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The influence of particle shape on the mechanics
of sand is widely recognized, especially in mineral
processing and geomechanics. However, most existing
continuum theories for engineering applications do
not encompass the morphology of the grains and
its evolution during comminution. Similarly, the
relatively few engineering models accounting for
grain-scale processes tend to idealize particles as
spheres, with their diameters considered as the
primary and sole geometric descriptor. This paper
inspires a new generation of constitutive laws for
crushable granular continua with arbitrary, yet
evolving, particle morphology. We explore the idea
of introducing multiple grain shape descriptors into
Continuum Breakage Mechanics (CBM), a theory
originally designed to track changes in particle
size distributions during confined comminution.
We incorporate the influence of these descriptors
on the elastic strain energy potential and treat
them as dissipative state variables. In analogy with
the original CBM, and in light of evidence from
extreme fragmentation in nature, the evolution of the
additional shape descriptors is postulated to converge
towards an attractor. Comparisons with laboratory
experiments, discrete element analyses and particle-
scale fracture models illustrate the encouraging
performance of the theory. The theory provides
insights into the feedback among particle shape,
compressive yielding and inelastic deformation
in crushable granular continua. These results
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inspire new questions that should guide future research into crushable granular systems using
particle-scale imaging and computations.

1. Introduction
The significance of particle shape in geosciences, geotechnology and mineral processing is widely
recognized [1,2]. The particle shape influences the efficiency with which sand assemblies store
and dissipate energy, as well as their flowability and strength. Grain morphology also affects
the state of bulk density in granular systems, as it impacts how particles slip, rotate and
rearrange under arbitrary stresses [3,4]. In return, this impacts local and collective processes
ranging from contact deformation and grain fracture to volume change and critical density-stress
state relationships [5–7]. Novel digital imaging techniques have greatly expanded our ability to
examine initial and evolving particle shapes, with major benefits for the in situ characterization
of continuum-scale processes [8–10]. Similarly, computational advances have allowed us to
replicate complex particle shapes through geometric analogues ranging from sphere clumps [11]
to polyhedra [12], ellipsoids [13] or level sets [14], with corresponding benefits for the study of
particle fracture and shape evolution [15–17]. Nevertheless, despite the increasing availability
of powerful characterization and simulation tools, these alone cannot provide a clear path into
quantifying the engineering effects of grain shape on the macroscopic constitutive response of
the material.

This challenge is epitomized by the laboratory scale assessment of the elastic properties of
sand. An example is the work of Cho et al. [18], who tested materials characterized by a wide range
of particle shapes, classified according to standard descriptors such as sphericity and roundness.
One of the key conclusions of their effort was that, among other effects, the geometric irregularity
of sand grains reduces the small strain shear stiffness of the material and increases its pressure
sensitivity. Later contributions, however, presented remarkably different trends. For example,
experiments with mixtures of grains with different shapes found that an increase in the fraction of
angular particles actually increases the small strain shear stiffness of the assembly [19]. Similarly,
Altuhafi et al. [20] examined a large database of sands through a compounded descriptor of
overall particle irregularity. Their analysis also showed that as grains are less spherical, the
rate of increase of their normalized small strain shear stiffness with pressure is intensified.
Such seemingly conflicting findings are rooted in the experimental difficulty of isolating the
influence of the particle shape, which without proper data treatment may be overshadowed by
concurrent effects due to different initial packing, fabric and size polydispersity. In this context,
an enlightening perspective was offered by the careful study of Liu & Yang [21], who used
well-controlled experiments to identify the effect of porosity, gradation and particle shape in the
measurement of the small strain stiffness. Contrary to common expectations, and in light of the
same standard descriptors used by Cho et al. [18], it was shown that samples made of round,
spherical particles actually display lower stiffness when compared with those consisting of more
irregular grains, as long as all other factors were kept equal.

The challenges listed above are not specific to elastic properties. There is indeed abundant
evidence for a feedback between particle-shape evolution and yielding in compressed sands,
which are heavily influenced by grain fracture [22]. There is also substantial consensus that
grain shape influences the crushing strength of both individual particles and packed assemblies,
including data that show decreasing compressive yield strength with increasing particle
irregularity [23–25]. In fact, grain irregularities are often expected to expedite the onset of crushing
along with relatively slow morphological changes upon compression. Conversely, round particles
were found to yield under higher pressures, thus displaying more intense and rapid shape
alterations once the crushing threshold is overcome. Despite these results, no definitive insight
has yet been given on whether these trends emerge from local effects (e.g. contact indentation) or
collective behaviours (e.g. fabric and particle coordination) modulated by the shape of the grains.
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Figure 1. Simplified representation of particle shape in three dimensions: (a) sand grain scanned through X-ray tomography
[28]; (b) approximation based on outer fitting ellipsoid; (c) prismatic approximation based on bounding box. (Online version
in colour.)

In this paper, we argue that the most significant obstacle hindering the interpretation of
measurements involving different particle shapes is the lack of a rigorous framework explaining
why a departure from perfect particle sphericity influences the storage of elastic strain energy and
its subsequent release upon grain crushing. To fill this gap, we propose a new constitutive theory
for crushable granular materials that captures the effect of initial non-spherical particle shapes on
both elastic deformation and yielding, as well as the evolution of the shape of the particles upon
compression. For this purpose, we generalize the structure of Continuum Breakage Mechanics
(CBM) [26] by incorporating the effects of the particle shape, on top of the primary consideration
of grain size effects in that theory. From this standpoint, we give to the term shape a specific
connotation. In particular, we regard the shape of sand particles as a specific category belonging
to the general notion of particle morphology [27]. Here, morphology is seen as the ensemble of
irregularities that differentiate a grain from a spherical object at all length scales, thus including
irregularities as large as the particle itself (i.e. those determining aspect ratio and elongation), as
well as features orders of magnitude smaller than the nominal particle size, such as those defining
its roundness or smoothness. By contrast, we employ the term shape to refer to the coarsest class
of irregularities, i.e. those manifesting as differences between the principal dimensions of a three-
dimensional object and causing a first-order departure from the geometry of a sphere. Possible
shape descriptors are given in figure 1 with reference to the fitting of either an enclosing ellipsoid
or a bounding prismatic box of a sand grain. In the following sections, we will further consider
the effects and evolution of this class of irregularities upon successive grain fracture events.

2. Grain shape attractor
Insight about the evolution of grain size and shape is essential to rationalize their influence
on the mechanics of sand during comminution. In this context, changes in shape can hardly
be decoupled from the microscopic fracture events responsible for grain size reduction. Such
geometric descriptors are thus inevitably bound to evolve in conjunction, bearing similarities with
biological processes where a species may coevolve whenever another one closely related with it
does. This section examines the coevolution of the shape and size of grains in particulate systems
as they undergo intense crushing in either laboratory or natural settings, which consistently reveal
an almost unique set of geometrical properties. Considerable insight comes from geophysical
observations, where even in remarkably complex settings nature displays encouraging signs
of order, including regular patterns that emerge even under seemingly chaotic conditions. The
phenomenon of particle crushing is no exception. A stunning example of regularity is the size
distribution of the particles found in many heavily crushed zones on Earth, such as within
active fault gauges [29,30]. Under such dense and almost indefinite shear deformation settings,
particulate media approach an ultimate state at which the particle sizes follow a power law
distribution that often reflects a self-similar topology. It is this regularity that led to a reappraisal
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Figure 2. Shape proportions for heavily fragmented particles from natural systems and laboratory experiments. Crushed
fragments are represented on the Zingg plane (flatness, φ = S/I, against elongation, η= I/L, ratios). The diagram also
presents lines of constant equal aspect ratios,α = S/L= φη, along with a few ultimate ratios reported from the literature.
(Online version in colour.)

of the origin of sand comminution [22], as well as to recast under a new light the continuum
models simulating it [26].

