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ABSTRACT
Under physiological conditions, retinal pigment epithelium (RPE) is a cellular
monolayer composed of mitotically quiescent cells. Tight junctions and adherens
junctions maintain the polarity of RPE cells, and are required for cellular functions.
In proliferative vitreoretinopathy (PVR), upon retinal tear, RPE cells lose cell-cell
contact, undergo epithelial-mesenchymal transition (EMT), and ultimately transform
into myofibroblasts, leading to the formation of fibrocellular membranes on both
surfaces of the detached retina and on the posterior hyaloids, which causes tractional
retinal detachment. In PVR, RPE cells are crucial contributors, and multiple signaling
pathways, including the SMAD-dependent pathway, Rho pathway, MAPK pathways,
Jagged/Notch pathway, and the Wnt/β-catenin pathway are activated. These pathways
mediate the EMT of RPE cells, which play a key role in the pathogenesis of PVR. This
review summarizes the current body of knowledge on the polarized phenotype of RPE,
the role of cell-cell contact, and the molecular mechanisms underlying the RPE EMT
in PVR, emphasizing key insights into potential approaches to prevent PVR.
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INTRODUCTION
Proliferative vitreoretinopathy (PVR) is a complex blinding disease that occurs after
rhegmatogenous retinal detachment (RRD), surgical interventions, or ocular trauma. As
a prolonged and exaggerated scarring process, PVR is characterized by the formation of
contractile fibrocellular membranes in the vitreous cavity and on the inner and outer
surfaces of the retina (The Retina Society Terminology Committee, 1983; Mudhar, 2020;
Tosi et al., 2014). At present, surgical interventions, including vitrectomy, membrane
peeling, pneumatic retinopexy, and scleral buckle, remain the mainstay of treatment in
PVR. Although work in recent decades has led to advancements in surgical techniques
and management, PVR cannot be effectively treated and is still the most common cause
of failure to reattach the retina (Coffee, Jiang & Rahman, 2014; Khan, Brady & Kaiser,
2015; Mitry et al., 2012; Wickham et al., 2011). In addition, in spite of successful anatomic
reattachment, the visual function of such cases cannot be improved, due to the retinal
damage resulting from the mechanical contraction of fibrous membranes. Therefore, in
order to improve postoperative visual function and reduce the incidence of this serious
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complication, it is particularly important to explore new prophylactic and therapeutic
approaches based on a deeper understanding of the pathogenesis of PVR.

A growing body of evidence indicates that the mechanisms of PVR are orchestrated
by multiple elements (Idrees, Sridhar & Kuriyan, 2019; Jin et al., 2017; Pastor et al., 2016),
such as growth factors (Charteris, 1998; Ni et al., 2020; Pennock et al., 2014;Wubben, Besirli
& Zacks, 2016), cytokines (Bastiaans et al., 2018; Harada, Mitamura & Harada, 2006; Limb
et al., 1991), extracellular matrix proteins (Feist et al, 2014; Miller et al., 2017) and various
cells (Eastlake et al., 2016; Pennock et al., 2011; Shu & Lovicu, 2017). According to the
histopathology of PVR, the fibrocellular membrane of PVR is composed of excessive
extracellular matrix (ECM) and multiple types of cells, and retinal pigment epithelial
(RPE) cells have been indicated as the most consistently present and the most abundant
(Amarnani et al., 2017; Ding et al., 2017; Hiscott et al., 1989; Machemer & Laqua, 1975),
proving that the RPE cell plays a crucial role in PVR. Under physiological condition,
the polarized RPE cell is non-proliferative by cell–cell contact. However, when the eye
suffers from a retinal break or trauma, RPE cells are exposed to various growth factors
and cytokines that are produced by activated immune cells, leading to the disruption
of junctional complexes in RPE cells. Subsequently, activated RPE cells detach from
Bruch’s membrane, migrate through the defect of the retina, proliferate, and transform
into myofibroblasts, forming fibrotic membranes (Chen, Shao & Li, 2015; Morescalchi et
al., 2013; Palma-Nicolás & López-Colomé, 2013). In an analogous process to exaggerated
wound healing response, thesemembranes can attach to the retina and contract, resulting in
further retinal detachment and poor vision (Chiba, 2014;Garweg, Tappeiner & Halberstadt,
2013). It is noteworthy that due to the loss of cell–cell contact, RPE cells undergo epithelial-
mesenchymal transition (EMT), which is pivotal in the development of PVR. During EMT,
RPE cells transdifferentiate into mesenchymal cells that are characterized by increased
motility, and enhanced ability to proliferate, resist apoptosis and produce extracellular
matrix proteins, thus participating in PVR (Tamiya & Kaplan, 2016; Zhang et al., 2018c).
These indicate that in-depth knowledge of EMT may provide insight into potential
approaches to prevent PVR. Therefore, this review focuses on the polarized phenotype of
RPE and molecular mechanisms of RPE cell EMT, discussing the role of RPE cells in PVR.

