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Abstract: Radiogenomic and radiotranscriptomic studies have the potential to pave the way for
a holistic decision support system built on genomics, transcriptomics, radiomics, deep features and
clinical parameters to assess treatment evaluation and care planning. The integration of invasive
and routine imaging data into a common feature space has the potential to yield robust models for
inferring the drivers of underlying biological mechanisms. In this non-small cell lung carcinoma
study, a multi-omics representation comprised deep features and transcriptomics was evaluated
to further explore the synergetic and complementary properties of these diverse multi-view data
sources by utilizing data-driven machine learning models. The proposed deep radiotranscriptomic
analysis is a feature-based fusion that significantly enhances sensitivity by up to 0.174 and AUC
by up to 0.22, compared to the baseline single source models, across all experiments on the unseen
testing set. Additionally, a radiomics-based fusion was also explored as an alternative methodology
yielding radiomic signatures that are comparable to several previous publications in the field of
radiogenomics. Furthermore, the machine learning multi-omics analysis based on deep features and
transcriptomics achieved an AUC performance of up to 0.831 ± 0.09/0.925 ± 0.04 for the examined
molecular and histology subtypes analysis, respectively. The clinical impact of such high-performing
models can add prognostic value and lead to optimal treatment assessment by targeting specific
oncogenes, namely the response of tyrosine kinase inhibitors of EGFR mutated or predicting the
chemotherapy resistance of KRAS mutated tumors.

Keywords: non-small cell lung carcinoma; radiotranscriptomics; deep features; radiomics; transcrip-
tomics; machine learning; multi-view learning

1. Introduction

The highest mortality rate worldwide has been estimated as being among lung cancer
patients, according to a recent report [1] by the World Health Organization (WHO [2]).
Therapeutic decisions for non-small cell lung carcinoma (NSCLC) in contemporary clinical
practice are based on empirical observations of clinicians in association with histological,
genomic, clinical, laboratory and other routine imaging data [3]. Gene expression analysis
provides insights into the biological functions and molecular structure of neoplasms,
while the profiling of specific malignancies contributes to the discovery of novel and
discriminative biomarkers by selecting an optimal and personalized treatment [4]. The
molecular characteristics of NSCLC should be considered in treatment decisions as they are
involved in the crucial mechanisms of lesion progression [5]. Furthermore, the effectiveness
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of radiomics is based on the hypothesis that medical image analysis can quantify the
underlying disease. In this context, radiogenomic/radiotranscriptomic analysis [6] has
two main goals: (a) the correlation of imaging with genomic/transcriptomic features, and
(b) the combination of the aforementioned data sources to improve robustness for increased
predictive power. In particular, the accurate prediction of the genetic alterations of targeted
oncogenes has a high clinical significance in precision medicine as they have the potential
to uncover prognostic drivers for treatment response [7–16].

NSCLC radiogenomic/radiotranscriptomic analyses in the current literature mainly
focus on predicting molecular and histological subtypes, solely from imaging data, and
correlating genomic signatures with radiomic features [17–26]. Only a handful of studies
have combined selected radiomic and transcriptomic features into a unified predictive
signature. In particular, radiotranscriptomics of adipose tissue has been used for risk
assessment in cardiovascular disease [27]. In oncology, Chaddad et al. [28] performed
a variety of multi-omics analyses by integrating radiomics with genomics, transcriptomics,
proteomics and clinical data to assess the survival rate of IDH1 wild-type glioblastoma
patients. Fan et al. [29] implemented a nomogram-based integration of radiomics, tran-
scriptomics and clinical parameters to estimate the objective response rate, and the overall
and progression-free survival of NSCLC patients treated with radiotherapy. Thus, the
combination of the two data sources provided a robust and improved model in terms of
predictive power [28,29].

In this study, a multi-view analysis was used to combine deep features with selected tran-
scriptomic features in a common multi-omics space to predict the molecular subtypes (EGFR,
KRAS mutation) and histological subtypes (adenocarcinoma or squamous cell carcinoma) of
NSCLC patients. Applying domain agnostic and data-driven machine learning techniques to
the examined deep radiotranscriptomic data has the advantage of capturing the biological
variability of NSCLC and, consequently, improving robustness and prediction performance.
Despite the increased popularity of artificial intelligence, to the best of our knowledge, the
current work is the first deep radiotranscriptomic analysis of NSCLC that integrates selected
transcriptomics and deep features into a unified feature space.

