44°C. Based on
dilution series data provided by the Janssen Prevention Center (formerly Crucell), we assume
the error of the real-time qPCR assay to be Poisson-distributed. For the TCIDs5, assay we
assumed a log-normal distribution of the data points, with a standard deviation of

In(D;)In2
n

where Dyis the dilution factor used in the assay (10 in our analyses) and 7 is the number of
wells examined at each dilution step (8 in our analyses) [16].

2.4. Simulations

We ran five series of simulations (labelled Experiments 1 to 5 in Table 3) to assess the impact
of the following five factors on the probability of trial success: 1) variability among patients in
the natural course of infection—assuming that the efficacy of the treatment is the same for all
patients; 2) variability among patients in the response to treatment—assuming that the natural
course of infection is the same for all patients; 3) variability among patients in the natural
course of infection and the response to treatment combined; 4) measurement error of the
TCIDs, and qPCR viral load assays; 5) sensitivity of the different viral load assays.

In each simulation the trial was set up following a protocol adapted from the original oselta-
mivir challenge studies conducted by Roche [17]. Volunteers were distributed randomly into
the treatment or placebo group. All patients were infected with the same amount of influenza
A virus on day 0 and received treatment from day 1 post infection (initial viral load 0.01
TCIDso/ml). Viral load was measured on days 1, 1.5, 2.0, 2.5, 3, 4, 5, 6, 7, 8 and 9, using qPCR

Table 2. Distribution of within-host model parameters in simulation studies based on estimated
parameters from challenge studies. IQR: inter-quartile range.

Infection rate Virus production rate r Virus clearance rate y
Beta distribution: Shape Beta distribution: Shape parameter =~ Gamma distribution: Shape
parameter 1: 0.4858007, Shape 1: 0.3585313, Shape parameter 2:  parameter: 1.886947, Rate
parameter 2:862.77162 312.1007775 parameter: 0.5037087

Median: 6.476 x 10-5, IQR: 8.317 Median: 4.1 x 104, IQR: 4.543 x Median: 2.443, IQR: 2.404
x 104 10-4

doi:10.1371/journal.pone.0156622.t002

PLOS ONE | DOI:10.1371/journal.pone.0156622 June 22,2016 5/18



@’PLOS ‘ ONE

Clinical Trial Simulators to Analyse the Sources of Variance in Trials for Acute Viral Infections

Table 3. Summary of experiments to investigate different sources of variance in clinical trials of novel treatments for influenza A.

Experiment Source of variance

Simulation setup

Individual variability in natural infection Vary patient parameters of within-host model (see Table 1)
2 Individual variability in response to treatment Vary efficacy for each patient (draw from normal distribution)
3 Individual variability in natural infection and in Vary patient parameters and efficacy for each patient
response to treatment
4 Distribution of measurement error Compare error distributions of gPCR and TCID50 assay (Poisson vs. lognormal)
5 Sensitivity of viral load assay Vary lower limit of quantification of viral load assays
6 Day of treatment Vary day of treatment (day 1, 2, 3)
7 Frequency of measurements Vary frequency of viral load measurements (1x, 2x, 3x per day, 2x per day from day

doi:10.1371/journal.pone.0156622.t003

1-3, 1x per day from day 3-9)

and TCIDs assays. Body temperature was measured at the same time points as viral load. In
addition, we tested if the day of treatment and the frequency of measurements affected trial
outcome (see Experiments 6 and 7).

From these data the area under the curve (AUC) for each patient was calculated from differ-
ent viral load assays (QPCR, TCIDs,), for the entire simulated viral load curve and for the tem-
perature measurements, using the trapezoid method. The AUCs between the treated and the
placebo group were then compared with a Wilcoxon-Mann-Whitney test [18, 19]. Individuals
in which the infection did not take off (basic reproductive number for viral replication in host
cells Ry < 1, Ry = BrTy/y) were not excluded from the statistical analysis. In order to examine
how the number of volunteers in the study influences the outcome, each experiment was
repeated for a total of 50 and 100 participants. Each simulation experiment was repeated 100
times with different random number seeds, to determine the probability that a trial was suc-
cessful, given the setup and assumptions specified for each experiment. A summary of all
experimental setups can be found in Table 2.

