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Abstract: In recent years, the methods of severe plastic deformation and rapid melt quenching have
proven to be an effective tool for the formation of the unique properties of materials. The effect of
high-pressure torsion (HPT) on the structure of the amorphous alloys of the quasi-binary TiNi–TiCu
system with a copper content of more than 30 at.% produced by melt spinning technique has
been analyzed using the methods of scanning electron microscopy, X-ray diffraction analysis, and
differential scanning calorimetry (DSC). The structure examinations have shown that the HPT of the
alloys with a Cu content ranging from 30 to 40 at.% leads to nanocrystallization from the amorphous
state. An increase in the degree of deformation leads to a substantial change in the character of the
crystallization reflected by the DSC curves of the alloys under study. The alloys containing less than
34 at.% Cu exhibit crystallization peak splitting, whereas the alloys containing more than 34 at.%
Cu exhibit a third peak at lower temperatures. The latter effect suggests the formation of regions of
possible low-temperature crystallization. It has been established that the HPT causes a significant
decrease in the thermal effect of crystallization upon heating of the alloys with a high copper content
relative to that of the initial amorphous melt quenched state.

Keywords: amorphous state; melt spinning; severe plastic deformation; high-pressure torsion;
microstructure; crystallization; phase transformation

1. Introduction

In accordance with modern trends in the development of science and technology, advanced
industries urgently require “smart” multifunctional materials combining high-performance
characteristics in addition to unique properties. Alloys with shape memory effect (SME) are a
prime example of such a material. In recent years, the efficiency and prospects of the use of SME
alloys in various fields of technology have been demonstrated, in particular, in aerospace engineering,
medicine, and robotics [1–4]. The design of high-speed (especially fast cyclic response) devices requires
thin SME materials (thin ribbons, wires, or films) characterized by narrow hysteresis of martensitic
phase transformations. The materials meeting such requirements include the alloys of the quasi-binary
intermetallic TiNi–TiCu system with a copper content of more than 10 at.% [5]. However, the TiNiCu
alloys with high copper content are brittle because of the TiCu phase formation near grain boundaries
and, therefore, cannot be deformed into wire or ribbon upon hot or cold processing [6,7], which is
necessary for the manufacture of thermal actuators. One of the best alternatives for overcoming the
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brittleness of the alloys is the method of rapid melt quenching [8–10]. Such extreme action allows one
to produce thin ribbons directly from the molten metal, and a high solidification rate suppresses the
formation of TiCu particles. The specific feature of the rapidly quenched TiNiCu alloys with high
copper content is that they can be obtained in the amorphous state at high cooling rates, and can later
be transformed to a crystalline state with a pronounced SME [8–10] by means of a variety of external
actions, including isothermal annealing, laser, and electropulse treatment.

In recent years, the physical materials science has been enriched by a new scientific direction
in which the production of structural and functional bulk nanostructured materials is provided by
the methods of severe plastic deformation (SPD). It is known that the SPD methods allow one to
obtain nano- and submicrocrystalline materials with special mechanical characteristics substantially
differing from the properties typical of conventional polycrystalline materials. The highest degrees
of deformation are achieved by shear plastic deformation in laboratory conditions on experimental
samples of various metals and alloys by high-pressure torsion (HPT) in the Bridgman anvils. Recently,
we have shown that HPT of the initially amorphous or initially crystalline TiNi–TiCu alloy with
25 at.% copper leads to the realization of several cycles of interrelated phase transformations of
the “crystal-amorphous state” type [11]. This phenomenon can be explained by the model of the
superposition of various mechanical energy dissipation channels upon SPD. It was also shown that the
tendencies to amorphization upon rapid melt quenching and HPT for the same alloy substantially
differ, and the “amorphous state-crystal” reverse phase transformation is almost always accompanied
by the formation of a nanocrystalline structure [12]. The aim of this work was to study the effect of
SPD by torsion under high quasi-hydrostatic pressure on the structure formation in the TiNi–TiCu
alloys with a copper content of more than 30 at.%.