2. Materials and Methods
2.1. Dataset

The NSCLC Radiogenomics [30] dataset comprises 211 CT routine examinations in total,
with 142 available ePad [31] pixel-based lesion annotations and 211 image markup standards (AIM
files), and an additional 162 PET/CT examinations, 130 RNA-seq vectors (PG) and clinical data
with genomic, histology, semantic, survival or disease recurrence information. The patient cohort
of this study includes up to 112 subjects from the examined database, specifically the routine CT
scans with the available pixel-based annotations, transcriptomic data and well-defined histology
or molecular endpoints. The aforementioned clinical data includes patients with characterizations
such as EGFR mutation status (LEGFR = 172), KRAS mutation status (LKRAS = 171) and histology
subtype (LHS = 211). A subset of 142 CT examinations has available annotations on a pixel basis
for the region of interest (PROI). The intersection of the imaging and transcriptomic data, denoted
by PROI ∩ PT, is a set of 115 patients (PRG). The final cohorts of EGFR (PEGFR = LEGFR ∩ PRG = 92),
KRAS (PKRAS = LKRAS ∩ PRG = 93) and histology (PHS = LHS ∩ PRG = 112) subtypes were consid-
ered for the proposed radiotranscriptomic analyses.

2.2. Multi-View Learning for Radiotranscriptomics

Two data views were considered in this study: (a) deep features or traditional ra-
diomics and (b) transcriptomics. The fusion strategy that was incorporated into the pro-
posed radiotranscriptomic analysis includes the concatenation of both views into a common
feature space prior to classification. A depiction of the full radiotranscriptomic pipeline can
be found in Figure 1. Details regarding the selected parameters and the complete source
code of the analysis are provided online [32].
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Figure 1. The flow diagram of the proposed radiotranscriptomic analysis incorporates acquisition
of transcriptomics and computed tomography data with pixel-wise lesion delineation, followed by
feature extraction, feature selection, minority oversampling, multi-view integration, and machine
learning analysis. ROI, region of interest; SMOTE, synthetic minority oversampling technique.

2.2.1. Deep Features

Deep learning has a substantial impact on image analysis tasks, primarily because
of the deep models’ capacity to generalize [33,34]. This is achieved by learning low-level
filters that are incorporated into the hierarchical inner representation of the convolutional
part of the deep model [35]. Transfer learning (TL) is one of the most critical methodologies
in deep learning since it enables the implementation of deeper models without the need
for big data availability. Two main types of domain adaptation [36,37] have been proposed:
(a) “off-the-shelf” TL, where the feature extraction part of a source model is transferred
to the target model; and (b) fine-tuning TL, where the whole or part of the source model
is transferred to the new model but the internal representation has to be adapted with
a new training process. The latter methodology is more demanding on the dataset samples
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for model fitting, validation and evaluation. Thus, the “off-the-shelf” TL was used in the
proposed methodology because of the low number of available samples in the examined
patient cohort and the unbalanced natural prevalence of the disease. Additionally, this
methodology has been successfully integrated into many medical image classification
tasks, such as interstitial lung disease [37], colonic polyps [38], breast cancer [39], breast
density assessment [40] and brain neoplasms [41], and evaluated across multiple other
histopathology datasets [36].

The proposed “off-the-shelf” TL strategy incorporates pretrained ImageNet [42] mod-
els extracting raw deep features from the last convolution layer of the source model. Thus,
no training was applied to the TL models since the investigated dataset was limited by
size, which rendered de novo network development impractical. Eighteen models with a
variety of architectures and parameters were used, including the most popular VGG [43],
Inception [44], Xception [45], ResNet [46], NasNet [47], MobileNet [48] and DenseNet [49],
and their variants that are available in the Keras [50] online repository. All pretrained
convolutional layers were transferred to the new model, but the high level fully con-
nected classification layers were removed to allow for the deep feature extraction from
the low-level filters. The fully convolutional model was used on a per slice premise and
the maximum pooling on a patient basis, resulting in a single compact representation of
the three-dimensional volume of interest. Furthermore, the extraction was performed
on the zero-padded CT region of interest (ROI) with a size of 150 by 150 pixels. Image
normalization was performed prior to the padding. Depending on the architecture used,
the number of raw features extracted per slice varied from 1088 to 65,919. Features with
zero variance were removed, significantly reducing the length of the extracted vector, and
feature standardization was applied for zero mean and unit variance before the analysis.

