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Abstract 16 

Microglia, the innate immune cells in the central nervous system, exhibit distinct transcriptional profiles 17 
across brain regions that are important for facilitating their specialized function. There has been recent 18 
interest in identifying the epigenetic modifications associated with these distinct transcriptional profiles, 19 
as these may improve our understanding of the underlying mechanisms governing the functional 20 
specialization of microglia. One obstacle to achieving this goal is the large number of microglia required 21 
to obtain a genome-wide profile for a single histone modification. Given the cellular and regional 22 
heterogeneity of the brain, this would require pooling many samples which would impede biological 23 
applications that are limited by numbers of available animals. To overcome this obstacle, we have 24 
adapted a method of chromatin profiling known as Cleavage Under Targets and Tagmentation 25 
(CUT&Tag-Direct) to profile histone modifications associated with regional differences in gene 26 
expression throughout the brain reward system. Consistent with previous studies, we find that 27 
transcriptional profiles of microglia vary by brain region. However, here we report that these regional 28 
differences also exhibit transcriptional network signatures specific to each region. Additionally, we find 29 
that these region-dependent network signatures are associated with differential deposition of H3K27ac 30 
and H3K7me3, and while the H3K27me3 landscape is remarkably stable across brain regions, the 31 
H3K27ac landscape is most consistent with the anatomical location of microglia which explain their 32 
distinct transcriptional profiles. Altogether, these findings underscore the established role of H3K27me3 33 
in cell fate determination and support the active role of H3K27ac in the dynamic regulation of microglial 34 
gene expression. In this study, we report a molecular and computational framework that can be applied 35 
to improve our understanding of the role of epigenetic regulation in microglia in both health and disease, 36 
using as few as 2,500 cells per histone mark. 37 
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 38 
Introduction 39 

Microglia are the resident immune cells of the central nervous system (CNS). These cells contribute to 40 
various neurological functions throughout the lifespan, such as aiding in neurodevelopment by 41 
promoting neurogenesis, cellular differentiation, and shaping neuronal circuits [1, 2]. During adulthood, 42 
microglia participate in activity-dependent synaptic pruning, clearing cellular debris from dead and 43 
dying cells. Microglia continuously monitor the neural environment, responding to immunological 44 
insults or injury by sensing numerous pathogen and damage associated molecules. These reactive 45 
microglia are typically characterized by alternate morphologies and secretion of various cytokines (e.g., 46 
IL-6, IL-1b, and TNF-a) [1, 2]. Following this initial pro-inflammatory response, microglia then 47 
promote tissue repair and resolution of inflammation by releasing anti-inflammatory cytokines, 48 
chemokines, and neurotrophic factors [1, 2]. 49 

The brain is characterized by its rich cellular heterogeneity, as well as its complex circuitry that 50 
contributes to the functional specialization of each brain region. Indeed, microglial gene expression also 51 
demonstrates regional heterogeneity. For instance, hindbrain microglia exhibit higher expression of 52 
genes associated with clearance activity and immune signaling, while forebrain and midbrain microglia 53 

Figure 1. Pipeline of tissue processing and data analysis for the characterization of the microglial 

transcriptome and epigenome on a regional scale. 
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more robustly express genes related to synaptic plasticity and surveillance activity, although to varying 54 
levels [3-6]. Specifically, microglia marker genes Cx3cr1 and P2ry12 also display regional 55 
heterogeneity, showing higher expression in frontal regions compared to midbrain and hindbrain regions 56 
[7-9].  57 

Interestingly, region-specific transcriptional differences in microglia may be influenced by epigenetic 58 
regulation through a suite of transcription factors, epigenetic modifying enzymes, and histone post-59 
translational modifications (PTMs) [3, 10-12]. Indeed, studies suggest the homeostatic microglial 60 
transcriptome is regulated by master transcription factor PU.1 [13, 14] and chromatin modifications 61 
associated with active promoters (e.g., H3K4me3) and enhancers (e.g., H3K4me1/2 and H3K27ac) [15, 62 
16]. Additionally, a recent study demonstrated that striatal and cerebellar microglial function are 63 
controlled by polycomb repressive complex 2 (PRC2) [11], which writes the repressive histone mark, 64 
H3K27me3. Altogether, these studies suggest microglia fine tune their gene expression to the 65 
surrounding neural environment through epigenetic modifications.  66 

Indeed, the regions examined in this study are part of, and accessory to, the brain reward system and 67 
have been implicated in numerous psychiatric, neurodevelopmental, and neurodegenerative disorders 68 
[17-19]. Previous studies have suggested that microglia within these regions may contribute to disease 69 
through alteration of their transcriptional landscape [20-23]; however, epigenetic regulation of these 70 
cells is less known. Although much effort has been made to characterize the microglial epigenetic 71 
landscape in a brain region-specific manner, these efforts have been hampered by technical limitations. 72 
For instance, chromatin immunoprecipitation sequencing (ChIP-seq) and assay for transposase-73 
accessible chromatin sequencing (ATAC-seq) have been first-line methods for epigenetic profiling 74 
across a broad range of cell types and tissues. In fact, both ATAC-seq and ChIP-seq have been 75 
invaluable in enabling the characterization of the microglial epigenome on a global scale [11, 24-31]. In 76 
this study we seek to build on these findings by better understanding how these effects can be measured 77 
on a regional scale. However, these methods require a significant amount of input (upwards of 500,000 78 
cells) to obtain reliable results. Furthermore, while single-cell and single-nucleus sequencing have 79 
recently become the preferred methods to examine different cell populations, these are limited by their 80 
low sequencing depth. Therefore, a low-input method that retains a high signal-to-noise ratio with 81 
minimal sequencing depth (8-10M) is preferable to further examine the epigenetic landscape of brain 82 
region-specific microglia. Here, we utilize one such method, Cleavage Under Targets and Tagmentation 83 
(CUT&Tag-Direct), that can be used to profile the microglial epigenome from different brain regions 84 
with as few as 2,500 cells per histone mark. In this study, we examine the regional differences in naïve 85 
microglial gene expression across regions of the brain reward system and associate region-specific 86 
transcriptional profiles with repressive (H3K27me3) and permissive (H3K27ac) histone marks. In doing 87 
so, we describe a low-input molecular and computational framework, from isolation of primary 88 
microglia to preparation of RNA-seq/CUT&Tag-Direct libraries and computational analyses, that can be 89 
applied to study region-specific epigenetic and transcriptional changes in microglia both in health and 90 
disease models.  91 
  92 
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Results 93 

Region-specific microglia are transcriptionally distinct 94 

We first aimed to determine the transcriptional heterogeneity of microglia by brain region as previously 95 
observed [3, 11]. To this end, RNA from purified region-specific microglia were sequenced and 96 
differential gene expression analysis confirmed that microglia from the brain regions tested feature 97 
distinct transcriptional profiles. More specifically, we found that microglia from the hippocampus (HPP) 98 
are the most transcriptionally distinct when compared to somatosensory cortex (CTX), prefrontal cortex 99 
(PFC), ventral tegmental area (VTA) and the striatum (STR) (Fig 2A). In support, we found numerous 100 
differentially expressed genes between the brain regions examined (CTX, PFC, VTA, STR vs HPP: 101 
2,681, 4,075, 4,020, 3,723, respectively, padj < 0.01) (Fig 2B, Data S1). Further, hierarchical clustering 102 
using the top differentially expressed genes across all regions shows region-specific transcriptional 103 
profiles (Fig 2C).   104 