2. Materials and Methods

The alloys of the quasi-binary TiNi–TiCu system with a constant titanium content of 50 at.% and a
copper content ranging from 30 to 40 at.% have been obtained by melt quenching [8]. The initial ingots
of the alloys of required compositions were prepared from high-purity metals (H0 grade electrode
nickel, M0 grade oxygen-free copper, and iodide titanium) with sixfold remelting in an arc furnace in
an argon atmosphere to ensure homogeneity. The obtained ingots were melted in a quartz crucible in a
helium atmosphere and extruded through a narrow nozzle in the crucible onto the surface of a rapidly
rotating copper wheel. The process occurring at a melt cooling rate of about 106 K/s resulted in the
manufacture of ribbons 30–50 µm thick and 8–20 mm wide (Figure 1a).Materials 2019, 12, x FOR PEER REVIEW 3 of 9 
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Figure 1. TiNiCu alloy samples in the initial state (a) and after deformation to n = 3 (b) and n = 5 (c).

Upon the HPT deformation method used in the work, the sample is placed between two anvils
and compressed under a quasi-hydrostatic pressure of several GPa [13,14]. The lower anvil rotates,
and the sample is deformed by shear under the action of surface friction. Since deformation occurs
under conditions of quasi-hydrostatic compression, the sample does not fail and is subjected to
severe deformation.

The TiNiCu alloy samples were deformed by HPT in a Bridgman cell at room temperature at a
quasi-hydrostatic pressure of 6 GPa and at a rotation speed of the movable anvil of 1 rpm to the degree
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of deformation corresponding to n = 1, 3, and 5, where n is the number of complete revolutions of the
movable anvil. The samples for HPT deformation were folded into a packet of 3 layers and fastened at
several points by microwelding. Such deformation resulted in the preparation of disk shape samples
of 8 mm in diameter (Figure 1b,c).

The structure of the alloys was studied by metallography, optical and electron microscopy, and
X-ray diffraction (XRD). For metallographic studies of the ribbon samples, their transverse polished
sections were prepared with Buehler equipment (Lake Bluff, IL, USA). The polished surface was
etched with an HF (5%) + H2SO4 (5%) + H2NO3 (25%) + H2O (70%) solution. The microstructure of
the surfaces and cross sections of the samples was studied with a Carl Zeiss Axiovert 40 MAT
inverted metallographic microscope (Oberkochen, Germany) with a reflected light and an FEI
Quanta 600 FEG scanning electron microscope (Hillsboro, OR, USA) with an X-ray electron-probe
microanalyzer (EDAX). The XRD analysis was performed with a PANalytical Empyrean diffractometer
(Almelo, The Netherland) by Bragg–Brentano focusing using a hybrid monochromator in CuКα

radiation and a DRON-3Мdiffractometer (Burevestnik, Russia) in CoKα radiation (in an angle range of
10–120◦ at a step of 0.1◦; exposure time was 5 s) at room temperature.

For the determination of the devitrification temperature and for the analysis of thermal
crystallization processes, the rapidly quenched alloys were subjected to controlled annealing in
an NETZSCH STA 449 F1 Jupiter differential scanning calorimeter (Selb, Germany) at a heating rate of
10 K/min.

3. Results

3.1. Melt Quenching

Typical images of the surfaces of rapidly quenched ribbons are shown in Figure 2. The non-contact
side of the ribbons (Figure 2a) is characterized by continuous uniform surface, which is almost free
from defects, and the contact side of the ribbons (Figure 2b) exhibits a relief replicated from the
quenching wheel.
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Figure 2. Typical images of non-contact (a) and contact (b) surfaces and cross section (c) of rapidly
quenched TiNiCu ribbons (for the alloy with 34 at.% Cu).

The cross-section samples of all melt spun ribbons exhibit homogeneous amorphous structure.
A typical cross-section ribbon structure is shown in Figure 2c for the ribbon containing 34 at.% copper.