Similarly, evidence of ultimate shape distributions in fragmented systems is rapidly emerging
in the scientific literature, often outside the realm of granular mechanics [31]. Considering such an
attractor in terms of particle shape can greatly assist the understanding of how granular systems
deform, crush and behave inelastically. Systematic examples of the regular morphology of the
products of extreme fragmentation have been reported in planetary systems subjected to impacts
[32,33]. By approximating the morphology of the building blocks of these systems as ellipsoids
(figure 1), the ratio between the principal dimensions of the fragments found in extraterrestrial
impact sites (i.e. S, I and L, respectively, the smallest, intermediate and longest axes) were
found in the proportion of 1 :

√
2 : 2, corresponding to an aspect ratio α = S/L = 0.5 (figure 2).

Remarkably, this finding was insensitive to the size of the fragments—the same ratio applied to
boulders making up entire asteroids (i.e. metre-scale objects [32]), as well as to the regolith of
these same asteroids’ surfaces or of other celestial bodies (i.e. micrometre-scale particles [33,34]).
Evidence of regularity was also found in laboratory experiments mimicking the impacts from
which extraterrestrial regoliths originate [35], as well as terrestrial settings where fragmentation
emerges from weathering, desiccation, and compression [36–38]. Interpretations of these trends
could be made through a stochastic model simulating sequential binary break-ups of polyhedral
particles [39]. By optimizing the location and direction of the break-up planes, this model was able
to show that above a characteristic size the overall shape of the fragments is well approximated
by prisms conforming to a geometric proportion of 1 : 1.52 : 2.32 (α= S/L ≈ 0.43), thus reinforcing
the idea of a natural tendency of crushed fragments to converge to a uniquely defined anisotropic
form. By restricting the discussion to rectangular prisms breaking exclusively at the centre of their
longest edge, the same logic can be used to recover the notable geometric proportion referred to
as silver ratio (figure 3). This hypothesis is particularly appealing in light of the well-known results
of fracture mechanics, which identifies the centre of a particle as the location of maximum tensile
stress and consequent crack nucleation [40,41]. This term is used in a two-dimensional context
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Figure 3. Graphical representation of the concept of silver ratio in three dimensions in relation to shape self-similarity upon
successive breakage events. Cutting planes orthogonal to the current longest axis indicate the location of the fracture generating
new fragments possessing self-similar geometry. (Online version in colour.)

to indicate rectangles that maintain their aspect ratio of 1 :
√

2 unaltered when cut at the centre
of their longest side [42]. Interestingly, two-dimensional discrete element method (DEM) models
of crushable agglomerates suggest that such a ratio can be a good approximation of the average
shape of crushed particles resulting from confined compression [43]. Under three-dimensional
conditions, the idea of silver ratio can be generalized through a prism with edges satisfying the
proportion 1 : 3

√
2 : 3√22 (α= S/L ≈ 0.63). In this case, systematic break-up across the longest edge

of a fragment generates prisms that always maintain geometrical proportions, thus providing a
useful conceptual model for a scenario in which size reduction occurs while preserving shape
self-similarity among parent and child grains. These examples of geometric proportions reflect a
certain regularity of how the shape of crushed particles evolves. Most notably, they satisfactorily
encompass particle crushing data from extremely diverse settings, thus strongly suggesting that
the ultimate value of simple shape descriptors for broken solids varies within a relatively narrow,
yet consistent range (figure 2).

Here, we use the idea of a shape attractor as a working hypothesis to set up a continuum
theory enabling the inspection, simulation and quantification of the role of the particle shape on
the macroscale properties of crushable granular solids. While we make no specific decision about
the exact numerical value of this attractor, nor about the underlying microscopic mechanisms
that produce it, we will use this idea of ultimate conditions in an averaged form relevant for
homogenized continua. The hypothesis regarding the existence of a shape attractor (which is well
supported by the narrow data scatter in figure 2), along with the use of scaling relations for the
elastic properties of granular media [26], will be the key building blocks of an extended CBM
framework able to track the coevolution of grain shape and size during comminution.

The reminder of the paper is structured as follows. First, we provide an overview of the
original CBM framework for confined comminution. Afterwards, we propose a general strategy
to incorporate shape descriptors into CBM. We then specialize this framework to two cases: (i) a
single shape descriptor (the particle aspect ratio) and (ii) multiple shape descriptors (here referred
to as flatness and elongation ratios). Finally, we discuss open challenges and future research needs
related to the study of evolving particle shapes in granular systems.

3. Breakage mechanics with spherical particles
This section briefly reviews the key governing equations of CBM while highlighting its structure
and key hypotheses. Since most of the fundamental premises of CBM will be retained in
its extended formulation for non-spherical particles, this section serves as a basis for the
mathematical developments outlined in the subsequent sections. For simplicity, but with no
loss of generality, materials in which breakage is the only form of dissipation are considered
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(i.e. energy loss due to plastic deformations from friction and volumetric grain rearrangement
is ignored). Furthermore, the equations are here limited to isotropic stress states, for which we
can present the analysis in scalar terms. The removal of these simplifications is straightforward
and is extensively elaborated in prior works [26,44,45].

Let x be a particle size fraction in a polydisperse material. In this context, the term size reflects
the volume-equivalent spherical diameter of an arbitrarily shaped grain or any other correlated
measure of size (e.g. its largest dimension). In the original CBM, no other particle descriptors are
used and the size is treated as an aleatory variable characterized by a probability density function,
p(x), associated with the grain size distribution (GSD) of the continuum. As a consequence, the
average grain size can be expressed as:

〈x〉 ≡
∫

p(x)x dx, (3.1)

where p(x) satisfies
∫

p(x) dx = 1. This statistical averaging can be applied to any function
dependent on the grain size. For this paper, the most relevant statistical homogenization
procedure involves the Helmholtz free energy potential, Ψ , i.e. the thermodynamic function
capturing the elastic strain energy storage. The statistical average of Ψ can thus be written as:

Ψ ≡ 〈ψ〉 =
∫
ψ(x)p(x) dx. (3.2)

In the above equation, the non-homogenized Helmholtz free energy is given by a
multiplicative decomposition, ψ(ε, x) =ψr(ε)fx(x), where ψr is the free energy potential associated
with a reference grain size, xr, and fx is an energy split function reflecting how the energy is
allocated across different fractions. Micromechanical arguments suggest that a power law is the
optimal form for fx, as follows:

fx(x) =
(

x
xr

)n
, (3.3)

in which n = 2 for spheres. The rationale for such power law scaling is that the strain energy
stored in each grain fraction is proportional to the surface area, as larger grains attract a higher
number of contact forces, and consequently storing more energy [26]. Another essential feature
of CBM is the existence of an ultimate state of the GSD at which confined compression no longer
generates crushing. Such hypothesis is reflected by a breakage state variable, B, varying from
B = 0 (unbroken state) to B = 1 (complete breakage). Through this state variable it is possible to
capture changes in grain size polydispersity, as follows:

p(x, B) = p0(x)(1 − B) + pu(x)B, (3.4)

where p0(x) is the initial GSD and pu(x) is the ultimate GSD, which is often assumed to be fractal
[29]. From this point of view, B = 1 acts as an attractor for a crushable material, in that it sets
the ultimate state at which no further changes of GSD are possible. The two hypotheses of CBM
discussed above can be used to construct a breakage-dependent Helmholtz free energy potential
simply by inserting equation (3.4) into (3.2), which leads to