SURVEY METHODOLOGY
We used the PubMed database to search available literature based on keywords including
‘‘proliferative vitreoretinopathy(PVR)’’ and ‘‘retinal pigment epithelial cell’’. To include
more information on the polarity of RPE, we also searched articles about the structure
and function of cell–cell junctions in RPE cells that explored the role of cell–cell contact in
EMT.

The polarized retinal pigment epithelial cell
The human RPE cell achieves terminal differentiation at four to six weeks of gestation
and subsequently remains mitotically quiescent (Lutty & McLeod, 2018; Stern & Temple,
2015). The RPE, which is situated between the photoreceptors and the choroid, plays many
complex roles indispensable to the health of the neural retina and the choroid. These
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roles include recycling of components of the visual cycle, absorption of light to protect
from photo-oxidative stress, production of essential growth factors, immunological
regulation of the eye, phagocytosis of photoreceptor outer segments generated during
daily photoreceptor renewal, and transportation across the blood retina barrier (BRB)
(Ferrington, Sinha & Kaarniranta, 2016; Fields et al., 2019; Mateos et al., 2014; Naylor et al.,
2019; Strauss, 2005; Vigneswara et al., 2015). In order to maintain these multiple functions,
RPE cells display a highly specialized structural and functional polarity.

Similar to other epithelia, the RPE displays three characteristics of the epithelial
phenotype: apical plasma membrane, junctional complexes, and basolateral domain.
RPE cells display structural polarity, with apical microvilli and melanosomes, and basal
microinfolds. The abundant melanin granules in RPE cells absorb stray light, a process
that is essential for visual function (Strauss, 2005). In a polarized cell, the distributions of
surface proteins on the apical and basal plasma membranes are different, contributing to
the performance of cellular functions (Khristov et al., 2018). However, a highly polarized
distribution of ion channels, transporters and receptors in RPE is different from that
observed in conventional extraocular epithelia (Lehmann et al., 2014). For example, Na,
K-ATPase (Sonoda et al., 2009) and monocarboxylate transporters (MCT) 1 (Deora et al.,
2005) are localized to the apical aspect of RPE cells, while chloride transporter CFTR
(Maminishkis et al., 2006) is basally located. On the apical plasma membrane, RPE cells
phagocytize the photoreceptor outer segments, which are regulated by polarized receptors.
Bulloj et al. (2018) found that binding of Semaphorin 4D (sema4D) to RPE apical receptor
Plexin-B1 suppresses outer segment internalization, contributing to the maintenance of
photoreceptor function and longevity. The RPE also transports fluid out of the subretinal
space, and regulates bidirectional nutrient transport between the outer retina and the
choroid, in a manner dependent on the polarized distribution of membrane channels
and transporters (Strauss, 2005). The RPE basolaterally secretes extracellular matrix
components and factors, which participate in ECM remodeling andmaintain the outer BRB
(oBRB) function (Caceres & Rodriguez-Boulan, 2020). Therefore, the polarized phenotype
of the RPE is vital to both the oBRB and is the basis of the homeostasis of the outer retina
(Caceres & Rodriguez-Boulan, 2020; Lehmann et al., 2014). The disruption of RPE polarity
contributes to the development of several retinal diseases, such as PVR and age-related
macular degeneration (AMD). A comprehensive understanding of the way in which this
polarity is achieved may provide insights into the pathogenesis of PVR.

However, most available data on RPE polarity is contributed by studies performed on
RPE-immortalized cell lines that show partial preservation of the RPE phenotype, and
were extrapolated from data obtained from the prototype Madin-Darby Canine Kidney
(MDCK) cell line (Lehmann et al., 2014). The detailed mechanisms that determine RPE
polarization remain unclear. Some scholars believe that junctional complexes, including
adherens junctions (AJs) and tight junctions (TJs), are essential for building epithelial cell
polarity and maintaining the integrity of epithelial layers such as RPE (Niessen, 2007; Pei et
al., 2019; Tamiya & Kaplan, 2016).