 105 

Figure 2. Microglia exhibit regional transcriptional heterogeneity. (A) Principal components analysis (PCA) indicates 

variation in baseline transcriptomics in hippocampal (HPP) microglia over other regions. Furthermore, we find (B) 

significant numbers of genes to be differentially expressed between each group in a pairwise comparison (n=5-6, padj 

<0.01). Of these significant genes we note (C) patterns of significant up- and down-regulation of genes in HPP microglia 

relative to other regions of interest. 
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Pathway analysis reveals biological themes specific to regional microglia 106 

To better understand the biological relevance of region-specific microglial transcriptomes, gene 107 
ontology (GO) pathway analysis was conducted on significantly differentially expressed genes. We 108 
found several significantly altered biological pathways which are specific to individual brain regions. 109 
Specifically, CTX microglia showed enrichment for pathways related to apical plasma membrane, 110 
external encapsulating structure organization, and extracellular structure organization when compared to 111 
VTA, as well as cilium processes when compared to STR (Fig 3A), suggesting that microglia in the 112 

Figure 3. Transcriptional heterogeneity is linked to region specific gene expression and underlying functional 

differences. (A) Significantly enriched Gene Ontology (GO) pathways for each region studied (n = 5-7, padjgenes < 

0.05; padjpathways < 0.01) in a pairwise fashion. (B) Normalized gene expression plots highlight significantly enriched 

genes that are highly expressed in each region (n = 5-7, padjgenes < 0.05, Error bars represent SEM). 
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somatosensory cortex may preferentially contribute to extracellular matrix (ECM) formation and overall 113 
cortical assembly and structure [32-34]. Additionally, we found microglia from the HPP were enriched 114 
for pathways such as axoneme when compared to the PFC, motile cilium when compared to the STR, 115 
and overall cilium organization when compared to the PFC, STR, and VTA (Fig 3A), indicating 116 
hippocampal microglia at baseline conditions may be highly surveilling and secretory compared to other 117 
brain regions [35]. Microglia from the PFC were significantly enriched for genes related to carbohydrate 118 
binding and leukocyte migration when compared to the HPP, MHC class II protein complex binding 119 
when compared to the STR, and humoral immune response when compared to both the STR and HPP 120 
(Fig 3A), consistent with other studies showing altered cytokine expression in microglia of the frontal 121 
cortex [36]. Furthermore, the locomotory behavior pathway was enriched in STR microglia when 122 
compared to the PFC (Fig 3A), supporting the importance of STR microglia in maintenance of 123 
dopaminergic circuitry [6, 37-39]. Additionally, the VTA was enriched for pathways related to 124 
chromosomal region, segregation, nuclear division, and regulation of cell cycle when compared to CTX, 125 
suggesting that microglia  in the VTA may be more proliferative [6], whereas STR microglia were 126 
significantly enriched for pathways related to cytokine activity, regulation of cell-cell adhesion, and 127 
regulation of lymphocyte activation when compared to CTX microglia (Fig 3A). In addition, we find 128 
numerous genes that are expressed in a region-specific manner which also underscore these differences 129 
in regional microglia (Fig 3B). 130 

Weighted gene-network correlation analyses reveal region-specific networks of microglia gene 131 
expression. 132 

Following differential gene expression analyses, we sought to better characterize the regional 133 
differences observed in microglia by identifying modules of expression. To this end, a weighted gene 134 
correlation network analysis was conducted and identified 8 modules which show significant mean 135 
differential expression across brain regions (Data S2). Of these 8 modules, the “salmon” (ME1), “blue” 136 
(ME4), “plum” (ME5) and “darkolivegreen” (ME19) modules were selected for further analysis, as they 137 
were the most differentially expressed (Fig 4A). To understand the biological relevance of these genes, 138 
we first filtered the modules for genes with high module membership based on p-value correlations and 139 
identified hub genes central to each module (Fig 4C-F). GO pathway analyses on highly modular genes, 140 
those representing the top 1% of modular membership, revealed several differentially expressed 141 
pathways between regions (Fig 4B). Interestingly, we found that ME1, which is mainly involved in 142 
movement and cellular structure, is significantly enriched in hippocampal microglia relative to other 143 
regions, while ME5 was significantly depleted in HPP microglia, indicating that GTPase enzymatic 144 
activity may be higher in microglia from other regions compared to HPP. Additionally, STR and VTA 145 
microglia show enrichment of pathways associated with an immune-activated phenotype including 146 
responses to bacteria and stimuli, identified in ME4. Finally, ME19 was slightly enriched in HPP, STR 147 
and VTA microglia with higher representation of genes related to cell-cycle phase transition. 148 

Taken together, these data support the hypothesis that regional neural microenvironments may regulate 149 
microglial gene expression, and that these transcriptional variations enable microglia to execute their 150 
unique homeostatic functions across different brain regions. While we identified hippocampal microglia 151 
as most transcriptionally distinct from other region-specific microglia, the epigenetic factors that 152 
contribute to such heterogeneity remain unclear. 153 
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 154 

CUT&Tag-Direct enables histone profiling on minimal primary microglial samples. 155 

H3K27me3 is a histone PTM associated with repression and is often found at the transcriptional start 156 
site (TSS) and throughout the gene bodies of repressed genes [40, 41]. Conversely, H3K27ac is 157 

Figure 4. WGCNA analysis reveals networks of transcription in regional microglia. (A) Significantly 

differentially expressed modules identified by weighted gene correlation network analysis (limma, ME1: padj < 

0.00001; ME5: padj < 0.001; ME19: padj < 0.01; ME4: padj < 0.01) (B) GO pathways enriched in highly modular 

genes for each of the significantly enriched modules (padj < 0.05). Identified hub genes from high modular 

membership genes (top 1% of genes in each module with module membership p-value < 0.05) in the (C) ME1 

module, (D) ME5 Module, (E) ME4 Module, (F) ME19 Module. (Colors indicate hub genes with closest 

relationships. Red lines indicate genes with significant connections (Pearson correlation, p-value < 0.05)) 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.607229doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.08.607229
http://creativecommons.org/licenses/by-nc-nd/4.0/


associated with active transcription and is mainly deposited at, or near the TSS or promoter regions of 158 
expressed genes [42]. In order to elucidate the epigenetic regulation of region-specific microglial genes, 159 
we conducted CUT&Tag-Direct [43] for H3K27me3 and H3K27ac. Due to the limited number of 160 
microglia obtained from tissue extractions, we used CUT&Tag-Direct, a modification of the original 161 
protocol for limited cell numbers. To ensure accurate epigenetic mapping, an equal number of designer 162 
nucleosomes (dNucs) against a range of histone methylation marks were spiked into each reaction. 163 
When compared to other methylation dNucs, the H3K27me3 antibody used for these assays showed 164 
high specificity (< 10% non-specific binding) (Fig S1A). Indeed, immunohistochemical analysis 165 
revealed that the antibodies used were specific and that microglia contain sufficient nuclear material 166 
regulated by these marks (Fig 5A). Samples yielded robust alignment to the mm10 genome (87% - 97% 167 
aligned reads) (Data S3). After merging technical replicates, which showed high levels of similarity 168 
(Fig S1B), peaks were called using SEACR[44], which identified upwards of 150,000 significant peaks 169 
in each region for both H3K27me3 and H3K27ac (Data S3).  170 