The XRD patterns of the non-contact (free) and contact surfaces of all as-quenched TiNiCu alloy
ribbons (Figure 3) exhibit a diffuse amorphous halo at 2θ = 40–45◦ (CuКα radiation), which indicates
the amorphous state of the alloys. However, small peaks from crystalline phases are observed in the
XRD pattern of the sample with 30 at.% Cu, which demonstrates the presence of a small fraction of
crystallites in the amorphous matrix.
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3.2. High-Pressure Torsion

The cross-sectional microstructure of the ribbons subjected to HPT contains elongated structure
elements which may be caused by shear deformation of the amorphous matrix and, in particular,
could represent crystalline nanoparticles resulting from partial crystallization of the amorphous phase
(Figure 4). Shear deformation regions with the stratification of the structure are observed mainly near
the surfaces of the alloys and are characterized by submicro- and nanodimensions and porosity. At the
same time, the number of such structure elements is highest in the alloy with 30 at.% copper and
noticeably decreases with increasing copper content in the alloys. This is apparently due to a greater
degree of amorphization of the alloys with a copper content of more than 30 at.%.
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The XRD examination revealed changes in the structure of the alloys after HPT to n ≥ 1 (Figure 5).
It is seen that the HPT of the alloy is accompanied by the appearance of the diffraction line belonging
to the crystalline phase in the XRD spectra at 2θ = 42.5◦ against the background of the amorphous halo
(CoKα radiation). Unfortunately, we failed to unambiguously identify the crystalline phase because of
a low intensity and a small number of the diffraction lines.
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3.3. Crystallization in Calorimeter (DSC)

Typical DSC curves of the crystallization of rapidly quenched ribbons in the calorimeter are
shown in Figure 6. The curves of the as-quenched alloys with a copper content of up to 34 at.%
exhibit one peak of heat release (at crystallization peak temperature Tp), which indicates a single-stage
crystallization, while the curves of the ribbons with a copper content of more than 34 at.% exhibit two
separate heat release peaks, which are responsible for the two-stage thermal crystallization. In this
case, the low-temperature peak (at crystallization peak temperature Tp) is close in the magnitude of
the energy release to the crystallization enthalpy of the samples with copper contents below 34 at.%,
while the high-temperature peak is higher by a factor of about 3. Therefore, we can conclude that the
crystallization peak at higher temperature is related to the formation of the phases differing from those
formed in the samples with copper contents below 34 at.%. Note that the Tp temperature does not
virtually change with increasing copper content.

An increase in the degree of deformation leads to a noticeable change in the character of
crystallization in the DSC curves. First, there is a split of peaks for the alloys with Cu content below
34 at.% and the appearance of a third peak at lower temperatures (crystallization peak temperature
T”

p) for the alloys with more than 34 at.% Cu. This suggests that HPT of the alloys results in the
formation of regions in which crystallization is possible at lower temperatures.

Second, the results of DSC (Table 1) unambiguously indicate that HPT of amorphous melt-spun
TiNiCu alloys leads to a significant change in the thermal effect of crystallization upon continuous
heating of the alloys. After HPT, the energy consumption of the crystallization of the TiNiCu alloys
decreases relative to that of the same material upon annealing without deformation.
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Figure 6. DSC curves for the crystallization of the TiNiCu alloys with 30 at.% Cu (a) and 38 at.% Cu (b)
in the initial state and after HPT to n = 1, 3, and 5.

Table 1. Crystallization enthalpy and peak temperatures of the TiNiCu alloys in the initial amorphous
state and after HPT.

n ∆H, J/g Tp, ◦C T′p, ◦C T”p, ◦C
30Cu 34Cu 38Cu 30Cu 34Cu 38Cu 30Cu 34Cu 38Cu 38Cu

0 32.5 33.6 121.2 446.6 441.5 445.8 – – 427.1 –
1 25.5 32.1 110.6 446.8 442.3 447.4 438.5 445.3 426.7 –
3 20.8 31.2 87.3 446.9 442.6 447.6 438.4 446.2 426.4 394.0
5 19.0 29.2 62.8 446.7 442.7 448.6 438.6 446.3 426.6 395.4

The structure formed in the alloys upon crystallization in the DSC device is characterized by
inhomogeneity in the cross section of the sample with stratification by structure elements (Figure 7).
The alloy with a copper content of 30 at.% predominantly exhibits the regions of the B19 martensitic
structure and an average grain size of 0.5–0.7 µm (Figure 7b) typical of the alloys after isothermal
crystallization [8].