Tight junctions are complex cell–cell junctions formed by transmembrane proteins
interactions with peripheral cytoplasmic proteins (Fig. 1). Transmembrane proteins
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Figure 1 Role of cell-cell contact in health and PVR. (A) Tight junctions and adherens junctions main-
tain cell-cell contact and cell polarity in RPE cells. Mature RPE cells with cell-cell contact remain dor-
mant by sequestering EMT effectors to prevent nuclear localization. ZO-1 sequesters nucleic acid-binding
protein (ZONAB) at tight junctions/cytoplasm, and adherens junctions sequester β-catenin by binding
to epithelial cadherins. Tight junctions have a barrier function that control the passage of solutes. (B)
Loss of cell-cell contact initiates EMT. Deconstruction of junctional complexes or reduction of epithelial
cadherins/ZO-1 elicits nuclear localization of ZONAB/β-catenin and activation of their target genes, and
disrupts the outer blood retinal barrier, facilitating the release of growth factors and cytokines, which fur-
ther aggravate PVR.

Full-size DOI: 10.7717/peerj.10136/fig-1

include occludin, members of the claudin family, and junctional adhesion molecules
(JAMs). Peripheral cytoplasmic proteins, such as zonula occludens (ZOs), form bridges
between transmembrane proteins and the actin filament cytoskeleton and play a key role in
the assembly and organization of TJs (Bazzoni & Dejana, 2004; Bazzoni et al., 2000; Naylor
et al., 2019).

The RPE tight junctions regulate the paracellular movement of solutes via size and
charge selectivity (Benedicto et al., 2017; Caceres et al., 2017; Naylor et al., 2019).Occludin
and claudins determine the permeability and semi-selectivity of the TJs, and as such play
critical roles in the oBRB (Balda et al., 2000; Fields et al., 2019; Furuse et al., 1998; Günzel
& Yu, 2013; Rosenthal et al., 2017). JAMs regulate TJ assembly and function by recruiting
other proteins to the TJ and play an important role in the barrier property of TJs (Balda
& Matter, 2016; Orlova et al., 2006; Shin, Fogg & Margolis, 2006). In patients with RRD,
damage to TJs elicits the breakdown of oBRB and promotes the penetration of growth
factors and cytokines, aggravating PVR. As well as having a barrier function, TJs define
the physical separation between apical and basal domains of the plasma membrane, to
maintain RPE cell polarity (Campbell, Maiers & DeMali, 2017; González-Mariscal et al.,
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2014; Sluysmans et al., 2017). The two extracellular loops of occludin mediate adhesion of
adjacent cells and block the movement of plasma components. The C-terminal domain
combines directly with ZOs, subsequently interacting with the actin cytoskeleton, which is
essential to organizing and maintaining cell polarization (Balda & Matter, 2016; Furuse et
al., 1994; Shin, Fogg & Margolis, 2006; Tarau et al., 2019). Feng et al. (2019) demonstrated
that during EMT, the breakdown of TJs resulting from loss of claudin-1 causes ARPE-19
cells to lose their epithelial phenotype and transform into fibroblasts, promoting the
development of PVR. TJs are involved in the regulation of signaling pathways that govern
various cellular functions such as proliferation, migration, and differentiation (Bhat et
al., 2018; Shi et al., 2018; Sluysmans et al., 2017). Vietor et al. (2001) found that decreased
amounts of occludin can cause up-regulation and translocation of the adhesion junction
protein β-catenin, which interacts with the transcription factor lymphoid enhancer-binding
factor (LEF)/T cell factor (TCF) in the nucleus, leading to a loss of the polarized epithelial
phenotype in EpH4 cells. ZOs, adaptor proteins within the TJ complex, exhibit dual
localization at TJs and in the nucleus. Under injury or stress, the disruption of TJs increases
ZO-2 nuclear accumulation, driving its interaction with transcription factors, and inducing
MDCK epithelial cell proliferation (Islas et al., 2002; Shi et al., 2018; Traweger et al., 2003).
In differentiated RPE cells, the interaction between ZO-1 with ZO-1-associated nucleic
acid-binding protein (ZONAB) maintains cell–cell contact by sequestering ZONAB at the
TJ or in the cytoplasm,maintaining cells dormancy.However, whendamage toTJs decreases
ZO-1 levels, ZONAB is translocated into the nucleus, leading to the up-regulation of cyclin
D1 (CD1) and subsequent cell proliferation (Balda, Garrett & Matter, 2003; González-
Mariscal et al., 2014). Therefore, TJs provide a structural foundation for the maintenance
of cell–cell contact. Georgiadis et al. (2010) demonstrated that the overexpression of
ZONAB or knockdown of ZO-1 could result in increased RPE proliferation and the
development of EMT. Recent research has confirmed that during EMT, ZO-1 is decreased
in ARPE-19 cells, and the knockdown of either ZO-1 or AJ protein E-cadherin leads
to the downregulation of the other protein, indicating the existence of an interaction
between the two junctional complexes (Bao et al., 2019). Due to the importance of TJs in
the maintenance of integrity and functionality of epithelial cells, several researchers have
focused on novel factors that stimulate the formation of TJs, such as nicotinamide (Hazim
et al., 2019) and lysophosphatidic acid (Lidgerwood et al., 2018). Studies into these factors
may produce well-differentiated RPE cell lines and a platform to enable the rapid expansion
of our understanding of many RPE functions and retinal pathologies. This approach could
be conducive to finding novel therapeutic interventions for PVR.