Epigenetic contributions to microglial heterogeneity 171 

To determine the contribution of these histone PTMs to transcriptional differences in region-specific 172 
microglia, we generated fragment counts within genes related to the histone marks of interest and 173 
conducted differential peak deposition analysis using DESeq2. In agreement with previous studies[45], 174 
H3K27ac and H3K27me3 are not often simultaneously present at gene promoters (Fig 5B). 175 
Interestingly, H3K27ac appears to vary by region, suggesting this mark may regulate expression of 176 
many genes, whereas H3K27me3 shows a more stable deposition pattern (Fig S2A). H3K27me3 177 
deposition varied greatly in HPP microglia over other regions, and a majority of significantly differential 178 
depositions in genes (DEPGs) appeared in HPP versus STR (1,691 genes containing differential 179 
depositions, padj <0.05). Additionally, HPP microglia greatly differ when compared to PFC microglia 180 
(756 genes containing differential deposition, padj <0.05). Furthermore, PFC and STR microglia exhibit 181 
differential deposition of H3K27me3 when compared to VTA (344, 590 and 151 genes, padj < 0.05) 182 
(Fig 5C, Data S3). These patterns of H3K27me3 deposition in microglia suggest epigenetic 183 
heterogeneity in each region (Fig 5D). GO pathway analysis revealed that H3K27me3 deposition is 184 
significantly different in genes related to synaptic processes including pre-synapse assembly, 185 
organization and structure, as well as GABA receptor complexes when comparing HPP to both STR and 186 
PFC microglia (Fig 5F, Data S3). Microglia from the VTA exhibit significant differential deposition of 187 
H3K27me3 in pathways related to extracellular matrix and basement membrane (vs PFC), actin-filament 188 
and methylated histone or protein binding (vs HPP), glial cell proliferation, histone deacetylase binding 189 
and multiple differentiation pathways (vs CTX), and actin cytoskeleton (vs STR) (Fig 5F, Data S3).  190 
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191 

Figure 5. Differential peak deposition analysis. (A) Representative immunohistochemical images of mouse HPP 

microglia, using the microglial marker Iba1 and H3K27me3 (left) and H3K27ac (right) antibodies that were used in 

CUT&Tag-Direct. (B) Representative heatmap of fragments in the TSS or promoter (H3K27ac) or TSS, promoter 

or exons (H3K27me3) of genes with significantly called peaks (SEACR). Number of significantly differentially 

deposited peaks in genes for (C) H3K27me3 and H3K27ac in a region to region pairwise comparison. Heatmaps of 

the top differentially deposited peaks in genes for (D) H3K27ac and (E) H3K27ac (-1.25 < LFC > 1.25, padj <0.05, 

LfcSE <1). GO pathway analysis results for (F) H3K27me3 peaks enriched in genes and (G) H3K27ac peaks 

enriched in genes. 
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Unlike H3K27me3, H3K27ac is a transient mark of active gene transcription [42, 46]. Indeed, 192 
significant differential deposition of H3K27ac is far more abundant than that of H3K27me3 (Fig 5C, 193 
Data S3). Similar to H3K27me3 depositions, H3K27ac varied greatly in the HPP over other regions. 194 
H3K27ac in hippocampal microglia varies greatly when compared to microglia from the CTX, PFC, 195 
STR, and VTA (519, 227, 153, 317 genes containing differential deposition, respectively, padj < 0.05). 196 
However, the majority of significantly DEPGs are found in the VTA as compared to the CTX (1,670 197 
genes containing differential depositions, padj <0.05). Furthermore, when compared to the VTA, 198 
microglia from the PFC and STR exhibit differential regulation of 521 and 154 genes by H3K27ac, 199 
respectively (padj <0.05). Mirroring H3K27me3, the deposition pattern of H3K27ac in microglia 200 
indicates epigenetic regulation of the transcriptional heterogeneity observed across regions (Fig 5E, 201 
Data S3). GO pathway analysis highlights this heterogeneity, as HPP microglial H3K27ac deposition is 202 
significantly enriched in genes involved in actin filament and binding as well as extracellular matrix (vs 203 
CTX), cell to cell signaling and glial cell migration (vs STR), cell projection and apical plasma 204 
membrane (vs VTA), and actin filament related processes (vs PFC) (Fig 5G, Data S3). Differential 205 
H3K27ac deposition in the VTA compared to the CTX and PFC indicates significant enrichment in 206 
genes related to myelination, as well as axon and neuron ensheathment (Fig 5G, Data S3). 207 

Correlating regional microglia gene expression with abundant gene expression  208 

To better understand the overall transcriptional regulation of microglial genes by H3K27me3 and 209 
H3K27ac, we conducted a gene-overlap analysis. Here, we sub-set gene expression into lowly expressed 210 
(FPKM < 1), moderately expressed (FPKM > 1, FPKM <10) and highly expressed (FPKM > 10) and 211 
overlapped these with significantly called peaks found at TSS (for both H3K27me3 and H3K27ac) or 212 
exonic regions (for H3K27me3) in protein coding genes. By doing so, we found significant overlap of 213 
H3K27ac (active transcription) in all regions with both moderately expressed and highly expressed 214 
genes. On the other hand, we found significant overlap of H3K27me3 (repression) in all regions with 215 
lowly expressed genes (Fig S2A). Furthermore, 1960, 1190, 1552, 1609 and 687 lowly expressed genes 216 
are significantly correlated with H3K27me3 deposition, while 738, 667, 897, 739, and 749 highly 217 
expressed genes are significantly correlated with H3K27ac deposition in the PFC, STR, VTA, HPP and 218 
CTX, respectively (Fig S2B).  219 

To identify the genes contributing to regional heterogeneity in microglia, the gene lists were then filtered 220 
to include only genes unique to each region and containing deposition of each histone modification. 221 
Remarkably, 151, 117, 267, 173 and 162 highly expressed genes and 226, 215, 270, 279, and 202 222 
moderately expressed genes overlap with significantly called peaks for H3K27ac that are unique to the 223 
PFC, STR, VTA, HPP and CTX, respectively. Additionally, we found 229, 146, 213, 186 and 194 lowly 224 
expressed genes overlap with significantly called peaks for H3K27me3 that are unique to the PFC, STR, 225 
VTA, HPP and CTX, respectively (Fig S2B). Indeed, while peaks may be present in the promoter-TSS 226 
or gene bodies of these region, thereby indicating uniqueness, these results indicate regional specificity 227 
of microglial gene expression that is highly correlated with histone PTMs, with the most genes being 228 
regulated by H3K27ac in the VTA (Fig S2B). While these patterns suggest epigenetic regulation of 229 
genes in a region-specific manner, finding the biological relevance of such regulation requires further 230 
characterization. 231 