Experiment 1: Individual variability in natural infection (patient parameters). For each
patient the parameters of the within-host model were drawn from random number distribu-
tions as specified in Table 2. The parameter combinations were restricted to values that gave a
basic reproductive number R, of less than 40 [20]. We restricted the upper boundary of R, to
avoid numerical errors that very high values of R, caused in the integration of the within-host
model equation system. These errors occurred when the value of R, was very (and probably
unrealistically) high. We chose 40 as an upper limit, because in our analysis and in most previ-
ous studies, e.g. [20], the value of R, values was not greater than 40. The assumed efficacy of
the treatment was fixed in each simulation setup. However, we varied the efficacy in a series of
different simulations from 0 to 95%, to see how likely the trial is to be successful over a range of
possible efficacies. This consideration is especially relevant to novel immunotherapies that may
not be 100% effective, but still cause a significant reduction in AUC compared to placebo.

We tested different assumptions on the mode of action of the novel treatment in different
simulation setups. We assumed that the treatment would act exclusively either on the infection
rate of susceptible cells (B), the virus production rate (r), or the virus clearance rate (y), or on
all model parameters. We assume a lower limit of quantification (LLOQ) of 3.33 log;, viral
cDNA copies/ml for the qPCR assay [21], and 2.0 log;, units for the TCIDs, assay.

Experiment 2: Individual variability in response to treatment (efficacy of treatment).
The within-host model parameters were the same for each patient (median of estimates). The
efficacy of the treatment was individual-dependent, i.e. it was drawn from a truncated normal
distribution (ranging from 0-1) for each patient. We varied the mean efficacy from 0-95%
(0.0,0.1,0.2,0.3,0.4, 0.5,0.6, 0.7, 0.8, 0.9, and 0.95) and used different standard deviations in
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different simulation runs (0.001, 0.01, 0.1, 0.2, 0.5, and 1.0). As in Experiment 1, we varied the
mode of action of the new treatment in different simulation runs. We set the LLOQ of the
qPCR assay to 3.33 logo units and that of the TCIDs, assay to 2.0 log; units.

Experiment 3: Individual variability in natural infection and response to treatment.
Here we drew both the model parameters and the treatment efficacy for each patient from ran-
dom number distributions, as detailed for Experiments 1 and 2, respectively. The error distri-
butions and LLOQs of the viral load assays stayed the same as in Experiment 1.

Experiment 4: Measurement error (TCID50, qPCR). In this set of experiments we drew
the parameters of the within-host model from random number distributions for each patient
and kept the efficacy constant for all patients within the same simulation run (as in Experiment
1). The error distributions and sensitivities of the viral load assays were set as in Experiment 1.

Experiment 5: Assay sensitivity (lower limit of quantification). The protocol for Experi-
ment 5 was the same as for Experiment 1, but here we examined different values for the LLOQ
of the qPCR and the TCIDs assays (assumed LLOQs for qPCR: 2.0 log; units, 2.5 log, 3.33
log;0, 4.3 log; units; assumed LLOQs for TCIDsg: 0.0 log;, 1.0 log;o, 2.0 logo, 2.5 logy).

Experiment 6: Day of treatment. We followed the same setup as in Experiment 1, but
simulated treatment from day 2 and day 3, instead of day 1.

Experiment 7: Frequency of measurements. We followed the same setup as in Experi-
ment 1, but used different measurement protocols for viral load and symptoms: one measure-
ment per day, two measurements per day, or three measurements per day.