Besides the TJ complex described above, another type of junctional complex called AJs
plays a key role in the maintenance of the integrity of epithelial cells and cell–cell contact
(Fig. 1). Cadherins, the major proteins of AJs, belong to the glycoprotein superfamily, of
which there are more than 20 members. The cytoplasmic domain of cadherins regulates
interactions between cadherins and catenins, including β-catenin, α-catenin, and p120-
catenin, and other scaffolding proteins such as ZO-1, to maintain cell shape and modulate
cell proliferation (Aberle et al., 1994; Nelson & Nusse, 2004; Wheelock & Johnson, 2003). In
quiescent adult RPE cells, epithelial cadherins (E- and/or P-cadherin) sequester β-catenin
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at the AJs to maintain cell–cell contact. Reduction of cadherin levels or dissociation of AJs
allows β-catenin to translocate into the nucleus, where it interacts with the transcription
factor LEF, and activates the transcription of various genes, including Snail and cyclin D1,
which participate in RPE cell EMT via the canonical Wnt/β-catenin signaling pathway
(Gonzalez & Medici, 2014; Lamouille, Xu & Derynck, 2014; Nelson & Nusse, 2004; Yang et
al., 2018) . Tamiya, Liu & Kaplan (2010) suggested that the loss of P-cadherin causes the
loss of cell–cell contact and initiates RPE cell migration and EMT. These events coincide
with a switch in cadherin isoform expression fromP- toN-cadherin. In addition, hepatocyte
growth factor (HGF) and its receptor c-Met can destabilize cell–cell adhesion and elicit
nuclear translocation of β-catenin, resulting in RPE cell migration (Lilien & Balsamo, 2005;
Liou et al., 2002). Jin et al. found that HGF induces loss or redistribution of junctional
proteins ZO-1, occludin, and β-catenin in RPE explants, potentially damaging barrier
function and increasing the migration of RPE cells, resulting in retinal detachment(RD)
and PVR (Jin et al., 2002; Jin et al., 2004). Given the importance of HGF in the interruption
of RPE junction, HGF may be a potential target for the prevention and treatment of PVR.
However, this possibility needs further study.

Under physiological conditions in the eye, TJs and AJsmaintain the specialized structural
and functional polarity of RPE cells and play a pivotal role in the maintenance of cell–cell
contact; they sequester EMT signaling effectors ZONAB and β-catenin at the junction
or cytoplasm to prevent cells from responding to mitotic factors, causing cells to leave
the cell-cycle (Fig. 1). Thus, normally, RPE cells form a cobblestone-like monolayer of
immotile, polarized, and mitotically quiescent cells. However, once junctional complexes
break down, RPE cells undergo EMT, which is an important contributor to proliferative
vitreoretinopathy. In this pathological process, RPE cells lose their structural and functional
polarity and transdifferentiate into mesenchymal cells, which proliferate, resist apoptosis,
possess migratory ability, and produce abundant ECM, leading to the formation of an
aberrant scar-like fibrocellular membrane.

De-differentiated RPE and fibrocellular membrane
Proliferative vitreoretinopathy is characterized by the formation of fibrocellular
membranes composed of proliferative and migratory cells and excessive, aberrant ECM.
Histopathological analysis of PVR has demonstrated that PVRmembranes have contractile
activity and strain the retina, leading to tractional retinal detachment (TRD), which is
responsible for blurring vision.

Several studies (Feist et al, 2014; Takahashi et al., 2010) have found that the cellular
components of PVR membranes include RPE cells, myofibroblasts, fibroblasts, glial cells
and macrophages, and that myofibroblasts are critical for the formation and contractile
activity of fibrocellular membranes. Based on the indirect immunofluorescence evaluation
of human PVR membranes, Feist et al (2014) showed that myofibroblasts originate
principally from RPE cells through EMT. Myofibroblasts are characterized by increased
expression of alpha-smoothmuscle actin (α-SMA) and incorporation of α-SMA into newly
formed actin stress fibers, which enhances their contractile properties. Myofibroblasts also
secrete excessive matrix and pro-fibrogenic factors, promoting the contraction of PVR
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membranes that ultimately cause irreversible loss of vision (Gamulescu et al., 2006; Hinz et
al., 2001; Shu & Lovicu, 2017; Tamiya & Kaplan, 2016; Tomasek et al., 2002).