Region-specific epigenetic regulation of microglial genes 232 
We next sought to obtain an overarching understanding of gene regulation via H3K27me3 and H3K7ac 233 
in microglia based on neural environments by overlapping DEGs that contain significant deposition of 234 
specific histone PTMs. We find a number of significant overlaps when comparing regions (Fig 6A, C). 235 
Indeed, in agreement with our transcriptomic data, most significant overlaps are found when comparing 236 
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HPP microglia to other regions. GO analysis of overlapping genes indicates that epigenetic control of 237 
genes by H3K27ac in hippocampal microglia are enriched for pathways related to actin regulatory 238 
processes, BMP signaling pathway, and kinases (Fig 6B). Hippocampal microglia also show 239 
significantly downregulated gene expression (due to high H3K27me3 deposition) related to various 240 
immune, proliferation and differentiation pathways (Fig 6B). These findings highlight the need for this 241 
type of analysis, as merging epigenetic and transcriptomic data underscores differences in microglia 242 
across the brain. 243 

Figure 6. Differential peak deposition analysis. (A) Venn diagrams showing the number of significant H3K27me3 depositions 

in genes (DEPGs) (n = 2, padj < 0.05) with significant upregulated genes (DEGs) (n = 2, padj < 0.05) for each regional 

comparison. (Red numbers indicate overlapping DEPGs and DEGs for each comparison) (B) GO analysis dot plots utilizing 

overlapping genes as input (padj < 0.10) (C) Representative IGV plots of CUT&Tag-Direct and RNA-sequencing normalized 

BigWigs. 
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Discussion  244 

Microglia are the primary immune cells of the CNS and play a key role in development and 245 
homeostasis, as well as disease states [47]. Microglial activity largely depends on communication with 246 
neurons and other glia, which can induce both transcriptional and epigenetic changes in microglia. 247 
While previous research has examined whole-brain changes in microglial transcriptional profiles, recent 248 
studies have interrogated these cells in a region-specific manner. A great focus has been placed on the 249 
various transcriptional responses of microglia to different stimuli, yet homeostatic transcriptional 250 
differences across the brain have only recently been investigated [3]. Furthermore, epigenetic regulation, 251 
which can drive transcriptional heterogeneity, has yet to be fully explored in microglia. This may be 252 
due, in part, to the inability to obtain sufficient material for both bulk RNA-seq and epigenetic assays 253 
from genetically defined cell populations within a single brain region. Our experimental approach, 254 
which optimizes CUT&Tag-Direct in conjunction with low-input RNA-seq, enabled us to profile 255 
region-specific primary mouse microglia without the need for large numbers of cells or single-cell 256 
sequencing techniques that can be burdened by shallow coverages. 257 

Here, we explored the epigenetic regulation of transcriptional heterogeneity in microglia across five 258 
brain reward regions in mice (somatosensory cortex, prefrontal cortex, striatum, hippocampus, and 259 
ventral tegmental area). This is the first study of its kind to generate both transcriptional and epigenetic 260 
data from primary microglia from the same animals. In this study, we found robust gene expression 261 
differences in microglia across all five mouse brain regions queried, highlighting their transcriptional 262 
diversity (Fig 2A-C). We also identified several regionally expressed genes which may contribute to 263 
functional differences in microglia (Fig 3B). In our data, GO analysis indicated that naïve hippocampal 264 
microglia at baseline are enriched for the aforementioned pathways as compared to PFC, STR and VTA 265 
microglia (Fig 3A), implying microglia in the hippocampus may form cilia to increase their sensing 266 
ability and secretory function [35]. Indeed, previous studies have shown that decreased expression of 267 
genes related to axoneme assembly and cilium organization pathways in the hippocampus is associated 268 
with Alzheimer’s Disease and decreased ramifications and impaired sensing in microglia [35, 48]. We 269 
also observed that microglia from the VTA express genes reflective of increased proliferation when 270 
compared to CTX microglia, which is consistent with previous studies [6]. Overall, profiling 271 
transcriptional homeostatic differences in naive microglia will be key to understanding regional 272 
variability under experimental or disease conditions.  273 

Furthermore, in order to identify networks of transcription, or gene co-expression, which cannot be 274 
identified using DEG analysis, we conducted WGCNA. WGCNA revealed the existence of subsets of 275 
genes that share high expression in some regions, while being lowly expressed in others. Importantly, 276 
this study identifies four modules of interest that expand our knowledge of microglial transcriptional 277 
heterogeneity. Of note, we again find a number of axoneme, and cilium related pathways enriched in the 278 
hippocampus versus other regions. We also found that mitosis and numerous immune related pathways 279 
are enriched in microglia from the STR and VTA (Fig 4A-B), which aligns with previous studies 280 
indicating that VTA microglia show a unique reactive phenotype and may be more susceptible to age-281 
related dysfunction [6, 49, 50], as well as other studies that show higher expression of homeostatic and 282 
immune surveillance genes in striatal microglia [11]. From this analysis, we also find that microglia 283 
from the CTX and PFC share similar expression across almost all modules, generally expressing genes 284 
related to transmembrane signaling receptor activity, indicating a more homogeneous population of 285 
microglia in these two regions (Fig 4A), also consistent with previous studies [3, 6]. While these 286 
transcriptional differences have been previously reported, this study sought to further associate these 287 
changes with epigenetic modifications. 288 
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Previously, ChIP-seq and ATAC-seq have been used to characterize microglia on a global scale [10, 11, 289 
30, 31], while more recent studies have conducted single-cell RNA-seq and single-cell ATAC-seq to 290 
analyze gene expression and chromatin accessibility [51-57]. Unfortunately, the input required to 291 
conduct ChIP-sequencing is often insufficient for regional analysis without requiring prohibitive 292 
numbers of animals. While ATAC-seq can identify open (active) regions of chromatin, specific histone 293 
PTMs cannot be measured. This study establishes a viable methodology for conducting epigenetic 294 
profiling on region-specific microglia, a cell population of very limited yield. Indeed, CUT&Tag-Direct 295 
yielded robust, high signal-to-noise data and enabled the identification of upwards of 250,000 histone 296 
peaks in some samples (Data S3), along with high mapping rates and specificity for the marks studied 297 
(Fig S1). By focusing on two histone PTMs known to regulate gene expression, H3K27ac and 298 
H3K27me3, this study identified uniquely regulated genes across specific brain regions in mice (Fig 299 
5B). Furthermore, as previous studies have shown, we found that H3K27ac and H3K27me3 do not 300 
occupy the same promoters and genes simultaneously, due to their opposing effects on gene expression 301 
(Fig 4A) [45].  302 