Ψ (ε, B) = fb(B)ψr(ε), fb(B) = (1 − θB) , (3.5)

where θ is a grading index dependent on p0 and pu, as well as on the energy split function. Here,
the breakage dependence of the function fb arises due to the statistical homogenization and the
scaling of energy with respect to grain size x. The above information becomes useful by employing
the first and second principles of thermodynamics:

σ dε = dΨ + dΦ (3.6a)

and
dΦ = EB dB> 0, (3.6b)

where ε is the strain and σ is the corresponding work-conjugate stress. As mentioned earlier,
here these measures are taken as scalars, to help transparency and simplifying the discussion.
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Generalization into tensorial formalism is straightforward, which would follow directly from
most other earlier papers on CBM, but will not alter the conceptual conclusions of this paper.
The term dΦ indicates the breakage dissipation increment, which is equal to the product of the
breakage increment, dB, and its conjugate thermodynamic force, the breakage energy, EB. Given
the additional simplification in this paper, where we neglect any other sources of dissipation
additional to the breakage dissipation, no difference shall be assumed hereafter between the
elastic strain εe and the total strain, ε. Hence, standard thermodynamic formalism implies that:

σ = ∂Ψ

∂ε
= fb

∂ψr

∂ε
(3.7a)

and

EB = −∂Ψ
∂B

= −∂fb
∂B
ψr. (3.7b)

Appropriate choices for the dissipation function [26,46] lead to the following breakage yielding
condition:

y = EB

Ec
(1 − B)2 − 1< 0, (3.8)

through which the following breakage evolution rule and dissipation increment follow:

dB = 2Λ
(1 − B)2

Ec
(3.9a)

and

dΦ = 2Λ
EB(1 − B)2

Ec
, (3.9b)

where Ec is the energy threshold associated with first breakage and Λ is a non-negative inelastic
multiplier. From equation (3.8), it is readily apparent that CBM describes yielding in energy
terms, thus establishing an analogy with fracture mechanics [47–49]. Furthermore, by linking
equation (3.8) with a specific form of Helmholtz free energy it is possible to recover the stress
at the onset of breakage. In the case of a quadratic Helmholtz free energy for a reference system
constituted solely by initial grain sizes (i.e. linear elasticity prior to breakage):

ψr = 1
2 Kε2, (3.10)

it follows that the yielding stress is

pc = pL
c

fb
(1 − B)

= pL
c

(1 − θB)
(1 − B)

, (3.11)

where

pL
c =

(
2KEc

θ

)1/2
(3.12)

is the initial yielding stress (i.e. pc at B = 0). Since this value is obtained for idealized particles
without shape descriptors other than their size, it will be regarded as the reference value
for spherical grains. Such value depends on the bulk modulus (through K), the macroscopic
crushability (through Ec) and the proximity between initial and ultimate GSD (through θ ).



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20201005

...........................................................

A different expression of ψr can be used to recover the nonlinear, pressure-dependent
behaviour typical of granular materials. For example, using the development of [44,46] we can
use

ψr = pr

K̄(2 − m)

(
K̄(1 − m)εv + 1

)[(2−m)/(1−m)] . (3.13)

In particular, for a constant m = 1
2

ψr = 2pr

3K̄

(
1
2

K̄εv + 1
)3

, (3.14)

which reflects pressure-dependence due to conical inter-particle contacts [50], thus leading to the
following expression of yielding stress:

pc = pN
c

fb
(1 − B)4/3 = pN

c
(1 − θB)

(1 − B)4/3 , (3.15)

where

pN
c = pr

(
3K̄Ec

2θpr

)2/3

, (3.16)

is the initial yielding stress prior to breakage for an assembly of spherical particles, K̄ is a non-
dimensional stiffness constant, and pr a reference pressure.

Note that it follows from both equations (3.11) and (3.15) that the crushing strength grows with
B, a result which underpins the process often referred to as clastic hardening [51].

4. Breakage mechanics with non-spherical particles
Here CBM is generalized to continua consisting of non-spherical particles with coevolving grain
sizes and shapes. For this purpose, the original CBM formalism is augmented to encompass an
arbitrary number, n, of shape descriptors, si. As mentioned previously, while the assessment of the
overall particle morphology involves multiple length scales, here the term shape refers only to the
coarsest set of geometric irregularities, which reflect differences between the principal dimensions
of a three-dimensional object (figure 1). In addition, to recover spherical particles as a particular
case, the derivation will make reference to ellipsoidal particles, and will focus on the effect of
shape on surface area, from which we will be able to estimate the dependence of elastic properties
on shape. While the paper has no aim to examine the evolution of morphological descriptors
reflecting lower-scale attributes (e.g. roundness and roughness), it is worth remarking that the
formalism developed hereafter is general enough to accommodate future extensions.

The first key element of the proposed augmented CBM is the incorporation of the shape
descriptors into the Helmholtz free energy potential. In line with the philosophy of the original
CBM formulation, this step is pursued by adopting an extended multiplicative decomposition for
the non-homogenized free energy function of a given class of grain sizes and shapes:

ψ(ε, x, s1, s2, . . . , sn) =ψr(ε) fx(x) fs(s1, s2, . . . , sn), (4.1)

where ψr is the free energy for reference-sized and -spherical grains; while fx and fs are the energy
split functions that come to correct that energy for any grain size x and shape {s1, s2, . . . , sn},
respectively. Although the attributes of the fs function will be later illustrated with reference
to specific examples, the logic through which it will be constructed is similar to the rationale
outlined in the previous section for fx. Specifically, the possible expressions for fs will come to
describe the effect of shape irregularities on the surface area of a particle. Hence, the value of
the reference shape descriptors, si

r, will be chosen to ensure that fs = 1 for the particular case of a
sphere. Starting from equation (4.1), statistical homogenization provides a Helmholtz free energy
function for the continuum. While this step can be conducted in terms of both size, x, and shape
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descriptors, si, in a form similar to that illustrated in equation (3.1), here only the grain size will be
treated as an aleatory variable with its own probability density function, from which it follows:

Ψ (ε, B, s1, s2, . . . , sn) =ψr(ε) fb(B) fs(s1, s2, . . . , sn), (4.2)

where fb = 1 − θB remains as specified in equation (3.5), while the proposition above is boxed as it
provides the first key ingredient in the new theory. Specifically, we consider the scaling function
fs to denote the dependence of the Helmholtz free energy on grain shape due to surface area
variations. This is consistent with the role of the function fb that was already used in CBM to
denote such surface variations as a function of the GSD. As will be shown in the following, the
new factor fs will enable us to reason changes in elastic properties with grain shape, so much as fb
explains such changes with GSD.

Also note that in equation (4.2) the average value of the shape descriptors is directly used,
rather than evaluating it using their potentially evolving statistical distributions. This choice
simplifies the derivations and is justified by the scarcity of data of statistical distributions of
the shape descriptors. It must be noted, however, that should this type of data become more
commonly available, generalizations including such evolving distributions are readily possible
simply by following the philosophy of CBM as originally carried out for distributed grain sizes.

The statistically homogenized free energy Ψ in equation (4.2) yields the following
thermodynamic forces conjugate to the (elastic) strain ε, to B, and to the new family of state
variables si, respectively:

σ = ∂Ψ

∂ε
= fbfs

∂ψr

∂ε
, (4.3a)

EB = −∂Ψ
∂B

= −ψr
∂fb
∂B

fs (4.3b)

and Esi = −∂Ψ
∂si

=ψrfb
∂fs
∂si

with i = 1, . . . , n. (4.3c)

By retaining the validity of the breakage condition in equation (3.8), equation (4.3b) leads to
the following expression of crushing pressure for linear and pressure-dependent elasticity:

pc = pL
c f 1/2

s fb(1 − B)−1 = pL
c f 1/2

s

(
1 − θB
1 − B

)
(4.4a)

and

pc = pN
c f 2/3

s fb(1 − B)−(4/3) = pN
c f 2/3

s
(1 − θB)

(1 − B)4/3 , (4.4b)

in which the definitions of crushing pressure for assemblies made of spherical particles in
equations (3.12) and (3.16) have been used. It is readily apparent that the incorporation of
additional shape descriptors into the energy potential modifies the crushing resistance through
multiplicative factors dependent on the selected type of elasticity and the value of the coefficient
fs. Such effect will be examined in detail in the following sections with reference to specific
examples.