3. Results
3.1. Individual variability (Experiments 1, 2 and 3)

Experiment 1: Individual variability in natural infection. The variability in the course of
natural infection is high, even though the individual patient parameters on which the simula-
tions were based were estimated from a very homogenous demographic sample (Fig 1). The
range of variability in the simulated course of natural infection is similar to predictions found
in earlier modelling studies [22]. The variability among patients is large, compared to the vari-
ance of the measurement error of the viral load assays (Figs 2 and 3). The duration of infection
ranged from 0 days (infection did not take off, Ry<1) to more than 8 days (duration of mea-
surement period). Peak viral load varied between 0 (infection did not take off, Ry<1) to 3 x 10°.
Moreover, the timing of peak viral load varied considerably from less than 1 day after infection
today 7.

We found that the assumed mechanism of action of the tested treatment had a great impact
on trial outcome. For treatments that act on viral growth parameters (infection rate, virus pro-
duction rate), both viral load assays and body temperature tend to overestimate the efficacy of
the treatment. They may indicate that the difference in AUC between the treated and untreated
groups is statistically significant, when the difference in AUC between the treated and placebo
groups of the simulated viral load curves is not (Fig 4). By simulated viral load curves we mean
the entire simulated course of infection of each patient from which measurements are taken.
These curves cannot be known in reality, as only measured values can be observed.

For treatments that act on the virus clearance rate, both qPCR and TCIDs, assays tend to
underestimate the efficacy of the tested treatment and give false negatives, compared to the out-
come of the simulated viral load curves (Fig 4). Contrarily, if body temperature AUC is used as
a clinical end point, the efficacy of the tested treatment tends to be overestimated. Treatments
that act on all aspects of the viral life cycle, have the highest probability of leading to a success-
ful trial outcome. They also have the highest agreement on outcome between viral load assays,
symptom measurements and simulated viral load curves (Fig 4).
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Fig 1. Viral load curves over time of 50 (a) and 100 (b) patients. If there are less curves than simulated patients, the infection did not take
off in the remaining number of patients (R, < 1) (curve is a flat line across the x-axis). x-axis: time in days, y-axis: viral load in particles per ml.

doi:10.1371/journal.pone.0156622.g001

As expected, the probability of running a successful trial (power of the trial) is higher with
100 participants than with only 50 (Fig 4). Even with a treatment efficacy of 95%, no trial with
only 50 patients in Experiment 1 had a power of 80% or more according to viral load measure-
ments (Fig 4). In contrast, with 100 patients and assuming a high efficacy of the treatment
(at least 90%), almost all trials had a power of 80% or greater (even if these include some false
positive results). The only exceptions were trials of treatments that act on the virus clearance
rate, which never reached a power of 80%. This indicates that the impact of potential novel
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Fig 2. Variance of viral load measurements. For this figure we simulated influenza virus infection in 1000 patients that all had the same
natural course of infection. For each of the patients, viral load measurements were generated, simulating gPCR (upper row) and TCIDsq
assays (lower row). The variance of the TCIDso assay (lognormal distribution) is greater than that of the gPCR assay (Poisson distribution).
The variance of the viral load assays is small compared to the variation in natural infection among patients. Upper row: gPCR measurements,
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Fig 3. Experiment 1: Individual variability in natural infection. The plots show the number of successful trials out of 100 simulated trial runs (y-axis) for
different assumed efficacies of the treatment (x-axis). All 100 iterations for each assumed efficacy value had exactly the same setup and differed only in
the random number seed. The number of successful trials out of 100 runs can be interpreted as the power of the trial. The power of the trial depends on
the mechanism of action of the treatment and the number of patients in the trial. As individual variability in natural infection is large, trials with 50 patients
do not reach a power of 80%, even if the assumed efficacy of the treatment is high (90+%). Coloured lines show the number of successful trials out of 100
runs depending on efficacy for different endpoint measurements (PCR: viral load AUC measured with qPCR; Symptom: temperature AUC; TCID: viral
load AUC measured with TCIDs(; Simulated: viral load AUC of the simulated viral load AUC). Upper row: trials with 50 patients. Lower row: trials with 100
patients. a, e: treatment acts on all stages of the virus life cycle/model parameters. b, f: treatment acts on the infection rate. c, g: treatment acts on the
virus production rate. d, h: treatment acts on the virus clearance rate.

doi:10.1371/journal.pone.0156622.9003

treatments acting only or mainly on the virus clearance rate may be difficult to detect with this
phase II trial protocol. More detailed within-host models of influenza infection may be better
able to confirm this prediction [23].