2.2.2. Radiomics

The radiomic analysis comprised 2996 imaging features extracted with a fixed bin size
from the volume of interest of the original CT examination. Shape features (fourteen in
total) including elongation, flatness, sphericity, 3D and 2D diameter, mesh, surface and
voxel volume were calculated in addition to the first order features (eighteen) of skewness,
energy, entropy, kurtosis and other statistical features. Texture features (seventy-five), such
as autocorrelation, cluster prominence, contrast, gray-level covariance (GLCM), depen-
dence (GLDM), run length (GLRLM), size zone (GLSZM) and neighborhood gray-tone
difference (NGTDM) matrix features, were extracted by the PyRadiomics framework [51]
version 2.2.0. Additionally, isotropic resampling was performed using the built-in Pyra-
diomics preprocessing methods to achieve uniform spacing across patients. Other image
filtering techniques (six) were applied to the original examination, including exponential,
gradient, Laplacian of Gaussian, square, square root and wavelet filtering (twenty-two)
prior to feature extraction, which enriched the proposed radiomic analysis by augmenting
the final feature vector. In particular, mother wavelets such as daubechies, symlets, coiflets,
biorthogonal and reverse biorthogonal with decomposition up to the second level were
applied to the original examination.

2.2.3. Transcriptomics

Transcriptomic data provide details about carcinogenesis procedures and neoplasm
progression [52]. Additionally, transcriptomic profiling is a significant technology for im-
proving diagnosis, patient stratification and the identification of prognostic biomarkers [4].
Thus, this personalized transcriptomic evaluation could promote bespoke therapies or
response prediction based on the specific neoplasm composition. The examined RNA-seq
data were downloaded from the NCBI GEO hosting database [53]. The pseudonyms for
the subjects are the same as those used in the image database. In total, 130 RNA-seq
vectors were available for radiotranscriptomic analysis. The original transcriptomics com-
prised 22,126 values but, after removing incomplete features, a transcriptomic signature of
5268 molecules per patient was examined.
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2.2.4. Feature Selection

The analysis of variance (ANOVA) was used separately as an objective-specific feature
selection process for transcriptomics and deep feature vectors. This supervised univariate
method reduced the dimensionality of the extracted feature vectors in a meaningful way
according to the examined classification objective during the experimental phase. The
resulting statistically significant components were selected for identifying potential markers
for differentiating between the mutation status and histology subtypes of the examined
patients. A combined analysis of p values with respect to their corresponding F scores for
transcriptomic, radiomic and deep features assisted in the selection of a subset of the most
significant radiotranscriptomic features. Additionally, an L1 penalty powered by a linear
regression model was applied to further reduce the feature space of each data view by
minimizing the coefficients, which yielded a sparse representation. The extensive lists of
both transcriptomic and radiomic signatures are provided in the Supplementary Materials.

2.2.5. Synthetic Minority Oversampling Technique

A common problem in data analysis is that datasets contain unequal distributions
across categories, with “normal” examples outnumbering the uncommon “abnormal”
occurrences. This can lead to a negative bias with reduced sensitivity towards the minor-
ity class in machine learning classification. The sample generation with SMOTE [54] is
a supervised approach that uses the k-nearest neighbors in the feature space to augment
the samples with artificial data points. Between two neighbors, a new feature vector is
generated and multiplied by a random factor of positive decimal with a value of less than
one. SMOTE was applied in the training set to alleviate the imbalances during the model
convergence. Additionally, experiments without the SMOTE were performed, maintaining
the natural prevalence of the disease. The trained models were evaluated exclusively on
“real” and unseen samples.

2.2.6. Data Stratification

Fivefold cross-validation on a patient basis was applied to the original dataset for
splitting into training and testing sets. Furthermore, for the examined patient cohort,
patient stratification was applied in a way that preserved the balance of each class. The
training set was used for model fitting, feature selection and oversampling of the minority
class. The class distribution across the corresponding experiments was: (a) 80% wild-type
and 20% mutant, (b) 76.1% wild-type and 23.9% mutant and (c) 79.8% adenocarcinoma
and 20.2% squamous cell carcinoma. A key factor of the utmost importance during the
experimental process was that the testing set remain unseen until the final stage of the
performance evaluation, as depicted in Figure 2. This approach was applied to enhance the
reliability for all developed machine learning models and avoid the overfitting of the data
distribution or sample selection biases.