The next key component for the extension of the CBM are coevolution laws for the shape
descriptors. In agreement with the original CBM, here such laws are assumed to include a
tendency towards a limit shape descriptor, sL. Furthermore, since in the context of confined
comminution alterations of the particle shape are a direct consequence of particle ruptures, the
shape descriptors are treated as passive variables, i.e. state variables whose evolution is a direct
consequence of breakage (i.e. dsi ∼ dB). Given the hypothesized coordinated evolution of B and
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the family of si descriptors, it is further postulated that at ultimate breakage all states variables
converge to their respective attractor, which in mathematical terms implies:

dsi(1 − B)2 ∼ dB(si
L − si). (4.5)

The equation above is boxed to highlight that the second key concept in this paper is the
coevolution laws between the grain shape variable vector {s1, s2, . . . , sn} and grain size through
the variable B. In particular, based on equation (4.5), the increment of a shape descriptor, dsi,
scales with dB based on the relative distance between its current value and its attractor, si

L (i.e.
the further si is from si

L, the faster its evolution rate). In accordance with the breakage dissipation
increment, equation (3.9b), the breakage rate scales with (1 − B)2, reflecting that B can only grow.
By contrast, equation (4.5) implies that the shape descriptors can converge to their attractors either
with increasing or decreasing trends, depending on whether their initial state is above or below
si

L. The above considerations suggest the following expression for the coevolution laws of the
family of si variables:

dsi = ci

(1 − B)2 (si
L − si) dB with i = 1, . . . , n, (4.6)

where, in addition to the introduction of dimensionless breakage-shape coevolution vector of
constants ci, the rate of shape change is determined by the distance from the attractor si

L.
Regarding this reference, it should be noted that the values of si

L can be constrained with
geometric arguments (figure 2), thus leaving the coevolution constants ci as the only new
parameters to be added to those of the original CBM framework for simulating particle shape
evolution. The extended expression of Ψ and the evolution laws in equation (4.6) lead to a
generalized form of the thermodynamic expressions presented previously, accordingly:

dΦ = EB dB +
n∑

i=1

Esi dsi > 0, (4.7)

where Esi are thermodynamic forces work-conjugates to the newly defined shape descriptors. The
formulation is completed by the following evolution equations:

dB = 2Λ
(1 − B)2

Ec
(4.8a)

and

dsi = 2Λ
ci

Ec
(si

L − si), (4.8b)

which are in agreement with the original CBM’s use of the breakage condition of equation (3.8). By
considering equations (4.7) and (4.8), we will later identify restrictions to the admissible values of
the family of constants ci, and in turn to the rate of shape evolution. In the following sections, such
general formalism will be specialized to particular choices of shape descriptors by illustrating the
use and performance of the proposed framework.

5. The coevolution of breakage and aspect ratio

(a) Surface area and Helmholtz free energy
The incorporation of a specific dependence ofΨ on shape descriptors is based on the hypothesis of
a linear scaling between the elastic strain energy and the surface area of the particles. The original
version of this choice was motivated by DEM simulations with spheres [26], so its extension for
non-spherical particles should be assessed and might be susceptible to future adjustments. A
straightforward description of the surface area of arbitrarily shaped particles can be achieved
by approximating them as ellipsoids, for which the shape of a grain is characterized by three
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principal dimensions, L> I> S, respectively. The surface area of an ellipsoid, ΣA, can then be
approximated with the Knud Thomsen formula:

ΣA = 4π
(

LpIp + LpSp + IpSp

3

)1/p
, (5.1)

where p ≈ 1.6. Although the principal dimensions can be treated as independent variables, for
simplicity this section refers to a prolate geometry (i.e. I = S). The case of oblate particles (i.e. L =
I), not treated here, can in principle be examined by following a similar strategy. This restriction
to the intermediate length enables tracking the shape of ellispoidal particles as follows:

ΣA = 4π

(
2LpSp + S2p

3

)1/p

= 4πS2
(

1 + 2α−p

3

)1/p

, (5.2)

where the aspect ratio, α, is introduced according to the following definition:

α= S
L

≤ 1. (5.3)

For simplicity, equation (5.2) can be linearized through Taylor expansion around α = 1,
obtaining:

ΣA = 4πS2
(

5 − 2α
3

)
. (5.4)

The above suggests that the surface area, ΣA: (i) scales with S2, implying that the smallest
particle size plays a role similar to the grain size x in the original CBM; and (ii) accounts for the
particle aspect ratio α through the coefficient

fs ≡ fs(α) = 5 − 2α
3

, (5.5)

whose effect vanishes at the limit of α = 1 (i.e. fs = 1), when the longest and shortest dimensions
coincide for a spherical geometry. It should be noted that, although the linearization in
equation (5.4) has the benefit of leading to a linear dependence of fs on the state variable α (similar
to how fb depends linearly on B), it loses accuracy for highly distorted particles (i.e. α≈ 0). In such
cases, the nonlinear dependence on α reflected in equation (5.2) can be used with no additional
changes to the formulation. These results can be incorporated in an extended Helmholtz free
energy potential, in that fs represents the function fsi in equation (4.2). In agreement with
equation (5.4), it therefore follows:

Ψ (ε, B,α) = fbfsψr = (1 − θB)
(

5 − 2α
3

)
ψr(ε). (5.6)

(b) Thermodynamic restrictions
Given equation (4.7), the dissipation increment can be expressed in terms of the increments of the
two state variables, B and α:

dΦ = EB dB + Eαdα ≥ 0, (5.7)

which shows energy loss due to simultaneous size reduction and shape alteration. In the above,
Eα is taken as the thermodynamic force associated with changes in aspect ratio, here referred to
as morphing energy. Using the above equation and the energy balance in equation (3.6a), we find:

(
σ − ∂Φ

∂ε

)
dε +

(
EB − ∂Φ

∂B

)
dB +

(
Eα − ∂Φ

∂α

)
dα= 0, (5.8)
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from which:

σ ≡ ∂Ψ

∂ε
= fbfs

∂ψr

∂ε
, (5.9a)

EB ≡ −∂Ψ
∂B

= −∂fb
∂B

fsψr (5.9b)

Eα ≡ −∂Ψ
∂α

= −fb
∂fs
∂α
ψr. (5.9c)

(c) Stiffness
The expression of the Helmholtz free energy function in equation (5.6) enables the derivation of
the elastic bulk modulus, Kb, as follows:

Kb ≡ ∂2Ψ

∂ε2 = fbfs
∂2ψr

∂ε2 . (5.10)

This expression can be specialized for the Helmholtz free energy functions introduced
previously. In case of linear elasticity, its expression is given by:

Kb ≡ (1 − θB)
(

5 − 2α
3

)
K, (5.11)

while for pressure-dependent elasticity:

Kb ≡ (1 − θB)
(

5 − 2α
3

)
prK̄[K̄(1 − m)ε + 1]m/(1−m). (5.12)

The latter can be further simplified by setting the constant m = 1
2 , as before, and expressing it

in stress-dependent form through equation (5.9a). From these steps, it follows:

Kb ≡ √
1 − θB

√
5 − 2α

3
prK̄

√
σ

pr
. (5.13)

The above derivations highlight the consequences of the scaling hypotheses used for Ψ on
the elastic properties of the continuum. Regardless of the specifics of the Helmholtz free energy
functions, all the resulting expressions of elastic bulk modulus involve two scaling coefficients,
one dependent on breakage, B, and another on the aspect ratio, α. Such coefficients incorporate
the effect of evolving grain size polydispersity and particle shape, respectively.