The finer (nanosized) subsurface structure formed upon shear deformation of the amorphous
phase is bounded by extended columnar crystals formed across the deformation axis upon HPT
(Figure 7c,d). A slightly different picture observed in the alloys with a copper content of 34 at.% and
higher (Figure 7e,f) is most likely due to the predominant formation of Ti–Cu phases in the ribbons [15].
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4. Discussion

As noted above, rapidly quenched alloys of the TiNi–TiCu intermetallic system have attracted
substantial interest from researchers in the context of their unusual structure characteristics and
phase transformations and, from a practical point of view, as an advanced shape memory material
for micromechanical applications. Recently, a number of papers have appeared on the properties
of melt-spun TiNiCu alloys subjected to SPD [16–20]. However, most the works used an alloy with
25 at.% Cu primarily due to its high tendency to amorphization and, therefore, the ability to obtain it
in amorphous state at cooling rates is achievable by melt spinning technology (about 106 К/s). It was
found that the combined effect of rapid solidification SPD by HPT and subsequent annealing can lead
to the formation of homogeneous nanostructured states with different grain sizes (10–200 nm) [16–18]
or “amorphous nanoclusters” [20]. In addition, it was shown that SPD of the initially amorphous or
initially crystalline alloy with 25 at.% Cu leads to the realization of several cycles of interrelated phase
transformations of the “crystal-amorphous state” type [11].
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In this work, we studied the effect of SPD under high pressure on the structural properties of the
rapidly quenched TiNi–TiCu alloys with copper content exceeding the solubility limit of copper in
TiNi (about 30 at.%). It was earlier established that an increase in the copper content substantially
affects the structure formation in the alloys upon isothermal crystallization from amorphous state [11].
The single-phase B2 structure formed in the alloys with a Cu content below 34 at.% upon cooling
undergoes transformation into the B19 martensitic phase. while the two-phase (B2 + B11) structure
formed in the alloys with a Cu content of 34 at.% and above, in which the B11 (TiCu) phase inhibits the
B2↔B19 martensitic transformation up to its complete suppression. In this regard, it was reasonable to
expect significant differences in the characteristics of the alloys after SPD.

It was found that like the alloy with 25 at.% Cu, the amorphous alloys with a copper content of
30–40 at.% Cu upon HPT undergo nanocrystallization, which was detected using the XRD method.
The SEM examination of the cross-sectional microstructure of the ribbons showed that HPT leads to
the formation of structure elements with submicro- or nanoscale inclusions, presumably due to the
partial crystallization of the amorphous phase. The fact that their number noticeably decreases with
increasing copper content in the alloys can be associated with increasing degree of amorphization.

The study of the alloys by DSC revealed a difference in the character of crystallization after HPT of
the alloys with high copper contents and the alloy with 25 at.% Cu. In the latter alloy, an increase in the
degree of deformation broadens the crystallization peak and shifts it to lower temperatures, whereas
the DSC curves of the alloys with 30–40 at.% Cu exhibit an additional isolated low-temperature peak
indicating that regions are formed in which low-temperature crystallization is possible. A detailed
examination of the structure formed in this case is expected in further studies.

As was established by the DSC studies, HPT of the alloys with a high copper content caused a
decrease in the thermal effect of crystallization upon heating relative to that exhibited by the initial
amorphous state after melt quenching. This suggests the presence of a crystalline phase in amorphous
alloys after HPT [21]. Such changes cannot apparently be attributed to the elastic stresses stored upon
HPT because they disappear at earlier heating stages in the process of structure relaxation [22].

The obtained results convincingly demonstrate the effect of copper content in the alloys of the
TiNi–TiCu system on the structure formation upon torsion under high quasi-hydrostatic pressure.
However, further research is necessary for a more detailed explanation of the combined effect of melt
quenching, HPT, and crystallization parameters.
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