In addition to myofibroblasts, abnormally increased ECM reinforces the continuous
contractile tension of PVR membranes, and this mechanical tension, together with
specialized ECM proteins, regulates myofibroblast differentiation and its function,
contributing to PVR. In PVR membranes, the primary components of ECM are collagen
and fibronectin. The majority of collagen fibrils are type I collagen, which is synthesized
by RPE cells and Müller cells. Collagen fibrils provide tensile strength to the ECM, and
activate Rho, resulting in the translocation of myocardin-related transcription factor
(MRTF) into the nucleus and promoting RPE cell EMT (Guettler et al., 2008; Miralles
et al., 2003). Fibronectin may also play a significant role in PVR. During pathological
ECM remodeling, fibronectin is one of the earliest ECM components recruited, serving as a
scaffold for other ECMproteins (Kadler, Hill & Canty-Laird, 2008;Miller et al., 2017;Miller
et al., 2014). Extra domain (ED)-A fibronectin, a splice variant of fibronectin, is increased
in transforming growth factor (TGF)-β2-induced RPE cells and induces myofibroblast
differentiation, participating in PVR (Khankan et al., 2011).

Under normal conditions, ECM breakdown by proteases such as matrix-
metalloproteases (MMPs) plays a crucial role in ECM remodeling and the release of
growth factors, maintaining tissue homeostasis in cooperation with ECM synthesis,
reassembly, and chemical modification (Bonnans, Chou & Werb, 2014; Craig et al., 2015;
Lindsey et al., 2016). As mentioned above, the polarized RPE is able to basolaterally secrete
the extracellular matrix components fibronectin and collagens, MMP and tissue inhibitors
of MMPs (TIMPs), which participate in ECM remodeling. However, under pathological
conditions such as inflammation and retinal injury, RPE cells lose their apical-basal
polarity, undergo EMT and abnormally secrete MMPs, TIMPs and ECM proteins,
leading to dysregulated ECM remodeling (Greene et al., 2017). Such ECM has aberrant
composition and organization and mechanical properties, and enhances matrix stiffness
and strain, which disrupts the normal structure and function of the retina, exacerbating
the progression of PVR.

RPE and epithelial-mesenchymal transition
EMT of RPE cell
Epithelial-mesenchymal transition is an important biological process, in which epithelial
cells transdifferentiate into mesenchymal cells. Although EMT can occur in normal
embryonic development and wound healing, it also participates in pathological processes
such as fibrosis, cancer progression, and PVR. There are three distinct subtypes of EMT:
type 1 occurs during tissue and embryo development, type 2 is involved in wound healing
and organ fibrosis, and type 3 is associated with cancer progression and metastasis (Dongre
& Weinberg, 2019; Kalluri & Weinberg, 2009). This review focuses on type 2 EMT, which
is crucial to PVR. During EMT, due to junctional complexes damage, RPE cells relinquish
their apical-basal polarity, reorganize their cytoskeletal architecture, and convert into
spindle-shaped cells (Fig. 1). These cells downregulate the expression of epithelial proteins
such as E-cadherin and ZO-1, and increase expression of mesenchymal drivers including
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N-cadherin, vimentin, α-SMA and fibronectin (Li, Zhao & He, 2020). This mesenchymal
transdifferentiation of RPE cells can increase the directional motility of individual cells,
confer resistance to apoptosis, and facilitate cell proliferation and dysregulated ECM
remodeling, eventually leading to the formation of PVR membranes.

Transcription factors of EMT
The details of the molecular mechanisms that drive RPE cell EMT and lead to PVR remain
to be clarified. Emerging evidence suggests that diverse extracellular inductive signals,
including soluble cytokines and growth factors, and ECM components, can modulate
the expression and activity of EMT-associated transcription factors and act together to
control the initiation and progression of EMT in responding epithelial cells (Yang et al.,
2020). Among the various transcription factors involved in the induction of EMT, core
transcription factors including Snail 1, Snail 2(also known as Slug), Twist 1 and zinc-finger
E-box-binding (Zeb) 1 have been identified as important regulators of RPE cell EMT.
These factors impact the expression of genes that control repression of the epithelial
phenotype and activation of the mesenchymal phenotype (Boles et al., 2020; Feng et al.,
2019; Li et al., 2019; Li et al., 2014; Liu et al., 2009; Palma-Nicolás & López-Colomé, 2013).
For example, thrombin can repress the expression of E-cadherin by stimulating Snail
2 expression and promote the expression of N-cadherin by phosphoinositide 3-kinase
(PI3K)/PKC-ζ /mTOR signaling in Rat RPE cells (Palma-Nicolás & López-Colomé, 2013).
During RPE dedifferentiation in primary culture, Zeb1 is overexpressed and binds to the
MITF A promoter to repress the cyclin dependent kinase inhibitor, p21CDKN1a, resulting
in RPE cell proliferation and EMT (Liu et al., 2009). These EMT transcription factors often
act in concert, functionally cooperating at target genes by the convergence of signaling
pathways. However, the molecular details of how these transcription factors contribute to
EMT are still elusive (Lamouille, Xu & Derynck, 2014; Stone et al., 2016).