It is interesting to note that both capture correctly the trend exhibited by experiments reported
in the literature. Specifically, while the breakage-dependent term reflects the decrease in stiffness
caused by a broadening of the GSD [52], the shape-dependent term determines an increase in bulk
stiffness due to higher particle irregularity [20]. The latter result is thus consistent with findings
by [21], in that, with all other state variables kept constant, it provides maximum stiffness away
from the idealized spherical geometry (i.e. away from an aspect ratio α= 1 towards α = 0).

(d) Yielding
The breakage energy in equation (5.9b) can be incorporated into the breakage criterion in
equation (3.8) to infer yielding conditions. For linear elastic behaviour, it follows that the yielding
stress takes the form:

pc = pL
c f 1/2

s fb(1 − B)−1 = pL
c

(
5 − 2α

3

)1/2 (1 − θB
1 − B

)
, (5.14)

while for pressure-dependent elasticity it is given by

pc = pN
c f 2/3

s fb(1 − B)−(4/3) = pN
c

(
5 − 2α

3

)2/3 (1 − θB)
(1 − B)4/3 . (5.15)
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It is thus readily apparent that the theory predicts a shape-dependent corrective coefficient
expressed as a function of the scaling function fs. Since CBM predicts a correlation between
stiffness and yielding stress, the corrective coefficient mirrors the hypothesized influence of the
particle shape on the bulk modulus (i.e. departure from spherical shapes implies an increase
of surface area and a consequent stiffening of the material, with all other state variables kept
constant, including the grain size through B). In other words, departure from sphericity is
predicted to cause an increase in yielding stress. Although this result apparently contradicts some
results available in the literature [23,24], it offers useful insight for a reexamination of the existing
evidence. In fact, it points out that the origin of the often reported reduction of the yielding stress
in assemblies made of irregular particles may not be directly caused by system effects affecting
the elasticity of the particle packing, but rather by how the local grain irregularities modify the
fracture mechanisms and the consequence energy threshold at the onset of comminution [48].

(e) Coevolution law
Equation (5.6), along with the evolution equations of the inelastic state variables, enables the
quantification of the dissipation increment and the consequent identification of the conditions
satisfying the non-negativity restriction of the dissipation increment in equation (4.7). Specifically,
in CBM the evolution of B is governed by an attractor associated with an ultimate GSD (pu in
equation (3.4)). A similar logic is used here for the state variable α by defining an ultimate value
αL serving as attractor. As pointed out by figure 2, this value is expected to lay within a narrow
range (i.e. 0.43<αL < 0.63). By using the aforementioned attractor, it is possible to specialize the
evolution equation (4.6), as follows:

dα = cα
(1 − B)2 (αL − α) dB. (5.16)

Integration of equation (5.16) from initially unbroken state (B = 0) leads to:

α= αL + (α0 − αL) e−cα (B/(1−B)), (5.17)

where α0 is the aspect ratio prior to breakage (i.e. at B = 0) and cα is a constant controlling the rate
of shape evolution in relation with the breakage growth rate.

Two scenarios will be considered here for such a coevolution constant: (i) cα > 1, for which the
shape evolves faster than the grain size reduction and meets its attractor before the system reaches
the ultimate GSD (a case here referred to as tachymorphic); (ii) cα < 1, for which the shape evolves
at a slower rate than the size reduction and achieves its attractor after extensive comminution (a
case here referred to as brachymorphic).

These scenarios have distinct thermodynamic implications. By inserting equation (5.16) and
the breakage evolution equation (4.8a) into equation (5.7), it follows that the dissipation increment
is:

dΦ = 2Λ
(1 − B)2

Ec
EB

(
1 + 2cα

θ

1 − θB
(1 − B)2

αL − α

5 − 2α

)
≥ 0, (5.18)

which can be used to set restrictions to the coevolution constant cα . To have non-negative
dissipation, cα has to be within a specific range, cmin

α < cα < cmax
α . The upper limit for cα can be

understood by examining the effect of shape alterations on the energy balance. For granular
media with highly distorted particles (i.e. 0<α <αL) positive dissipation is always guaranteed,
regardless the value of the evolution coefficient cα . This is a consequence of elongated particles
gradually taking a more spherical shape, by losing elongation features which provide further
contact sites for energy storage. By contrast, relatively undistorted grains (i.e. αL <α < 1) lead
to negative contributions to the dissipation rate, as they start with relatively spheroidal shapes
which are progressively distorted by crushing. In this scenario grain ruptures create elongated
features, which may offer more frequent opportunities for contact formation, thus counteracting
the energy loss due to size reduction (i.e. loss of suitable sites for force chain development).
The most restrictive value for cmax

α can then be obtained by referring to the highest admissible
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Figure 4. Evolution of the aspect ratio of the grains, α, as a function of breakage, B (a), and stress, σ (b), with reference to
different initial values of α prior to breakage. Simulations based on K̄ = 8, m= 0.5, pr = 1 MPa, Ec = 3.5 MPa, θ = 0.9,
and αL = 1/ 3

√
22. Tachymorphic examples based on cα = 2.0. Brachymorphic examples based on cα = 0.5. (Online version

in colour.)

value of α=1, for which the negative contributions to equation (5.18) are maximized. Such effects
are stronger at the start of the breakage process (i.e. B = 0) and result in cmax

α = 3θ/[2(1 − αL)].
While this restriction provides a cap for the rate of tachymorphism, it needs to be complemented
by a lower limit of cα . For the reasons mentioned above, the latter is relevant only for nearly
spherical initial shapes. However, in case of brachymorphism the shape is altered weakly during
comminution, thus experiencing sharp variation only at high values of B. As a result, the
assessment of cmin

α is more complex, as it requires consideration of the coordinated evolution of B
and α. Details about the determination of cmin

α are provided in appendix A. However, it is possible
to show that a conservative choice for the lower limit is cmin

α = 1/20, which can be used for a first-
order estimate. For all practical purposes, the above formulation satisfies the non-negativity of
the dissipation rate by adopting:

1
20

≤ cα ≤ 3θ
2(1 − αL)

. (5.19)

(f) Simulations
Given the simplicity of the above formulation all the analyses discussed in this section are
based on a pressure-dependent elastic model introduced in §3. Figure 4 illustrates simulations
conducted for different initial values of aspect ratio. Convergence to the attractor αL is shown
as a function of breakage and stress, with the value of cα influencing the trend of convergence.
Tachymorphic behaviour (cα > 1) implies sharp approach of the attractor right after yielding. In
this case, the model predicts a steady evolution of the shape descriptor well before the ultimate
GSD (i.e. the particles continue to decrease in size, but the new fragments possess a similar
aspect ratio to that of their progenitors). Such a scenario leads to sharp shape-stress evolution
curves (figure 4b), with marked changes in yielding stress and, consequently, strain increments.
By contrast, brachymorphic behaviour (cα < 1) leads to slower convergence to the attractor. This
is reflected by negligible shape changes in the early stages of breakage (figure 4a) and weaker
variation of the particle shape upon loading (figure 4b). In this scenario, the model predicts
that the attractor is reached close to the ultimate GSD, thus requiring large stress to reach its
final value.
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The model was tested against results available in the literature. Figure 5 shows a comparison
between CBM simulations and DEM analyses reported by [43] for two-dimensional crushable
agglomerates with ellipsoidal and polygonal shapes. The calibration of the CBM model
parameters focused on the coevolution constant cα , in that all other material constants were set
to values consistent with previous calibrations for crushable granular materials [25,53]. Although
the discrete nature of the DEM analyses inevitably involves sharp jumps in aspect ratio, the results
reported by Ueda et al. [43] display asymptotic values oscillating within a narrow range. Use
of a unique ultimate aspect ratio, αL in the CBM analyses (i.e. αL = 1/

√
2, corresponding to the

two-dimensional silver ratio [42]) therefore leads to a satisfactory match between the previously
published discrete and current continuum analyses.