2.2.7. Classification

Three binary tumor characterizations were examined: (a) EGFR mutation status,
(b) KRAS mutation status and (c) histology subtypes. Seven classifiers were employed
interchangeably for differentiating among the radiotranscriptomic, transcriptomic and
radiomic signatures, namely: (a) k-NN; (b) decision tree; (c) RBF-GPC; (d) RBF-SVM;
(e) linear SVM; (f) polynomial SVM; and (g) sigmoid SVM. The classifier implementations
of the Sci-Kit Learn library [55] were used in this study.
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Figure 2. The overall data analysis process with the proposed CT and transcriptomic feature fusion in a combined machine
learning analysis. SMOTE, synthetic minority oversampling technique; CT, computed tomography.

3. Results

The analysis was performed on a computational node integrating an AMD Ryzen
central processing unit with thirty-two threads, sixty-four gigabytes of random access
memory and an RTX 3090 graphics processing unit with twenty-four gigabytes of video
memory. Overall, the same experimental protocol and data stratification methodology were
applied across all experiments, with the key differentiating factors being the feature fusion
(radiomics or deep features with transcriptomics), oversampling technique and classifier.
In total, 2394 unique models were evaluated, including deep radiotranscriptomics (756,
SMOTE/not by deep models by endpoints by classifier types), traditional radiotranscrip-
tomics (42, SMOTE/not by endpoints by classifier types), single source transcriptomics
(798) and imaging models (798).

The comparison of the corresponding radiotranscriptomic against single source mod-
els on ROC curves in Figure 3 reveals the performance advantage in favor of the former,
with significantly improved robustness and consistency throughout the examined experi-
ments. In particular, improved performance was observed mainly in radiotranscriptomics
for molecular and histological subtype differentiation compared to the best corresponding
single source models with gains in AUC scores ranging from 0.016 to 0.22 (Tables S1–S4).
The proposed radiotranscriptomics methodology achieved the best classification score
with an AUC of 0.943 ± 0.03 on the histology subtype characterization with a linear SVM
(Table 1). The deep radiotranscriptomics performed better in molecular subtypes, where
the combination of the two sources of selected features impacted greatly on the prediction
of KRAS mutation status (AUC 0.831 ± 0.09), with improved performance and increased
prediction stability from the best single source transcriptomic model (AUC 0.611 ± 0.22). It
should be noted that the pre-trained ResNet and DenseNet model families provided the
best deep features. Additionally, it is worth mentioning that the single source deep features
model for assessing EGFR and KRAS mutation status outperformed their counterparts in
traditional radiomic models.
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Figure 3. ROC curves for deep radiotranscriptomics (left column), transcriptomics (center column) and deep feature
(right column) analysis. The top row represents EGFR (SMOTE), the middle row is KRAS and the bottom row is histology
subtypes. The gray region represents the prediction variability among the unseen testing folds. AUC, area under curve;
ROC, receiver operating characteristic; EGFR, epidermal growth factor receptor; KRAS, Kristen rat sarcoma; SVM, support
vector machine; SMOTE, synthetic minority oversampling technique.

Table 1. Performance of the ML-based pipeline on deep radiotranscriptomics and traditional radiotranscriptomics. The
highest overall score between experiments is presented in bold.

Experiments Classifier Feature Type Over-
Sampling ACC AUC SN SPC

EGFR Decision Tree ResNet SMOTE 0.805 ± 0.05 0.747 ± 0.14 0.627 ± 0.33 0.869 ± 0.06
KRAS Linear SVM DenseNet No 0.865 ± 0.08 0.831 ± 0.09 0.512 ± 0.25 0.974 ± 0.03

Histology
Subtypes Sigmoid SVM ResNet No 0.888 ± 0.07 0.925 ± 0.04 0.743 ± 0.16 0.933 ± 0.06

EGFR Sigmoid SVM
Radiomics-

based

SMOTE 0.761 ± 0.10 0.726 ± 0.10 0.600 ± 0.16 0.800 ± 0.11
KRAS Linear SVM No 0.730 ± 0.05 0.719 ± 0.07 0.34 ± 0.27 0.883 ± 0.08

Histology
Subtypes Linear SVM No 0.907 ± 0.05 0.943 ± 0.03 0.797 ± 0.12 0.941 ± 0.03

The inclusion of SMOTE in the analysis considerably improved both deep and tradi-
tional radiotranscriptomics for EGFR expression prediction, especially in terms of sensi-
tivity. In particular, the traditional radiotranscriptomics achieved an AUC of 0.726 ± 0.10
(Table S2) over 0.645 ± 0.12 (Table S1) and the deep feature-based counterpart achieved an
AUC of 0.747 ± 0.14 (Table S4) over 0.634 ± 0.24 (Table S3).