Epigenetic factors of EMT
Due to the importance of epigenetic regulation of EMT, epigenetic modifiers have
attracted increasing attention. Evidence has shown that epigenetic modifiers work in
concert with transcription factors at different molecular layers to regulate the EMT
process (Skrypek et al., 2017). Several epigenetic factors have been described including
DNA methylation, histone modification and non-coding RNA. Because of the specific
machinery utilized for EMT activation, these modifications are characterized by cell type
specificity. In RPE cells, Methyl-CpG-binding protein 2 (MeCP2), a DNA methylation
reader, plays a crucial role in the induction of EMT, and DNAmethylation may participate
in the pathogenesis of PVR (He et al., 2015; Li, Zhao & He, 2020). He et al. (2015) found
high levels of expression of MeCP2 in all human PVR membranes, and concluded that
MeCP2 mediates α-SMA expression through Ras GTPase activating protein (RASAL1).
Furthermore, DNA methylation inhibitor 5-Aza-2′ deoxycytidine (5-AZA-dC) reportedly
inhibits the expression of TGF-β-induced α-SMA and FN in human fetal RPE cells. It
appears that 5-AZA-dC may have therapeutic value in the treatment of PVR. However,
the mechanisms underlying the blockade of α-SMA and FN expression are complex, and
further investigation is warranted.
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Recently, the role of histonemodifications associated with EMT has been assessed in RPE
cells. However, there has been little research into the regulation of RPE cell EMT by histone
modification. Boles et al. (2020) reported that TGF-β1 and TNF-α co-treatment (TNT)
induces an EMT program in adult human RPE stem cell (RPESC)-RPE cells, involving
an apparent reorganization of H3K27ac and H3K4me1 patterns at distal enhancers. The
regions that gain H3K27ac tend to have a high H3K4me1/H3K4me3 ratio, indicating that
they have enhancer activity and are associated with upregulated genes. Xiao et al. (2014)
found that the expression of histone deacetylases (HDACs) in TGF-β-induced EMT of
RPE cells was increased, and that Trichostatin A (TSA), a class I and II HDAC inhibitor,
attenuated TGF-β2-induced EMT by inhibiting the canonical SMAD pathway and the
non-canonical signaling pathways, including Akt, p38MAPK, ERK1/2 pathways and Notch
pathway. Therefore, histone modifications may participate in the regulation of RPE cell
EMT, and HDAC inhibitors may have potential as drugs for the prevention and treatment
of PVR.

The study of EMT mechanisms at the RNA level has provided new perspectives on the
treatment of PVR (Kaneko & Terasaki, 2017;Wang et al., 2016). MicroRNAs (miRNAs) are
small noncoding RNAs that contribute to cellular processes by regulating gene expression.
In differentiated RPE cells, microRNA-204 is highly expressed, and represses the expression
of type II TGF-β receptors and Snail 2, maintaining epithelial structure and function.
In contrast, low expression levels of miR-204 and anti-miR-204 promote RPE cells
proliferation, participating in EMT (Wang et al., 2010). MicroRNA-194 overexpression
can also suppress RPE cell EMT by attenuating the expression of Zeb1 (Cui et al., 2019).
In addition to miRNAs, long non-coding RNAs (lncRNAs) contribute to the regulation of
RPE EMT (Zhang et al., 2019). In RPE cells treated with PVR vitreous or TGF-β1, MALAT1
expression is increased, and knockdown of MALAT1 attenuates the phosphorylation of
SMAD2/3 and the expression of Snail, Slug, and Zeb1, preventing cell migration and
proliferation (Yang et al., 2016). In patients with PVR, MALAT1 is increased in the blood,
and is reduced after surgery. Thus, MALAT1 may be a potential prognostic and diagnostic
indicator for PVR (Zhou et al., 2015).

Signaling pathways of EMT
During RPE cell EMT, extracellular signals change the expression of genes encoding
epithelial and mesenchymal proteins and mediate cellular behavior such as cell migration,
proliferation, and apoptosis through a network of interacting signaling pathways that
contribute to the development of PVR (Chen et al., 2014a; Chen et al., 2014b; Lee-Rivera et
al., 2015). Among these, TGF-β and its intracellular cascades play a key role in the EMT of
RPE cells.