Figure 6 illustrates a similar example with reference to shape evolution data reported by Seo
et al. [28]. In this case, two quartz sands with subrounded (Ottawa) and subangular (Q-ROK)
particles, respectively, were crushed through one-dimensional compression and scanned using
X-ray tomography. While the applied stress was not sufficient to clearly identify an asymptotic
trend, the figure shows that the measurements can be accurately replicated by the proposed CBM
formulation. In this case, the calibration of the model parameters involved both the coevolution
constant cα and the attractor αL. While the former was constrained based on measurements of
coevolution of breakage and aspect ratio (figure 6a), the latter was optimized to capture changes
of particle shape upon loading (figure 6b). The simulations display a satisfactory match of the
shape evolution measurements in terms of both breakage and pressure. Despite the similarity of
the initial aspect ratio of the two sands, their ultimate values of αL were found different (αL = 1/2
for Ottawa and αL = 3/5 for Q-ROK sand). Such variations may be regarded as a product of the
different formation history of the two sands, with Ottawa being the outcome of fluvial deposition,
and Q-ROK deriving from artificial grinding. Regardless of these differences, in both cases the
estimated shape attractors were consistent with evidence from extreme fragmentation in nature
(figure 1). In addition, the measured trends could be captured only by using values of cα > 1
(tachymorphic behaviour), according to which the achievement of the ultimate GSD (B = 1) occurs
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when the shape attractor has nearly been achieved (i.e. size reduction is predicted to continue to
occur while the aspect ratio of the particles remains practically constant).

6. The coevolution of breakage, flatness and elongation

(a) Surface area and Helmholtz free energy
To express the surface area as a function of multiple shape descriptors, we use the binary set
of variables proposed by Zingg [54]. Similar to the aspect ratio, here too deviations from the
ideal case of a sphere are encapsulated into non-dimensional ratios between principal lengths. In
this case, the two selected state variables are flatness and elongation, being φ = S/I and η= I/L,
respectively. A visual interpretation of the particle geometry associated with these parameters is
provided in figure 7. Low flatness ratio φ corresponds with a shortest dimension much smaller
than the others, thus constituting the thickness of a flat object (upper and lower left quadrants in
figure 7, corresponding to shape classes defined as plates and blades). Similarly, low elongation
ratio η denotes shapes in which the maximum dimension is dominant over the intermediate
length, such as in rod-shaped particles (lower right quadrant). Comparable, high values of the
two ratios correspond to spheroidal particles (upper right quadrant). The selection of φ and η as
state variables enables to use the Zingg diagram, hereafter referred to as morphometric plane, to
track the evolution of the particle shape during breakage. This is depicted in figure 7, where the
convergence of different initial states to a prescribed attractor is depicted.

Different choices of initial φ and η lead to shapes that range from oblate (rod-like) to highly
prolate (plate-like), thus greatly influencing the value of particle surface area,ΣA. Such effects can
be captured by the surface area expression in equation (5.1), which can be expressed as a function
of the chosen state variables as follows:

ΣA = 4π I2 p

√
η−p + η−pφp + φp

3
≈ 4π I2

(
1 + 2

3
(φ − η)

)
, (6.1)

where linearization around φ = 1 and η= 1 has been performed.
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This treatment implies that ΣA scales with both: (i) I2, meaning that the intermediate length
plays the role of the grain size x of the original CBM; and linearly with (ii) the following shape-
dependent coefficient

fs ≡ fs(φ, η) = 1 + 2
3 (φ − η). (6.2)

The influence of fs vanishes at the limit φ ≡ η≡ 1 (i.e. fs = 1 when all the principal dimensions
coincide, as in spherical grains). Such a result can be incorporated into an extended Helmholtz
free energy potential, as follows:

Ψ (ε, B,φ, η) = (1 − θB)(1 + 2
3 (φ − η))ψr(ε). (6.3)

(b) Thermodynamic restrictions
The dissipation increment can then be expressed by:

dΦ = EB dB + Eφ dφ + Eη dη≥ 0, (6.4)

where Eφ and Eη are the thermodynamic forces associated with the particle elongation and
flatness, and are thus defined as the elongation energy and flatness energy, respectively. From
equation (6.4), it follows that:(

σ − ∂Φ

∂ε

)
dε +

(
EB − ∂Φ

∂B

)
dB +

(
Eφ − ∂Φ

∂φ

)
dφ +

(
Eη − ∂Φ

∂η

)
dη= 0, (6.5)

from which

σ = ∂Ψ

∂ε
= (1 − θB)

(
1 + 2

3
(φ − η)

)
∂ψr

∂ε
, (6.6a)

EB = −∂Ψ
∂B

= θ

(
1 + 2

3
(φ − η)

)
ψr(ε), (6.6b)

Eφ = −∂Ψ
∂φ

= −2
3

(1 − θB)ψr (6.6c)

and Eη = −∂Ψ
∂η

= 2
3

(1 − θB)ψr. (6.6d)
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(c) Stiffness
The expression of the Helmholtz free energy function in equation (6.3) enables the derivation of
the elastic bulk modulus, as follows:

Kb ≡ ∂2Ψ

∂ε2 = (1 − θB)
(

1 + 2
3

(φ − η)
)
∂2ψr

∂ε2 . (6.7)

This expression can be specialized for the Helmholtz free energy functions introduced
previously. In the case of linear elasticity, its expression is given by:

Kb ≡ (1 − θB)(1 + 2
3 (φ − η))K, (6.8)

while for pressure-dependent elasticity:

Kb ≡ (1 − θB)(1 + 2
3 (φ − η))prK̄[K̄(1 − m)ε + 1]m/(1−m). (6.9)

The latter can be simplified by adopting m = 1
2 and expressing the bulk modulus in a stress-

dependent form:

Kb ≡ √
1 − θB

√
1 + 2

3
(φ − η)prK̄

√
σ

pr
. (6.10)

Once again, these results provide scaling trends consistent with available evidence about
the role of grain size and shape on the elastic properties of sands [20,21,52]. Specifically, the
expressions above also predict an increase in bulk stiffness with particle irregularity, which is
reflected by the approach of minimum stiffness values corresponding to the case of spherical
particles (i.e. when η= φ = 1).

(d) Yielding
The breakage energy in equation (6.6b) can be incorporated into equation (3.8) to infer the yielding
threshold. For a linear elastic behaviour, it follows that:

pc = pL
c

(
1 + 2

3
(φ − η)

)1/2 (1 − θB
1 − B

)
= pL

c f 1/2
s

(
1 − θB
1 − B

)
, (6.11)

while for pressure-dependent elasticity:

pc = pN
c

(
1 + 2

3
(φ − η)

)2/3 (1 − θB)
(1 − B)4/3 = pN

c f 2/3
s

(1 − θB)
(1 − B)4/3 . (6.12)

Again, we find that departure from sphericity leads to an increase in yielding resistance, and
that the evolution of grain shape adjusts the progress of clastic hardening.