Experiment 2: Individual variability in response to treatment. Compared to the impact
of individual patient variability in the natural course of infection, patient variability in the
response to treatment had a negligible effect on trial outcome (Figures A-D in S2 File).
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Fig 4. Experiment 5: Sensitivity of viral load assay (qPCR). Plots show the number of successful trials out of 100 runs (y-axis) over the
assumed mean efficacy of treatment (x-axis). The probability of success corresponds to the power of the trial. The parameters determining the
course of natural infection were drawn from the same random number distributions for each patient as explained in the main text. The efficacy for
each patient (response) was fixed to the same value for each patient in each run. Thin coloured lines show the power of the trial dependent on the
efficacy of the treatment for gPCR viral load assays assuming different lower limits of quantification. The bold red line shows the power of the trial
dependent on the efficacy of the treatment, if the simulated viral load curve is considered. Very insensitive assays can greatly reduce the power of
atrial, especially in potent drugs that act on several stages of the virus life cycle (a). Conversely, if the treatment acts on the infection rate (b) or the
virus production rate (c), very sensitive viral load assays tend to give false positive results. Trials with 100 patients. a: treatment acts on all model
parameters. b: treatment acts on the infection rate. c: treatment acts on the virus production rate. d: treatment acts on the virus clearance rate.

doi:10.1371/journal.pone.0156622.9004

However, the setup of Experiment 2 was highly artificial (assuming that all patients had exactly
the same natural course of infection and only differed in their response to treatment). There-
fore, we considered a more realistic scenario (patients varied in the natural course of infection
and in their response to treatment) in Experiment 3.

Experiment 3: Individual variability in natural infection and response to treatment. If
individual variability in response to treatment was low (10% of the population mean of the effi-
cacy or less), compared to individual variability in the course of natural infection, it did not
affect trial outcome (Figures E-H in S2 File). Contrarily, if individual variability in response to
treatment was similar to or greater than individual variability in the course of natural infection,
the power of a clinical trial could be greatly reduced (to less than 50%) (Figures E-H in S2 File).
The explanation is that even if the mean efficacy of the treatment was high, there were many
patients who would not respond as well to treatment, so that the measureable impact on infec-
tion in these patients was lower. Apart from these additional results, the same observations as
in Experiment 1 apply to Experiment 3.

3.2. Variance of viral load measurements

Experiment 4: Measurement error (TCID50, qPCR). Although the qPCR and TCIDs,
assays had different error distributions, they had almost the same ability to detect a statistically
significant difference between treated and untreated groups. They also had the same tendency
to detect false positive or negative outcomes (Fig 4). The impact on clinical trial outcome of the
measurement error of the viral load assay may not have been as great as that of the sensitivity
of the assay.
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Fig 5. Experiment 6: Day of Treatment. Treatment acts on all model parameters. Plots show the number of successful trials out of 100 runs
(y-axis) over the assumed mean efficacy of treatment (x-axis). The probability of success corresponds to the power of the trial. The parameters

determining the course of natural

infection were drawn from the same random number distributions for each patient as explained in the main

text. The efficacy for each patient (response) was fixed to the same value for each patient in each run. The later treatment is given, the lower the
power of the trial. a: treatment on day 1; b: treatment on day 2; c: treatment on day 3. Coloured lines show power of the trial depending on
efficacy for different endpoint measurements (PCR: viral load AUC measured with gPCR; Symptom: temperature AUC; TCID: viral load AUC
measured with TCIDsg; True: viral load AUC of the simulated viral load AUC).