This study also uncovered that while histone mark deposition varies by region, these align with gene 303 
expression (Fig 5A). Most of the transcriptional variation in our dataset was due to regional differences 304 
in H3K27ac deposition (Fig S3A). By conducting RNA-sequencing in conjunction with CUT&Tag-305 
Direct, this study identified region-specific gene expression that is significantly associated with 306 
deposition of either H3K27me3 or H3K27ac. Furthermore, by identifying genes that contained 307 
significant depositions of H3K27ac or H3K27me3, we were able to correlate this with regional 308 
expression of genes (Fig 5A). In fact, many genes identified in our WGCNA analysis were found to 309 
have reasonable deposition of each mark indicating there may be regulation of these regional 310 
transcriptional networks (Fig S3B). These overlapping features indicated that the presence of these 311 
marks may directly impact gene transcription in a region-specific manner. Indeed, we not only 312 
uncovered that Cx3cr1 and Tnf-a contain depositions of these marks, indicating regulation, but we found 313 
unique genes specific to each region (Fig 5B). Given the known role of H3K27me3 in cell fate 314 
determination, we were not surprised that there were far fewer H3K27me3-repressed genes that were 315 
unique to each region [58]. On the other hand, we found between 17% and 30% of genes that were 316 
unique and highly expressed in each region are associated with H3K27ac expression (Fig 5B). Taken 317 
together, these results suggest that microglial transcriptional heterogeneity is under regulation, at least in 318 
part, by deposition of repressive and permissive histone marks in H3K27. 319 
 320 
This study furthers our understanding of epigenetic regulation of regional microglial gene expression by 321 
identifying genes containing significant depositions of H3K27ac or H3K27me3, and which were 322 
significantly upregulated or significantly downregulated, respectively (Fig 6A). Notably, these 323 
differences identify hippocampal microglia as being the most heterogeneous relative to the other regions 324 
of the brain reward system that we examined. Interestingly, when GO analysis was conducted on these 325 
genes, we found that H3K27ac in hippocampal microglia drove expression of genes involved in cellular 326 
transport and cellular structure, while increased presence of H3K27me3 in downregulated genes was 327 
identified in immune response-related pathways such as B-cell activation and responses to stimuli such 328 
as LPS (Fig 6B). Further, we note that concomitant decreases in H3K27me3 and increases in H3K27ac 329 
can drive differential gene expression of certain genes, such as Msx1, across regions (Fig 6C). These 330 
data suggest that hippocampal microglia may be more homeostatic, with broad deposition of H3K27me3 331 
in genes related to immune pathways, while deposition of H3K27ac occurs in genes necessary for 332 
surveillance when compared to other regions of the brain reward system. 333 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.607229doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.08.607229
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sex is an important consideration when studying microglia given that neuroimmune system 334 
development is regulated by this biological variable [59, 60] and microglial transcriptional profiles have 335 
been shown to differ in males and females [3]. Indeed, while we focused on two key post-translational 336 
modifications, namely H3K27ac and H3K27me3, there are numerous other epigenetic contributions to 337 
transcriptional control in microglia [12]. Further studies focusing on sex differences within and beyond 338 
the regions studied here, including additional post-translational histone modifications, will be necessary 339 
to more fully understand the contributions of epigenetic diversity to transcriptional regulation of 340 
microglial regional heterogeneity. 341 

Taken together, these data combine transcriptional and epigenetic datasets from region-specific primary 342 
mouse microglia and highlight the molecular heterogeneity that exists in these cells across the brain 343 
reward system. Most importantly, this study establishes a methodology for studying the epigenetic and 344 
transcriptional changes that occur in cell populations of limited yield. Such populations may be limited 345 
by their anatomical location, or by their limited numerical representation relative to functional 346 
importance (i.e. dopamine neurons). Furthermore, application of this molecular and computational 347 
framework may also be useful for understanding the epigenetic mechanisms that undergird phase, or 348 
time-dependent changes in gene expression associated with various psychiatric, neurodegenerative or 349 
neoplastic diseases.  350 
 351 

Materials and Methods 352 

1. Animals: Male C57BL/6J mice (12–16-week-old, ~25-30 g; Jackson Laboratories, Bar Harbor, ME; 353 
SN: 000664) were housed in the animal facilities at the University of Miami Miller School of Medicine. 354 
Mice were maintained on a 12:12 h light/dark cycle and were housed three to five per cage. Animals 355 
were provided with food and water ad-libitum. All animals were maintained according to National 356 
Institutes of Health (NIH) guidelines and Association for Assessment and Accreditation of Laboratory 357 
Animal Care (AAALAC) accredited facilities. All experimental protocols were approved by the 358 
Institutional Animal Care and Use Committee (IACUC) at the University of Miami Miller School of 359 
Medicine. 360 

2. Microglial Isolation: Mice were anesthetized with isoflurane and perfused through the ascending 361 
aorta with 1X phosphate buffer saline (PBS; pH 7.4; ThermoFisher, 10010023) plus heparin (7,500 USP 362 
units). Brain regions from 4 mice (Fig 1) were dissected and combined, then transported on ice in 363 
Hibernate A Medium (Gibco, A1247501). Tissue was then dissociated on the gentleMACS Octo 364 
Dissociator (Miltenyi Biotec, #130-096-427) using the Adult Brain Dissociation Kit (Miltenyi Biotec, 365 
#130-107-677) according to manufacturer’s instructions. All steps after initial dissociation were 366 
performed on ice and all tubes were prechilled. The resulting single cell suspension was incubated with 367 
anti-mouse CD11b (microglia-specific) magnetic MicroBeads (Miltenyi Biotec, #130–093–634) and 368 
microglia were positively selected via column purification (Miltentyi Biotec, #130-042-201). The eluted 369 
fraction containing microglia was then centrifuged for 3 min at 600 x g and resuspended in 110 µL of 370 
PBS (ThermoFisher, 10010023). 10 µL was reserved for cell counting on the EVE Countess Automated 371 
Cell Counter (NanoEntek), and the remaining 100 µL was split: 30 µL for RNA extraction, 70 µL for 372 
CUT&Tag-Direct. 373 

3. Brain Perfusion and Fixation: Mice were anesthetized with isoflurane and perfused through the 374 
ascending aorta with 1X phosphate buffer saline (PBS; pH 7.4; ThermoFisher, 10010023) plus heparin 375 
(7,500 USP units) (DVR University of Miami), followed by fixation with 4% paraformaldehyde (PFA; 376 
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Sigma Aldrich, 1003543951) in PBS. Brains were collected, postfixed overnight in 4% PFA, and then 377 
stored in 30% sucrose with 0.05% sodium azide (Sigma Aldrich, 1003124924) in PBS. All brains were 378 
cut into 35 µm coronal sections on a cryostat, and floating sections were stored in PBS with 0.02% 379 
sodium azide at 4°C until processing for immunohistochemistry. 380 

4. Fluorescence Immunolabeling: Floating sections were processed for fluorescent immunostaining of 381 
microglia. Sections were rinsed in PBS and then blocked for 1 hour at room temperature in Blocking 382 
Buffer consisting of 10% normal donkey serum (Jackson ImmunoResearch, 017-000-121), 0.5% Triton 383 
X-100 (Sigma Aldrich, T8787), and PBS. Thereafter, sections were incubated in primary antibody in 384 
Blocking Buffer at 4°C overnight. The primary antibodies used were as follows: goat anti-Iba1 (1:500, 385 
NB1001028, Novus Biologicals), rabbit anti-H3K27me3 (1:500, 9733S, Cell Signaling Technology), 386 
and rabbit anti-H3K27ac (1:160, 8173, Cell Signaling Technology). On day 2, the sections were rinsed 3 387 
times with PBS and incubated with the following secondary antibodies: Alexa 488 donkey anti-goat 388 
(1:500, A32814, Invitrogen) and Alexa 568 donkey anti-rabbit (1:500, A10037, Invitrogen). Sections 389 
were incubated with secondary antibodies in PBS with 2% normal donkey serum for 2 hours at room 390 
temperature in the dark. Next, sections were rinsed 3 times with PBS, mounted on slides with ProLong 391 
Diamond Antifade Mountant with DAPI (Invitrogen, P36962) and cover slipped. Images were acquired 392 
using the VS120 Olympus slide scanner housed in the University of Miami Miller School of Medicine’s 393 
Analytical Imaging Core Facility (AICF). Controls included processing the secondary antibodies alone 394 
to verify background staining, processing each primary with the secondary antibody to verify laser-395 
specific excitation, checking for autofluorescence in an alternative laser channel with tissue lacking that 396 
laser-specific probe, and using sequential scanning. Fluorescent images were viewed in OlyVIA 397 
(Olympus, Ver.2.9.1), where only brightness and/or contrast levels were adjusted after acquisition were 398 
imposed across the entire image. All antibodies used have been previously validated for the intended 399 
applications, as per manufacturer. For all representative images of qualitative data, the immunolabeling 400 
experiment was successfully repeated in 3 animals. 401 