(e) Coevolution laws
The quantification of the dissipation increment for this generalized model requires coevolution
equations for the inelastic grain size (through B) and shape state variables (through φ and η). In
analogy with the aspect ratio formulation in the previous section, here these are given by

dφ = cφ
(1 − B)2 (φL − φ) dB (6.13a)

and
dη= cη

(1 − B)2 (ηL − η) dB. (6.13b)

Integration from an initially unbroken state (B=0) leads to:

φ = φL + (φ0 − φL) e−cφ (B/(1−B)) (6.14a)

and
η= ηL + (η0 − ηL) e−cη(B/(1−B)), (6.14b)
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close to the limits of admissibility, labelled as Case A (cη = 1.50; cφ = 0.075) and Case B (cη = 0.075; cφ = 0.50). By
contrast, the diagram on the right depicts different sets of combinations for cη and cφ . Set #1 involves cη = 0.75 and cφ =
{0.075, 0.15, 0.25 or 0.35}. Set #2 involves cφ = 0.25 and cη = {0.075, 0.15, 0.45 or 0.90}. (Online version in colour.)

where φ0 and η0 are the initial flatness and elongation ratios, while cφ and cη are constants
controlling the rate of shape evolution. The coevolution laws hypothesize convergence of the
shape descriptors to their attractors (φL and ηL, respectively). Ranges for the attractor point can
be set on the basis of figure 2, which suggests 0.65<φL ≈ ηL < 0.8. While this formalism does
not directly track the aspect ratio, its value can be readily computed as α= φη. Similarly, the
sphericity, ψS, can also be tracked through the Krumbein approximation [55], according to which
ψS = 3

√
IS/L2 = 3

√
φη2. These relations simply expand the possibilities for depicting the evolution

of various shape parameters.
While equation (6.14) enables both tachymorphic (cφ > 1 and cη > 1) and bracymorphic

behaviours (cφ < 1 and cη < 1), the coexistence of two attractors leads to more demanding
thermodynamic restrictions for the value of the coevolution constants. Such restrictions can
be defined by specializing the dissipation increment for the case of the evolution laws in
equation (6.13):

dΦ = 2Λ
(1 − B)2

Ec
EB

(
1 + 2

3θ
1 − θB

(1 − B)2
cφ(φ − φL) − cη(η − ηL)

1 + 2
3 (φ − η)

)
≥ 0. (6.15)

Fulfilment of the sign restriction in equation (6.15) implies an admissible range for the
evolution coefficients (i.e. cmin

j < cj < cmax
j , with cj representing either cφ or cη). The upper limits

for cj can be defined by examining equation (6.15) for the most restrictive state, i.e. when φ = 0
and η= 1 (i.e. plate-like particles, for which the negative contributions into equation (6.15) are
maximized). At this limit, cφ and cη have to satisfy the following relation:

1 + 2
θ

(cφ(φ − φL) − cη(η − ηL)) ≥ 0, (6.16)

which can be described by the admissibility diagram in figure 8 for the two evolution coefficients.
The diagram shows that the maximum rate of evolution for the elongation ratio η can be enforced
when the shape changes with constant flatness (cφ = 0 and dφ = 0). Such a limit value corresponds
to cmax

η = 2/(θ (ηL − 1)). Conversely, lack of evolution for η (i.e. cη = 0 and dη= 0) enables the
maximum rate of variation for the flatness ratio φ, associated with cmax

φ = 2/(θφL). In general
these restrictions are more severe than those previously discussed for the aspect ratio model and
imply that tachymorphic behaviour is not always allowed. Specifically, tachymorphic behaviour
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Figure 9. Evolution of flatness, φ, and elongation, η, as a function of breakage, B, (a, b) and stress, σ , (c, d). Simulations
performed with reference to the four representative initial states in figure 7. Results obtained with parameters K = 10 MPa,
Ec = 5.0 MPa, θ = 0.9, and ηL = φL = 0.76. Coevolution constants from two combinations depicted in figure 8 (i.e. Case A
and Case B). (Online version in colour.)

can be enforced only for the elongation (i.e. an admissible range of cη > 1 exists), while values
of cφ > 1 are not admissible for typical ranges of the parameters. In addition to the restriction
to the maximum rate of shape evolution, restrictions for the lowest admissible values of the
coefficients cj are also required. The assessment of the values of cmin

j is similar to the case of
a single shape descriptor and a simplified procedure to define it is discussed in appendix A.
Such a procedure leads to the same minimum value for both the coevolution coefficients, which,
although derived for the restrictive case of cφ = cη, can be used to set conservative limitations
across the entire diagram in figure 8. This procedure leads to an L-shaped band at the bottom left
corner of the plane, which in conjunction with the upper limit for the coevolution constant defines
the inadmissible zone for combinations of cφ and cη (grey-shaded zone). The remaining portion
of the domain in figure 8 defines instead the admissible combinations of cφ and cη (white zone).
These restrictions to the coevolution parameters imply that this generalized formulation can only
be employed in materials displaying a relatively slow evolution of the particle morphology. Not
all materials, however, may conform to this trend (see for instance figure 6a, where X-ray data
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indicate tachymorphic patterns). This result can be interpreted as an outcome of the simplified
structure of the coevolution laws in equation (6.13) and suggests that more elaborate expressions
may be needed to accommodate experimental data. Nevertheless, this simple generalized model
can offer insight on the capabilities of the proposed formulation, which will be explored hereafter.

(f) Simulations
This section uses CBM simulations to illustrate the key features of a model with multiple shape
descriptors. Given the simplified nature of the analyses, the simulations have been conducted
through a linear elastic strain energy model. Figure 9 illustrates the evolution of the elongation
and flatness ratios as a function of breakage (figure 9a,b) and pressure (figure 9c,d). The analysis is
run for two combinations of cφ and cη values, referred to as Case A and Case B, respectively
(figure 8). Case A reflects a scenario in which the rate of elongation evolution is maximized
within the admissible range, while Case B represents the opposite scenario (i.e. near-maximum
rate of flatness evolution). In all cases the shape descriptors converge towards the attractor at
ultimate breakage and high stress (in this case, φL = ηL = 0.79). However, while Case B involves
brachymorphic evolution for both shape descriptors (i.e. achievement of limit values of φ and η
at high breakage, B), Case A implies tachymorphic evolution for elongation and brachymorphic
trends for flatness. In other words, in Case A elongation evolves in a self-similar manner during
breakage (i.e. fragments possess essentially the same elongation ratio as their progenitors for
much of the loading process), while flatness changes weakly until high pressures. By contrast,
in Case B high breakage is needed to obtain appreciable shape changes for both descriptors. In
all cases, the value of the coefficients cj is inversely related to the stress at which the attractor is
approached, with higher values of cj leading to relatively low stress at the achievement of the
shape attractor.

The simulation results can also be visualized in the morphometric plane (figure 10). The
use of combinations of coefficients cj close to the limits of admissibility for cφ and cη causes
nonlinear shape evolution paths. Most notably, Case A corresponds to quasi-vertical initial
paths (i.e. the elongation changes at near-constant flatness upon initial breakage), eventually
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Figure 11. Shape evolution paths relative to the two sets of values of the coevolution constants cφ and cη depicted in figure 8
(i.e. (a) Set #1 and (b) Set #2). (Online version in colour.)
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Figure 12. Comparison between simulations of particle shape evolution. Symbols refer to grain-scale fracture simulations
conducted through a peridynamics engine (after [56,57]). Solid lines refer to continuum simulations based on the extended
version of CBM. Results obtained with parameters K = 10 MPa, Ec = 1.4 MPa, θ = 0.9, and ηL = φL = 0.77, cφ = 0.15 and
cη = 0.20. (Online version in colour.)

switching to pseudo-horizontal paths when the elongation attractor is reached. By contrast, Case
B initially involves quasi-horizontal paths (i.e. change of flatness at near-constant elongation),
which eventually convert into vertical paths until reaching the attractor point. Such trends are
found for all the considered initial shapes.