doi:10.1371/journal.pone.0156622.g005

3.3. Sensitivity of the viral load assay

Experiment 5: Assay sensitivity (lower limit of quantification, LLOQ). Low-sensitivity
assays can reduce the ability of a trial to detect a statistically significant difference between
treated and untreated groups. When the treatment acted on the viral clearance rate or on all
model parameters, a very insensitive assay (QPCR, LLOQ 4.3 log; units) considerably reduced
the power of the trial (Fig 5). When the treatment acted on the infection rate or the virus pro-
duction rate, however, more sensitive qPCR assays resulted in more false positive trial out-
comes at high efficacy, compared to differences in simulated viral load AUCs.

TCIDs, assays tend to be more sensitive than most frequently used qPCR assays when it
comes to influenza virus quantification [24, 25]. Consequently, variability in the lower limit of
quantification only had little effect on trial outcome in our analysis (Figures I-J in S2 File).

3.4. Trial design

Experiment 6: Day of treatment. When treatment was given after the time of peak viral
load (day 2 or day 3), the probability to detect a statistically significant difference between
treated and untreated groups was considerably reduced, compared to when treatment was
given before the peak (day 1) (Fig 5). Both viral load assays and symptom (temperature) mea-
surements tended to give false positive trial outcomes for all modes of action of treatments,
apart from those acting only on the virus clearance rate (Figures K-N in S2 File).

Experiment 7: Frequency of measurements. Increasing the frequency of viral load mea-
surements beyond 1 per day did not improve the power of the trial. In other words, it did not
increase the probability to find a statistically significant difference between treated and
untreated groups in viral load or symptom AUCs (Figures O-R in S2 File).
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4. Discussion

Our analysis demonstrates that the biggest source of variance in a challenge study of treatments
for influenza A infection is the individual patient variability in the natural course of infection,
as measured by changes in viral load over time. This implies that underestimating the popula-
tion variability in the course of natural infection may be the main reason for trial failure. Trial
failure here is defined as failure to detect a statistically significant difference in endpoint mea-
surements between treatment and placebo groups, when the treatment is actually effective.

Including more participants in a trial will reduce the probability of chance effects leading to
trial failure or false positive trial outcomes. Running a phase II trial with 100 rather than 50
Patients can lead to considerable cost savings. Assuming an average cost per patient per trial of
$40,000 for phase II trials and $42,000 for phase III trials and an average number of 1,000
patients in a phase III trial for potential novel influenza treatments [26], the cost for an unsuc-
cessful phase III trial after a falsely positive phase II trial are $42 million. The cost of a phase II
trial with 100 patients are $4 million. So the potential savings allowing for greater variation
among patients are $38 million.

In the artificial scenario where all patients had exactly the same course of natural infection
(Experiment 2), the power of the trial to detect a statistically significant difference between
groups was almost always 100%. This was observed regardless of trial size and other variables.
In contrast, when patient variability as estimated from a demographically homogenous sample
of volunteers infected with influenza A was considered (Experiment 1), the power of the trial
was greatly reduced.

Individual variability in the response to treatment can further reduce the power of the trial
(Experiment 3). Although reliable information on population variation in the response to treat-
ment is unlikely to be available at the beginning of a phase II trial for a novel treatment, gener-
ating this information should be one of the goals of the trial. This can be done by assessing the
variability in infection in the treated group and comparing it with the variability in the placebo
group. Overall our results suggest that any novel influenza treatment will need a high efficacy
to achieve a statistically significant difference in viral load AUC compared to placebo. High
efficacy of the novel treatment may also prevent the emergence of resistance, which has been
shown to be a problem for existing anti-influenza treatments [27, 28].