TGF-β induces EMT of RPE cells via two pathways: the classical SMAD-dependent
pathway and the SMAD-independent pathway (Fig. 2) (Cai et al., 2018; He et al., 2017;
Heffer et al., 2019; Ishikawa et al., 2015; Takahashi, Haga & Tanihara, 2015; Yao et al.,
2019; Zhang et al., 2017; Zhang et al., 2018b; Zhou et al., 2017). In the SMAD dependent
pathway, TGF-β binds to cell surface receptor complexes, and activates type I TGF-β
receptors, which phosphorylate SMAD2 and SMAD3. The activated SMADs combine
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with SMAD4 to form a SMAD complex, which then enters the nucleus and combines
with regulatory elements to regulate the expression of key genes associated with EMT. In
addition to SMAD-dependent signaling, TGF β induces EMT through SMAD independent
signaling pathways including Rho GTPase-dependent pathways (Lee, Ko & Joo, 2008),
PI3K/Akt pathway (Huang et al., 2017; Yokoyama et al., 2012), mitogen-activated kinase
(MAPK) pathways (Chen et al., 2017; Lee et al., 2020;Matoba et al., 2017; Schiff et al., 2019)
and Jagged/Notch signaling pathway (Zhang et al., 2017). The MAPK signaling pathways
include extracellular signal-regulated kinase(ERK) MAPK pathway, p38 MAPK pathway,
and JUN N-terminal kinase (JNK) pathway (Parrales et al., 2013; Schiff et al., 2019; Xiao et
al., 2014; Zhang et al., 2018a).

TheRhopathway has been reported to regulate the assembly and organization of the actin
cytoskeleton and associated gene expression, and may be essential for the fibrotic response
of RPE cells in PVR. In TGF-β1-treated ARPE-19 cells, activated RhoA or its downstream
effector Rho kinase (ROCK) increase the kinase activity of LIM kinase (LIMK) which
then phosphorylates cofilin. This phosphorylation attenuates the activity of cofilin, which
promotes actin polymerization and reorganizes the actin cytoskeleton, leading to stress
fiber formation (Lee, Ko & Joo, 2008). TGF-β-induced RhoA activation also facilitates cell
migration and increases α-SMA expression in primary RPE cells (Tsapara et al., 2010). Itoh
et al. (2007) demonstrated that ROCK inhibitor Y27632 and RhoA inhibitor, simvastatin,
suppress TGF-β2-induced type I collagen expression in ARPE-19 cells, and confirmed the
existence of crosstalk between the SMAD pathway and the Rho pathway. Some studies
have suggested that activated SMAD3 induces NET1 gene expression to regulate RhoA
activation in RPE cells (Lee et al., 2010). Moreover, thrombin can activate Rho and ROCK,
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leading to myosin light chain (MLC) phosphorylation and actin stress fiber formation in
EMT of RPE cells (Fig. 3) (Ruiz-Loredo, López & López-Colomé, 2011). Therefore, ROCK
inhibitor and RhoA inhibitor may be new potential therapeutic target drugs for PVR.

The PI3K/Akt pathway mediates a broad range of cellular functions, such as cell
transformation, migration, proliferation, apoptosis, and gene expression (Aguilar-Solis
et al., 2017; Liu et al., 2019). During PVR, binding of TGF-β to its receptor activates
PI3K, resulting in the phosphorylation of Akt; activated Akt inhibits glycogen synthase
kinase 3β (GSK-3β), promoting EMT in RPE cells (Shukal et al., 2020; Zhang et al., 2018a).
Researchers have found that inhibition or knockdown of GSK-3β promotes cell migration
and collagen contraction in ARPE-19 cells, while GSK-3β overexpression and PI3K/Akt
inhibitor reverse these cellular responses (Huang et al., 2017). Some studies have shown
that thrombin can activate PI3K, resulting in increased cyclin D1 expression and RPE cell
proliferation, processes that are involved in the development of PVR throughPDK1/Akt and
PKCζ /mTORC signaling (Fig. 3) (Lee-Rivera et al., 2015; Palma-Nicolás & López-Colomé,
2013; Parrales et al., 2013).

In addition to the PI3K-AKT pathway, other kinase pathways contribute to EMT in
cooperation with the SMAD-dependent signaling pathways. In human RPE cells, TGF-β
activates TGF-β-activated kinase 1 (TAK1), which subsequently transduces signals to
several downstream effectors, including p38 (Heffer et al., 2019), JNK (Kimura et al., 2015)
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and nuclear factor-κB (NF-κB) (Chen et al., 2016b), which participate in EMT.Dvashi et al.
(2015) found that TAK1 inhibitor caused a reduction in both p38 and SMAD2/3 activity,
attenuating cell migration, cell contractility and α-SMA expression in TGF-β1-induced
RPE cells. Moreover, the ERK MAPK pathway plays a role in TGF-β-induced EMT and
cooperates with other signaling pathways in the regulation of EMT in RPE cells. Recent
studies (Chen et al., 2014b; Tan et al., 2017; Xiao et al., 2014) have shown that blocking the
ERK1/2 pathway inhibits the phosphorylation of SMAD2 and the Jagged/Notch pathway.
Inhibition of the Jagged/Notch signaling pathway can alleviate TGF-β2-induced EMT by
regulating the expression of Snail, Slug and Zeb1 (Fig. 3); this also suppresses the ERK1/2
signaling (Chen et al., 2014b).