To further illustrate the broad range of paths covered with suitable choices of the evolution
coefficients, a parametric analysis has been conducted with reference to intermediate values of
cφ and cη. Namely, the combinations included in Set #1 (figure 8) involve constant cη = 0.75
and increasing cφ . Similarly, the combinations included in Set #2 involve constant cφ = 0.25 and
increasing cη. The resulting simulations are shown in figure 11 with reference to Set #1 (figure 11a,
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for initial shapes belonging to the classes of plates and rods) and Set #2 (figure 11b, for initial
shapes belonging to the classes of plates and rods).

Similar simulations are illustrated in figure 12 with reference to a multi-scale numerical engine
allowing grain-scale fracture analyses through a peridynamics solver [56,58]. The results show
that with a suitable choice of the attractor point it is possible to replicate satisfactorily the
evolution of a number of morphological indicators. In this case, the calibrated attractor matching
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the grain-scale fracture simulations is φL = ηL = 0.768, which is well within the range of potential
values in figure 2. Interestingly, the analysis indicates that the tracking of a single shape descriptor
may be insufficient to identify significant geometric alterations. This is clearly shown in figure 12
by the weak evolution of the aspect ratio α resulting from more intense (but opposite) changes of
the flatness, φ, and elongation, η, ratios.

Figures 13 and 14 finally compare the measurements previously discussed on Ottawa and
Q-ROK sands [28] with the newly proposed CBM framework with the two shape descriptors.
Values of shape attractors consistent with those used in the single-variable model were used.
This choice leads to a satisfactory agreement between the constitutive model simulations and the
experimental measurements, with rounded Ottawa sand being again characterized by stronger
shape alterations compared with the more angular Q-ROK sand. The shape evolution paths
are reproduced with reasonable accuracy in case of Ottawa sand, which exhibits stronger, yet
smoother evolution trends. The first-order features of the shape evolution paths of Q-ROK sand
are also captured reasonably well, albeit the measurement fluctuations of the average shape in
the proximity of the attractor point, potentially due to the inherent difficulty of capturing small
experimental variations in this particular regime.

7. Conclusion
By including grain shape descriptors other than the grain size into CBM, this paper offers a
platform to inspect the implications of one of the most common, yet seldom tested, simplifications
of granular mechanics models: the representation of particles as spherical bodies. The proposed
theory expands the current scope of CBM by incorporating the effects of particle shape into
macroscopic elasticity, yielding, and post-yielding compressibility. In addition, the generalized
CBM theory also predicts the possibility of two end-members for the coevolution of particle size
and shape—here defined as tachymorphic and brachymorphic—on the basis of the relative rates
of change of the morphological descriptors. While these results involved several assumptions,
they opened new research questions that should assist future studies about the feedback between
particle shape and macroscopic deformation processes in granular media. Among such questions,
an open challenge remains the rigorous identification of how macroscopic properties scale with
grain shape descriptors. In our work, such connection emerges naturally from the hypothesized
linear scaling between a particle’s surface area and bulk elastic stiffness. Our findings show
that this choice has wide implications, as it influences both pre-yielding reversible processes as
well as inelastic yielding stress and ensuing hardening/softening mechanisms. Future testing,
validation and refinement of this hypothesis can therefore be conducted through grain-scale
micromechanical analyses, focusing on how the shape of the particles affects global and
collective elastic strain energy storage and mechanical dissipation [18,48]. This opens abundant
opportunities for integrating the continuum-scale characterization proposed in this paper with
the rising wave of computational methods for arbitrarily shaped particles, including DEM
techniques relying on high-fidelity replicas of sand grains [14,59].

Another fundamental building block resulting from this paper is the use of coevolution laws
dependent on ultimate attractors for grain size and shape. This idea proved instrumental to
capture a diverse set of evidence, including DEM results, grain-scale fracture simulations and
measurements of confined comminution based on X-ray tomography. The use of an attractor for
grain shape was coordinated with the attraction to an ultimate fractal GSD in a fully crushed
granular system. Here, the underlying working hypothesis is that both ultimate states are
achieved at the end of comminution, with obvious implications for the energetics of the process
and the consequent thermodynamic restrictions of the model parameters. Given the scarcity of
available data about this topic, there are obvious opportunities for experimental, theoretical and
computational research to clarify if these attractors depend on the past history of crushing, which
grain-scale mechanisms control the rates of the coevolution, and, most importantly, whether the
evolution of polydispersity may halt comminution and prevent ultimate shape attractors from
being realized independently. At this juncture, an open area of research not explored in this
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work is how the inevitable statistical disorder of the particle shapes within granular materials
influences the link between grain-scale and continuum-scale properties. From this standpoint,
considerable assistance may derive from the combination of the proposed continuum framework
with multi-scale characterization technologies based on digital imaging and high-resolution
X-ray tomography, through which particle irregularities can be detected down to sub-micrometre
scales, including alterations caused by grain crushing [8,60].

Finally, our findings regarding the connections among particle shape, energetics of grain-scale
fracture and macroscopic comminution offer exciting opportunities to develop novel physics-
based methods for granular material design [61–63]. In this context, a challenge that has not
yet been fully explored is the non-isotropic connotation of particle shapes, in that any departure
from a spherical geometry involves the incorporation of directional properties, which can in turn
impact all aspects of the macroscale response. Recent work in this context offers guidance on
how to describe the granular fabric in light of shape descriptors [64], as well as to incorporate
it into CBM frameworks [65]. The unification of these research ideas should therefore provide a
promising avenue for material optimization, design and manufacturing.
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Appendix A
The maximum values for the coevolution constants controlling the rate of particle shape evolution
can be defined in a relatively straightforward manner by setting the most restrictive conditions
for the initial value of the corresponding shape descriptors. The strategy to compute it resulted
in values of cmax

α (aspect ratio model), cmax
φ and cmax

η (flatness-elongation model) expressed in
analytical form as a function of the corresponding shape attractors (αL, φL and ηL, respectively)
and of the grading index, θ .

By contrast, the identification of the minimum value of these coevolution constants is not
equally straightforward, in that it tends to be constrained by states located in the proximity of
the ultimate breakage condition (i.e. B = 1), thus requiring consideration of both breakage and
particle shape evolution. While a closed form expression for the lower limits of cα , cφ and cη is not
available, here an approximate strategy to constrain the lower bound of their admissible range is
provided.

The strategy can be readily illustrated for the single-variable formulation based on the aspect
ratio α. Minimization of the dissipation increment in equation (5.18) provides the breakage state,
B̄, at which the lowest value of dissipation increment is achieved. Such a specific breakage state
can be expressed in closed form, as follows:

B̄ = 1
2

⎡
⎣( 2

θ
− cα

)
−
√(

2
θ

− 2
)2

+ c2
α

⎤
⎦ . (A 1)

By incorporating equation (A 1) into (5.18), it is possible to recover an implicit expression for
cmin
α .

The identification of the corresponding minima for cφ and cη is less straightforward, in that a
general closed-form expression for B̄ cannot be recovered. However, a reasonable approximation
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can be obtained for the particular case cφ = cη. Under such circumstances, it is possible to show
that equation (A 1) is valid also for the flatness-elongation model, provided that cα is replaced
with cφ = cη. It is therefore possible to incorporate equation (A 1) into equation (6.15) to estimate
the lower limit for the two evolution coefficient, which is represented in figure 8 as an L-shaped
band located at the bottom left corner of the plane of the coevolution constants cφ and cη. Despite
the limitations of these procedures, in particular with reference to multi-variable models, it is
worth noting that in all of the examined circumstances of reported particle shape evolution, the
optimal values of coevolution constants are well above the minimum limits, thus making the
upper bound of these variables the most significant limitation in the assessment of the model
constants.
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