In our simulations, the assumed mechanism of action of the treatment had a major impact
on the power of the trial. Unsurprisingly, trials of treatments that act on all stages of the virus
life cycle tend to have the highest power. Trials of treatments that act on the virus clearance
rate tended to have the lowest power in our analysis. The reason is that in our analysis such
treatments mainly increased the viral load decay slope without greatly affecting the area under
the viral load curve. Using a multilevel model, Heldt et al. [23] found that treatments that act
on virus production are most effective in reducing viral load, whereas treatments that reduce
the infection rate primarily delayed the course of infection. In our simulations, trials of treat-
ments acting on virus production vs. those of treatments acting on the infection rate tended to
have similar power, although the success rate of trials for treatments reducing virus production
may be slightly higher.

As all participants in volunteer challenge studies are routinely tested for pre-existing HI-
titres against the challenge strain, pre-existing humoral immunity cannot be the cause of the
high observed population variability in the course of natural infection [29]. Several recent stud-
ies have found a correlation between pre-existing cellular immunity to influenza A and disease
protection [29-31]. Following these observations and our analyses, it may be advisable to
incorporate screening for pre-existing cellular immunity against influenza A into the selection
process of participants in challenge studies, to increase the chance of detecting a statistically
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significant difference between treatment and placebo groups and to better be able to character-
ise the treatment effect under controlled conditions [11, 32].

On the other hand, a highly selected sample of the population, screened for both pre-exist-
ing humoral and cellular immunity, may not be representative of the eventual target popula-
tion of the treatment [33]. Larger and more inclusive trials need to be run subsequently to
assess the effectiveness of the treatment in the general population. Our analyses indicate that
detecting the effect of the treatment may be difficult even in a very demographically homoge-
neous population.

Besides differences in infection history, genetic differences among patients play an impor-
tant role in overall population variability in natural infection and response to treatment [34].
[11, 32]. More broadly, it is well known that the course of viral infections within mammalian
hosts is strongly influenced by the genetic background of the host and this is very difficult to
control for at present in human volunteer studies given limited knowledge of the genetic deter-
minants of the severity of influenza A infection [35].

Efforts to uncover human genetic variation that underlies severe influenza infection are
ongoing [36, 37]. Additionally, inbred mouse strains can be used to assess the impact of host
genetic variability on variation in infection and to identify genetic variants that influence the
course and severity of infection [38]. Genetic markers that are known to affect the course and
severity of influenza infection can be used in screening of volunteers in challenge studies or for
post-hoc analysis of clinical trial data. But at present, patient variability in infection must be
recognised and its impact must guide trial design.

Our results imply that both qPCR and TCIDs, assays perform equally well at detecting sta-
tistically significant differences between treated and untreated groups, when viral load AUC is
used as an endpoint. However, we also found that the sensitivity of the viral load assay can
greatly influence trial outcome, and the effect may depend on the mechanism of action of the
tested treatment. While small differences in assay sensitivity did not change trial outcome (e.g.
lower limit of quantification 2.0 vs. 2.5 log;, units), a very high lower limit of quantification
may greatly reduce the power of a trial (LLOQ 4.3 log;, units). Conversely, for some treat-
ments, a more sensitive viral load assay may increase the probability of falsely detecting a posi-
tive trial outcome. The choice of the viral load assay should, therefore, be based on knowledge
about the mechanism of action of the tested treatment.

Petrie et al. [9] showed that viral titre dynamics differ when measured with RT-PCR or the
TCIDs, assay, because RT-PCR measures all viral RNA, including non-functional virus,
whereas TCIDs5, only measures infectious virus. Therefore investigators should choose the
assay depending on whether they are more interested in the clearance of infectious virus or
total virus.