5. RNA-seq: 30 µL of isolated microglia was added to 350 µL RLT plus buffer (Qiagen, 1053393) for 402 
extraction and purification of total RNA according to manufacturer’s instructions using the Qiagen 403 
AllPrep DNA/RNA Mini Kit (Qiagen, 80204). Total RNA input was normalized and NGS libraries were 404 
prepared using NEBNext Single Cell/Low Input RNA Library Prep Kit for Illumina (New England 405 
BioLabs, E6420S) according to the manufacturer’s instructions. Sequencing was performed on an 406 
Illumina NovaSeq6000 platform (150x150bp PE) targeting 30 million reads per sample by the 407 
University of Miami Center John P. Hussman Institute for Human Genomics sequencing core facility. 408 

6. RNA-seq Analysis 409 

All RNA-seq data used in this study were mapped to the mm10 genome. Prior to mapping, raw RNA-410 
seq datasets were first trimmed using TrimGalore (v.0.6.7) [61] with cutadapt (v.1.18) [62]. Illumina 411 
sequence adaptors were removed, the leading and tailing low-quality base-pairs (fewer than 3) were 412 
trimmed. Next, reads with a length of at least 20-bp were mapped to the genome using STAR (v.2.7.10a) 413 
[63] with the following parameters: –outSAMtype BAM SortedByCoordinate –outSAMunmapped 414 
Within –outFilterType BySJout –outSAMattributes NH HI AS NM MD XS –outFilterMultimapNmax 415 
20 –outFilterMismatchNoverLmax 0.3 --quantMode TranscriptomeSAM GeneCounts. The resulting 416 
bam files were then passed to StringTie (v.2.1.7) [64] to assemble sequenced alignments into estimated 417 
transcript and gene count abundance given the Gencode GRCm38 (NCBI) transcriptome assembly. 418 
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6.1 Differential Gene Expression Analysis: The R/Bioconductor DESeq2 (v.1.34.0) [65] package was 419 
used to detect the differentially expressed genes between region-specific microglia. Only genes with 420 
transcript abundance > 50 across samples, and adjusted p-value (padj) < 0.05 were considered as 421 
differentially expressed. 422 

6.2 Functional Enrichment Analysis: The R/Bioconductor clusterProfiler (v.4.2.2) [66, 67] package 423 
was used to perform Gene Ontology (GO) analysis. Only the GO terms and pathways with a padj < 0.05 424 
following false discovery rate (FDR) correction were considered, with focus given to those showing 425 
positive enrichment only (i.e., log2foldchange (log2FC) > 1). The R/Bioconductor package rrvgo (v1.6.0) 426 
[68] was utilized to reduce GO terms to parent terms for clarity.  The associated GO and pathway 427 
enrichment plots were generated using the ggplot2 package (v.3.4.2). Heatmaps were generated using 428 
the R/Bioconductor package pheatmap (v.1.0.12). All the other plots were generated using the ggplot2 429 
package.  430 

6.3 Weighted Gene Co-Expression Analysis (WGCNA): The R package WGCNA [69] was used to 431 
conduct gene co-expression analysis. Briefly, count matrices were loaded into R and normalized using a 432 
variance stabilized transformation (VST). Samples were checked for goodness and manual network 433 
construction using a bicorrelation, soft thresholding power of 7, a signed-hybrid network and a signed 434 
TOM was conducted. The minimum module size was set at 30 genes and modules were merged based 435 
on similarity and assigned a color name. The limma package (v.3.50.3) [70] was used to conduct 436 
statistical analysis to identify which modules were significantly differentially expressed (padj > 0.05) by 437 
brain region based on average expression of all genes in that module following FDR multiple testing 438 
correction. Module expression was plotted with ggplot2 (v.3.4.2). Module membership was calculated 439 
and the top 1% of most modular genes were selected and GO pathway enrichment was conducted on 440 
them using the R/Bioconductor package clusterProfiler (v.4.2.2) [66, 67] against a background 441 
containing all genes mapped to relevant modules with an FDR multiple testing correction. Heatmaps 442 
were generated using the R/Bioconductor package pheatmap (v.1.0.12) by generating lists of all genes in 443 
each module that mapped to significant GO pathways (padj < 0.05). 444 

7. CUT&Tag-Direct: CUT&Tag-Direct was conducted with minor modifications [43, 71] [71](See 445 
CUTAC-V4 at protocols.io). 446 

7.1 Microglial nuclear isolation and preservation: Isolated microglia from two biological samples 447 
(n=2) were nucleated and lightly-cross-linked before slow-freezing. Briefly, 70 µL of isolated microglia 448 
were resuspended in 1 mL NE1 buffer (1 mL 1M HEPES-KOH pH 8.0 [ThermoFisher, J63578.AP], 500 449 
µL 1M KCl, 12.5 µL 2M spermidine [Sigma Aldrich, 102597490], 500 µL 10% Triton X-100 [Sigma 450 
Aldrich, 1003407653], 1 Roche c0mplete Protease Inhibitor EDTA-free [Sigma Aldrich, 04693232001] 451 
, and 10 mL glycerol [Sigma Aldrich, G5516-500ML] and 38 mL ddH2O) for 10 minutes on ice with 452 
light vortexing. Nuclei were centrifuged (4 minutes at 1300 x g at 4°C) and supernatant was removed. 453 
Isolated nuclei were then lightly crosslinked in 0.1% formaldehyde (5 mL PBS with 31 µL 16% 454 
formaldehyde (w/v) [ThermoFisher, 28908]) at room temperature for 2 minutes. 300 uL 1.25 M glycine 455 
[Thomas Scientific, 762Q84] was used to stop cross-linking and nuclei were centrifuged (4 minutes at 456 
1300 x g at 4°C) and resuspended in 100 µL Wash Buffer (1 mL 1M HEPES pH 7.5 [ThermoFisher, 457 
J60712.AP], 1.5 mL 5M NaCl, 12.5 µL 2M spermidine, 1 Roche c0mplete Protease Inhibitor EDTA-458 
free tablet with ddH2O to 50 mL). 10 µL of solution was taken for counting on the EVE Countess 459 
Automated Cell Counter (NanoEntek). After addition of 810 µL of Wash Buffer to resuspend nuclei, 460 
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100 µL of DMSO [ThermoFisher, 414885000] was added, followed by a brief vortex. Cross-linked 461 
microglial nuclei were then placed in a Mr. Frosty (ThermoFisher, 5100-0001) container filled with 462 
100% isopropyl alcohol and placed at -80°C until future use. 463 