The contribution of growth factors other than TGF-β, such as HGF, fibroblast growth
factor (FGF), epidermal growth factor (EGF) and platelet derived growth factor (PDGF)
should also be factored in with regard to the induction of RPE EMT. These factors bind to
and stimulate the autophosphorylation of transmembrane receptors on Tyr, subsequently
participating in RPE cell EMT via PI3K/Akt pathway, ERK MAPK pathway, p38 MAPK
pathway (Fig. 3) (Chen et al., 2016a; Ozal et al., 2020). Chen et al. (2012) explored the
role of Wnt/β-catenin signaling in PVR, and found that when EGTA disrupted contact
inhibition in RPE cells, EGF+FGF2 could activate Wnt signaling and increase nuclear levels
of β-catenin, which interacts with TCF and/or LEF, leading to cell proliferation (Fig. 3);
and EGF+FGF2 cooperated with TGF-β1 to induce EMT through SMAD/Zeb1/2 signaling.
Acting together, various inductive signals received by RPE cells from their niche can trigger
the activation of EMT programs by individual intracellular cascades or the crosstalk of
multiple intracellular signaling pathways.

Interventions of RPE EMT
Therapeutic interventions against RPE EMT have largely been explored in mechanistic
experiments using in vitro cell culture and in vivo animal models. To date, some promising
drug candidates have been trialed in preclinical studies of PVR, including TGF-β receptor
inhibitors, peroxisome proliferator-activated receptor (PPAR)-γ agonists, retinoic acid
receptor-γ (RAR-γ) agonists and methotrexate (Shu, Butcher & Saint-Geniez, 2020; Zhou
et al., 2020).Nassar et al. (2014) found that TGF-β receptor 1 inhibitor LY-364947 (LY)
attenuates RPE cell transdifferentiation in vitro, and that intravitreal injection of LY
completely prevents PVR and TRD in vivo. Evidence is emerging to show that the
up-regulation of PPAR-γ expression may be beneficial for the treatment of fibrosis in
several organs (Wang et al., 2019). Hatanaka et al. (2012) reported that PPAR-γ agonist
pioglitazone could prevent TGF-β-induced morphological changes and the up-regulation
of EMT-related markers in primary monkey RPE cells, through inhibition of the SMAD
pathway. Some drugs, including dichloroacetate (DCA) (Shukal et al., 2020), salinomycin
(SNC) (Heffer et al., 2019), resveratrol (Ishikawa et al., 2015), protein kinase A inhibitor
H89 (Lyu et al., 2020) and heavy chain-hyaluronan/pentraxin3 (He et al., 2017), reportedly
inhibit EMT in an in vitro EMT cell model and prevent PVR development by blocking the
activation of theTGF-β pathway. Thus, inhibition of EMT by pharmacological agents may
be an effective strategy to prevent PVR development.
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CONCLUSION
Clinical and experimental studies have shown that RPE cells play an important role in
PVR. Junctional complexes are crucial for the maintenance of RPE polarity. Under the
influence of growth factors and cytokines, RPE cells lose cell–cell contact and apical-
basal polarity, and undergo EMT via multiple signaling pathways, which promote
cell proliferation, migration, and ECM production. RPE cells further transform into
myofibroblasts and form fibrocellular membranes that have contractile activity and strain
the retina, leading to tractional retinal detachment in PVR. As a complex refractory
blinding disorder, PVR involves multiple signaling pathways and factors. In addition,
the specialized polarity of RPE cells is fundamental for retinal homeostasis, and RPE
EMT plays a key role in the development of PVR. Nevertheless, further research into
the mechanisms underlying RPE polarity and EMT is needed to prevent this devastating
complication. A deeper understanding of RPE polarization is fundamental for elucidating
themechanism of EMT initiation and progression, and is essential to exploring the potential
pharmacologic prophylactic and therapeutic approaches to PVR. Various factors, such as
microenvironmental signals, transcription factors, and epigenetic factors, participate in
the regulation of EMT at different molecular levels. Further studies about the detailed
molecular mechanisms of EMT are needed to facilitate the development of therapeutic
strategies for PVR.
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