We found that the later a treatment is given, the lower the probability to detect a statistically
significant effect on infection. Our results agree with those from [28], where the authors found
that treatment efficacy declines right from the time of inoculation. This may prove problematic
for intention-to-treat trials, because patients usually present at clinics when the time of peak
viral load has already passed [33]. Moreover, subjects will start treatment at different time
points after infection. In these cases, viral load or symptom AUC may not be a suitable end-
point measurement. Changes in the slope of viral load and symptom decline or time to resolu-
tion of illness/first negative viral load measurement may be more sensitive endpoints in
studies, where treatment is given late in the course of infection [39, 40].

Increasing the frequency of viral load measurements to more than one per day did not
improve the power of the trial in our analysis. The reason is that, although more measured
data points provide more accurate information on the shape of the viral load curve and hence
the AUC, the measurement protocol equally affects both the treatment and placebo group.
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Moreover, we used a non-parametric statistical test to compare the two groups. Consequently,
more accurate information on the magnitude of the AUC may not affect the outcome of the
test, as long as the ranking of AUCs across patients stays the same. Alternatively, this finding
may be an artefact of the simple model used to generate the viral load curves. Additional sam-
pling points could be important if the viral load curve, and therefore the shape of the AUC,
were simulated with more complex models that include, for example, explicit representations
of the immune response or resistant virus.

To summarise, our results suggest that the following aspects are the most crucial in the
design of volunteer challenge studies to test potential novel treatments of influenza A:

1. The population variability in the course of natural infection is large and should not be
underestimated. Additional screening steps may be introduced to make sure that partici-
pants in a volunteer challenge study form as homogenous a sample as possible, to increase
the chance of detecting a statistically significant difference between treatment and placebo
in a challenge study. As the variability in the eventual target population will be much larger,
one cannot simply extrapolate results concerning trial success from a challenge study to a
phase III trial. However, well controlled conditions in challenge studies can help in the
learning phase to better characterise the effect of a novel treatment. This will also help in the
planning of more robust phase IIb/III trials.

2. A trial with 100 participants is preferable over a trial with only 50 participants, if—assuming
a high efficacy of the treatment—the trial should have a power of at least 80%. For treat-
ments with a lower efficacy, even more participants would be required.

3. The mechanism of action of the potential novel treatment determines how it will affect the
shape of the viral load curve over time and hence the course of infection. Ideally the precise
mechanism of action of the novel treatment should be known prior to the start of a clinical
trial.

4. If the treatment acts on the virus clearance rate or on several stages of the influenza virus
life cycle, a sensitive viral load assay should be used. If the treatment acts primarily on the
infection rate or the virus production rate, a less sensitive assay may avoid false positive trial
outcomes.

5. For some types of treatments, we observed a tendency of both measured viral load and
symptom endpoints to signal a statistically significant difference between treated and pla-
cebo groups, even if the simulated viral load AUCs between the groups did not differ signifi-
cantly. This may indicate a tendency for phase II trials to overestimate the efficacy of a
novel influenza treatment, which may lead to disappointment in phase III studies.

5. Conclusion

A quantitative approach to biological and clinical endpoint measurements based on data analy-
sis and clinical trial simulators can help to identify the major sources of variance in clinical trial
design. Thus, it opens the possibility to make trial design more robust by controlling for varia-
tion and minimizing uncertainty at all stages of the trial. Although our analysis here specifically
considered a phase II trial of potential new influenza A treatments, the same sources of variance
affect any clinical trial (individual variation, measurement error, measurement sensitivity, and
protocol variation). Clinical trial simulators are valuable tools for analysing and improving trial
design prior to trial implementation. The cost of constructing the simulator is many orders of
magnitude less than the cost of running a trail. Simulators help to minimise the likelihood of

PLOS ONE | DOI:10.1371/journal.pone.0156622 June 22,2016 15/18



@’PLOS ‘ ONE

Clinical Trial Simulators to Analyse the Sources of Variance in Trials for Acute Viral Infections

failure due to poor design, poor measurement choice or inadequate sample size. Trial simulators
can help to maximise the chances of trial success and to reduce the costs of drug development.
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