7.2 Concanavalin A Conjugation:  Magnetic microbeads were conjugated with Concanavalin A 464 
(Sigma Aldrich, C2272-10mg) as previously described [72]. Briefly, 50 µL MyOne T1 Streptavidin-465 
conjugated Dynabeads (ThermoFisher, 65601) were placed into a 1.5 mL tube and then placed onto a 466 
magnetic stand. The supernatant was removed, and beads were washed three times with 1 X PBS pH 6.8 467 
(Sigma Aldrich, 1218-75) while still on the stand. Beads were then resuspended in 50 µL 1 X PBS pH 468 
6.8 with 0.01% Tween-20 (Sigma Aldrich, 1003018242). 25 µL of biotin-conjugated Concanavalin A 469 
solution (2.3 mg/mL resuspended in 1X PBS pH 6.8 with 0.01% Tween-20) was added to the beads. 470 
Beads were incubated at room temperature for 30 minutes with rotation. Beads were placed back onto 471 
the magnetic stand and the supernatant was removed. 50 µL of 1X PBS with 0.01% Tween-20 was 472 
added to resuspend the beads. 473 

7.3 Bead Activation: Freshly conjugated beads (3.5 µL per reaction) were immediately added to 1 mL 474 
Binding Buffer (200 µL 1M HEPES pH 7.9, 100 µL 1M KCl, 10 µL 1M CaCl2, 10 µL 1M MnCl2 475 
[ThermoFisher, J63150.AP] with 9.680 mL ddH2O) and mixed by pipetting. Beads were placed on a 476 
magnetic stand and supernatant was removed. Beads were then washed 2x with 300 µL Binding Buffer 477 
and mixed by pipetting. After removal of final supernatant, beads were resuspended in total reaction 478 
volume (i.e., 45.5 µL for 13 reactions) and left at room temperature until use. 479 

7.4 Cell Preparation and Bead Binding: Briefly, lightly cross-linked microglial nuclei were placed in 480 
room temperature water until completely thawed. Previously obtained nuclei counts were used to 481 
estimate the volume of microglial nuclei needed to achieve 2,500 nuclei per reaction (run in duplicate 482 
per mark of interest) and was added to individual 0.5 mL thin-walled PCR tubes. While gently 483 
vortexing, 3.5 µL of activated beads were added to each tube and incubated for 10 minutes at room 484 
temperature with rotation. Following incubation, samples were placed on a magnetic stand and 485 
supernatant was removed with repeated draws of a p20 pipette. Bead-bound microglial nuclei were 486 
resuspended in 25 µL Antibody Incubation Buffer (995 µL Wash Buffer with 5 µL 200x BSA [B9000S, 487 
New England Biolabs]). 488 

7.5 Primary Antibody Binding and Spike-In Preparation: Lysine-Methyl Panel Spike in (SNAP-489 
CUTANA™ K-MetStat Panel, 19-1002, Epicypher) was diluted 1:10 in Antibody Incubation Buffer. 490 
Prior to antibody addition, 0.75 µL of 1:10 spike in panel was added to each reaction. Following this 491 
addition, 1 µL of Rabbit anti-H3K27me3 (9733S, CST), 1.5 µL of Rabbit anti-H3K27ac (8173S, CST), 492 
or 1.5 µL Rabbit (DA1E) mAb IgG (66362S, CST) antibody was added to each reaction. Samples were 493 
incubated for 2 hours at room temperature on a belly dancer (BenchWaver™ 3D Rocker, Benchmark 494 
Scientific) (105 RPM) and then transferred to 4°C for overnight incubation without rotation. 495 

7.6 Secondary and pAG-TN5 Incubation: Samples were removed from 4°C for at least 30 minutes 496 
prior to use and then resuspended using light vortexing before placing onto magnetic stand. Supernatant 497 
was removed and 25 µL of secondary antibody solution was added to each reaction (Guinea Pig Anti-498 
Rabbit: 1:100 in Wash Buffer, ABIN101961, Antibodies Online) while gently vortexing, then incubated 499 
for 1 hour at room temperature on a belly dancer (105 RPM). Samples were then placed on a magnetic 500 
stand, supernatant removed and 200 µL Wash Buffer added without disturbing the beads. 185 µL Wash 501 
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Buffer was removed, and samples spun down, followed by final liquid removal using a p20 pipette. 25 502 
µL of pAG-TN5 adaptor complex (1:20, CUTANA™ pAG-Tn5 for CUT&Tag, 15-1017, Epicypher) in 503 
300-Wash Buffer (1 mL 1M HEPES pH 7.5, 3 mL 5M NaCl, 12.5 µL 2M spermidine, and 1 Roche 504 
c0mplete Protease Inhibitor EDTA-free tablet with ddH2O to 50 mL) was squirted onto beads. Gently 505 
vortexing and/or tube rocking was used to ensure all beads were in solution prior to incubation for 2 506 
hours at room temperature on a belly dancer (105 RPM). 507 

7.7 Tagmentation: Following incubation with pAG-TN5, samples were placed back onto magnetic 508 
stand and washed with 300-Wash Buffer as described previously. While taking care to avoid beads 509 
drying out, 50 µL Tagmentation Buffer (990 µL 300-Wash Buffer with 10 µL 1M MgCl2 [Invitrogen, 510 
AM9530G]) was added to each tube. Tubes were lightly rocked to resuspend all beads into solution 511 
followed by a brief spin-down. Samples were then incubated for 1 hour at 37°C on a thermal cycler with 512 
a hold at 8°C. 513 

7.8 Chromatin Release, Amplification and Clean-up: Samples were allowed to warm to room 514 
temperature and were gently vortexed to resuspend beads before placing back onto magnetic stand. 515 
Tagmentation Buffer was withdrawn with subsequent draws from a p20 pipette, and samples were 516 
resuspended in 50 µL TAPS Wash Buffer (30 µL 1M TAPS pH 8.5 [BostonBio Products, BB-2375], 1.2 517 
µL 0.5M EDTA [Invitrogen, AM9262] and filled to 3 mL with ddH2O) and gently rocked to resuspend 518 
beads. Samples were placed back on magnetic stand and buffer was removed following the previous 519 
method one sample at a time. After all liquid was removed, samples were resuspended in 5 µL SDS-520 
Release Solution (10 µL 10% SDS [ThermoFisher, 15553027], 10 µL 1M TAPS pH 6.8 and 980 µL 521 
ddH2O). A p10 pipette tip was used to drag the solution around the sides of the tubes to grab remaining 522 
beads and samples were spun down before being incubated on a thermocycler set to 58°C for 1-hour. 523 
Samples were then removed from the thermocycler, placed on ice and spiked with 15 µL of Triton 524 
Neutralization Solution (67 µL 10% Triton X-100 with 933 µL ddH2O). Samples were vortexed on high 525 
and placed back on ice. 2 µL of an i5 (10 µM) and i7 (10 µM) index [73] were then added to each 526 
reaction along with 25 µL NEBNext HiFi 2X PCR Master Mix (New England Biolabs, M0541). 527 
Samples were again vortexed on full speed for 10 seconds and briefly spun down. PCR was conducted 528 
with the following parameters: Step 1 = 58°C for 5 minutes, Step 2 = 72°C for 5 minutes, Step 3 = 98°C 529 
for 5 minutes (Cycle time increased from 30 seconds to account for full reversal of cross-linking), Step 4 530 
= 98°C for 10 seconds, Step 5 = 60°C for 10 seconds, (Repeat Steps 4-5 14 times), Step 6 = 72°C for 1 531 
minute and hold at 8°C. Samples were allowed to warm to room temperature for 30 minutes and then 532 
were incubated with 65 µL SPRIselect beads (Beckman Coulter, B23318) (1.3X) for 10 minutes. 533 
Samples were then placed onto a magnetic stand and beads were washed twice with 80% freshly made 534 
EtOH without removing the tubes from the stand. Samples were spun down following the last wash and 535 
placed back onto the stand to remove all traces of EtOH. The purified DNA product was released from 536 
the beads by incubating in 17 µL freshly made 10 mM Tris-HCl pH 8.0 (EMD Millipore, 648314-537 
100mL) for 10 minutes. Samples were then placed back onto a magnetic stand and 15 µL of purified 538 
product was transferred to barcoded tubes for storage. 539 