The traditional radiotranscriptomics for EGFR performed slightly better (AUC 0.645 ± 0.12
versus 0.642 ± 0.11) than the best single source counterpart, according to Table S1. This
difference was negligible for the aforementioned model, with the prediction AUC only
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increasing by 0.003 compared to the transcriptomics model. Although, in terms of sen-
sitivity and specificity, the difference is more pronounced with a difference of 0.04 and
0.043, respectively.

The most discriminative components in the radiomic signature for EGFR include fea-
tures that reflect similarity, homogeneity, heterogeneity and complexity in texture patterns
(gldm_DependenceNonUniformityNormalized, glszm_ZoneEntropy, glcm_MCC (maximal
correlation coefficient), ngtdm_Strength). The KRAS radiomic signature comprises features
that quantify skewness, asymmetry, local homogeneity and substantial variations in inten-
sity values in the region of interest (glcm_ClusterShade, glcm_Idmn (inverse difference mo-
ment normalized), gldm_LargeDependenceLowGrayLevelEmphasis, ngtdm_Complexity).
The radiomics of histology subtypes are mainly zone-based features that estimate the vari-
ability of zone size, the ratio of large and small zones to high gray-levels and skewness
in texture complexity (glszm_SizeZoneNonUniformityNormalized, glszm_ZonePercentage,
glszm_LargeAreaHighGrayLevelEmphasis, glszm_SmallAreaHighGrayLevelEmphasis, glcm_MCC),
along with a few first order features such as the total energy, 90th percentile and wavelet
minimum. It is important to note that at least half of the features in each radiomic signature
were based on the wavelet filtered image. Furthermore, two detailed lists of the most
discriminative features for both transcriptomics and radiomics in molecular or histological
subtypes are shown in Tables S5 and S6. Detailed performance metrics of all the experi-
ments are presented in Tables 1 and S1–S4 and the corresponding ROC curves in Figure 3
and Tables S2–S6.

4. Discussion

Artificial intelligence has advanced into an essential methodology for inferring knowl-
edge from a high dimensional space with a data-driven perspective in many disciplines.
In medicine, the increasing quantities of information could outline the complexity of the
underlining biology of specific lesions, especially in oncology. While several efforts have
used single source data to investigate and model cancer mechanisms [56–60], our effort is
towards the synergistic use of high dimensional and high throughput data (deep features,
radiomics and transcriptomics) for identifying the prognostic signatures towards precision
decision support in oncology.

4.1. Common Features Found in Current Literature

The proposed approach yielded distinct signatures for EGFR, KRAS and histology sub-
types across all three experiment types, as illustrated in Tables S5 and S6. Notably, the most
significant radiomic feature in this analysis for KRAS mutation was the ngtdm_Complexity,
which is the same feature found by Zhang et al. [61] for the same radiogenomic objective
in a completely different patient cohort, indicating feature stability and robustness. Addi-
tionally, in the same study, the best radiomic feature for EGFR mutation assessment was
the gldm_LargeDependenceHighGrayLevelEmphasis, which belongs to the same texture
family as gldm_DependenceNonUniformityNormalized and is similar in nature to the
high level feature glrlm_LongRunHighGrayLevelEmphasis, both also found in the present
analysis. Furthermore, another agreement with the findings (Table S6) of the proposed
analysis was observed for discriminative features of histology subtypes with studies re-
porting cluster shade [62], first-order, GLCM, GLSZM [63] and a combination of high level
emphasis and small area emphasis [64] as important features. It is worth noting that the
majority of the identified radiomics were wavelet-based features (Table S6), indicating that
a significant part of the differentiating information exists only in specific frequency bands
and can be deciphered through scale-space wavelet analysis [65].