7.9 Sample Pooling and DNA Sequencing: Samples were pooled to equimolar concentrations based on 540 
Qubit 1x dsDNA high sensitivity (ThermoFisher, Q33230) concentration and fragment size from the 541 
Bioanalyzer HS DNA kit (Agilent, 5067-4626) and sequenced on the Illumina NovaSeq6000 platform 542 
(150x150bp PE), targeting 10 million reads per sample by the University of Miami Center John P. 543 
Hussman Institute for Human Genomics sequencing core facility.  544 
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8. CUT&Tag-Direct Data Processing: CUT&Tag-Direct data used in this study were mapped to the 545 
mm10 genome. Prior to mapping, raw sequencing reads were mapped to the genome using Bowtie2 [74] 546 
(v. 2.4.5) with the following parameters: --local --very-sensitive --no-mixed --no-discordant --phred33 -I 547 
10 -X 700. Resulting sam files were sorted and duplicates were marked. For control samples, (i.e. IgG 548 
targets) duplicates were removed, while remaining samples retained all duplicates. Samtools [75] (v. 549 
1.12) was used to assess fragment length and write uniquely mapped reads from sam files into bam files. 550 
Resulting bam files were sorted and indexed. Technical replicates were kept independent and merged 551 
using samtools merge followed by sorting and indexing. Bedtools (v 2.30.0) [76] bamtobed function was 552 
then used to convert both merged files and independent files to bed files.  Resulting bed files were 553 
cleaned and fragment columns were extracted using 500bp bins across the genome. These resulting files 554 
were used to assess replicate reproducibility via correlation plots. Following visualization, cleaned bed 555 
files containing fragments were normalized to barcoded read counts generated from spike-in dNuc’s 556 
with a constant value of 500,000. Peak calling was conducted using SEACR [44] on normalized 557 
bedgraph files for each biological replicate (n=2) against merged IgG controls using the following 558 
settings: “non” and “stringent”. Resulting significant peaks were used for downstream analyses. 559 
Visualization and QC plots were generated in R. All associated code for pre-processing of data files is 560 
available upon request. 561 

9 Correlating RNA-sequencing Data with CUT&Tag-Direct Peaks 562 

9.1 Generation of Gene Expression Lists: Fragments Per Kilobase of transcript per Million mapped 563 
reads (FPKM) generated using Stringtie (v 2.1.7) [64] during pre-processing from RNA-sequencing data 564 
was merged and annotated using biomaRt (v 2.28.0) [77, 78] with ENSMBL ID’s. Protein-coding genes 565 
were selected and filtered based on expression levels. Genes with > 10 FPKM were subset into a “High 566 
Expression” group, genes with 1 < FPKM < 10 were subset into a “Medium Expression” group and 567 
genes with < 1 FPKM were subset into the “Low Expression” group based on brain region. 568 

9.2 Generation of Significant Called Peaks Lists: Significantly called peaks for each brain region and 569 
histone mark, based on 2 technical replicates, were annotated using HOMER [79] against the mm10 570 
genome and any peaks mapped to genes that fall within the promoter, promoter-transcriptional-start-site 571 
(TSS) or TSS and that were protein-coding were retained for downstream analysis for H3K27ac. The 572 
same was conducted for H3K27me3 peaks, however peaks falling into an exon of these genes were also 573 
included. Fragment counts from associated bam files were used to count fragments in significantly 574 
called peaks to generate peak expression matrices for use with DESeq2. 575 

9.3 Gene Overlap The R package GeneOverlap (v1.30.0) [80] was then used to conduct statistical 576 
overlap testing of highly expressed genes, medium expressed genes and lowly expressed genes with the 577 
presence of significant peak calls in such regions for both H3K27ac and H3K27me3. Odds ratios were 578 
used to generate intersection lists of significantly associated peaks with gene expression for further 579 
analysis. Peaks found to overlap with gene expression in both replicates were retained. To determine the 580 
epigenetic identities specific to each region, peaks found to overlap with expression in the same genes in 581 
more than one region were removed, leaving behind only those specific to one region of the brain. GO 582 
analysis was then conducted on these genes using methods described above to determine the distinct 583 
features of epigenetic regulation in each region and the rrvgo package [68] was utilized to reduce GO 584 
terms to parent terms for clarity. To generate significant overlaps between significant gene expression 585 
and significantly correlated epigenetic features, the lists of significantly differentially expressed genes 586 
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with a positive or negative log2FC from DESeq2 conducted on RNA-sequencing data sets was taken and 587 
compared to peaks meeting the criteria as described above for highly expressed genes and presence of 588 
H3K27ac peaks, and downregulated genes and the presence of H3K27me3 peaks. The number of genes 589 
intersecting were used to generate representative Venn diagrams. All protein coding genes mapped were 590 
used as background for gene overlap. 591 

9.4 Visualization of Overlapping CUT&Tag-Direct/RNA-sequencing data: Bam files generated 592 
from mapped read alignments for both RNA-sequencing and CUT&Tag-Direct sequencing data were 593 
used to generate bigWig files for visualization. Samples 7 and 8 from RNA-sequencing data were used 594 
as input as they correspond to the same animals and regions used for CUT&Tag-Direct data. Using 595 
deepTools [81] bamCoverage, bam files from  CUT&Tag-Direct sequencing were screened against 596 
blacklisted regions [82] and converted to bigWig files using the following parameters: --binSize 10, --597 
normalizeUsing RPCG – effectiveGenomeSize 2652783500 –ignoreForNormalization chrX and --598 
extendReads. Following conversion, bigWig files from biological replicates were merged using 599 
bigWigMerge from the UCSC genome browser bwtools. Merged files were sorted and then converted 600 
back into bigWigs using the bedgraphToBigWig program [83]. For RNA-sequencing data, using 601 
deepTools [81] bamCoverage, bam files were normalized for read coverage using the inverse scale 602 
factors calculated by DESeq2 and converted to bigWig files using the following parameters: --binSize 1 603 
and --skipNonCoveredRegions. Following conversion, bigWig files from biological replicates were 604 
merged using bigWigMerge from bwtools. Merged files were sorted and then converted back into 605 
bigWigs using the bedgraphToBigWig program [83]. The resulting bigWig files were visualized using 606 
rtracklayer (v 1.58.0) [84], TrackPlotR (v. 0.0.1) [85] and ggplot2 (v. 3.5.0.9000). 607 

10. Statistical Analysis: Statistical analyses were conducted in accordance with the various packages 608 
used for RNA-sequencing data as well as CUT&Tag-Direct data. Information on specific analyses run 609 
can be found in the associated code and methods sections. 610 
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