4.2. Performance of Radiotranscriptomics Versus Single Source Models

The single source radiomics and deep features analyses achieved a performance at
the lower end of the spectrum in terms of sensitivity, but both have shown increased speci-
ficity compared to the corresponding transcriptomic analyses. The deep features achieved
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a higher sensitivity in EGFR/KRAS mutation status assessment than the corresponding
radiomics. The prediction of the molecular and histology subtypes was enhanced by the
integration of imaging with transcriptomic data in a common feature space. The proposed
radiotranscriptomics established models with an improved sensitivity of up to 0.182 com-
pared to their single source counterparts, a superior AUC performance in mutation status
prediction of up to 0.831 ± 0.09 and a histological subtype prediction of up to 0.942 ± 0.03.
These results showcase the radiotranscriptomic synergy assumption between the two
different sources of data, as discussed in the introduction. Furthermore, the benefits of
radiotranscriptomic analysis can be summarized into the overall improved ROC curves
(Figure 3), AUC score and sensitivity, and the reduced prediction variability in classification
across all types of experiments (EGFR, KRAS and histology subtypes). In comparison,
similar studies on imaging only data demonstrate significantly lower performance for
KRAS mutation prediction, up to AUC 0.667 [23], and histological subtype differentiation
ranging from 0.754 [21] to 0.893 [26]. In contrast, the radiotranscriptomics of EGFR did
not improve on the current state-of-the-art study of Rizzo et al. [23], which was based
solely on semantic CT features. This can also be attributed to the imaging modality, since
better and more discriminative features or biomarkers [66] have been reported in several
studies [25,67–69] where the PET/CT radiomic signature with an AUC of 0.805 significantly
outperformed the CT only features (AUC 0.667) in EGFR mutation status differentiation.
Despite the limited number of patients for machine learning analysis, especially regarding
the molecular subtype patient cohorts, the proposed radiotranscriptomic model for KRAS
differentiation outperformed the model of Rizzo et al. [23]. Additionally, the proposed ML-
based analysis for molecular and histological subtypes outperformed the corresponding
NSCLC state-of-the-art research [17,19–23,25,26] by a wide margin. The performance of the
proposed radiotranscriptomics and the state-of-the-art literature is presented in detail in
Table 2. The complete results of the radiotranscriptomic analyses are presented in Table 1
and Tables S1–S4 of the Supplementary Materials.

Table 2. The corresponding literature of the examined dataset with varying methodologies including
semantic CT features, radiomic and radiotranscriptomics analyses (AUC). The highest overall score
for each experiment type is presented in bold.

EGFR KRAS Histological
Subtypes

Proposed Traditional
Radiotranscriptomics 0.726 ± 0.10 0.719 ± 0.07 0.942 ± 0.03

Proposed Deep
Radiotranscriptomics 0.747±0.14 0.831 ± 0.09 0.924 ± 0.04

Morgado et al. [17] 0.737 - -
Moreno et al. [19] up to 0.82 up to 0.778 -

Dong et al. [20] 0.751 0.696 -
Yamada et al. [21] - - 0.754
Koyasu et al. [22] 0.659 - 0.843
Rizzo et al. [23] 0.823 0.667 -

Li et al. [25] 0.667 - -
Zhu et al. [26] - - 0.893

4.3. Clinical Impact of the Study

The proposed analyses in this study identified discriminative compact transcriptomics,
radiomics and deep feature signatures to accurately model the underlying biology of non-
small cell lung cancer. A multi-view learning methodology for high dimensional and low
sample sized datasets [70] is essential for the integration of the different types of omics data.
Two views that include deep features and transcriptomics were analyzed using distinct
pipelines and were integrated prior to classification, with the purpose of capturing the
heterogeneity of NSCLC. The high performance of the proposed deep radiotranscriptomics
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in assessing the genetic alterations of EGFR and KRAS oncogenes, as presented in the
results section, could potentially add precision in treatment planning with TKIs or other
targeted therapies.

Some challenges for single source RNA-seq data that significantly affect the general-
ization of the analysis are the varying data acquisition protocols [71], intratumor hetero-
geneity [72] and local mutation burden [73]. These are prominent aspects of non-small
cell lung carcinomas. Transcriptomics is subjected to local mutational diversity, which
can be as high as interpersonal variation [73]. Imaging features, on the other hand, are
computed throughout the whole tumor, yielding complex signatures that include patterns
from the microenvironment (necrotic, hypoxic and oxygenated tissue) of the neoplasm.
Radiotranscriptomics has the potential to accurately capture the total mutational burden
(TMB) by combining locally (transcriptomics) and globally (radiomics) dependent pat-
terns. Therefore, the proposed composite signature addresses the shortcoming of single
source data by assembling a holistic representation that fuses markers related to biological
mechanisms (via transcriptomics) and tumor heterogeneity patterns (via imaging features
extracted from the volume of interest). This can be beneficial for assessing clinically im-
pactful endpoints, such as survival and therapy response [73]. To this end, we provide an
open source repository [32] of the proposed methodology to encourage further research
and to enable reproducibility and comparison with future studies.

4.4. Limitations and Future Extensions

A significant limitation of this study was the reduced data variability from an ethni-
cally diverse patient cohort that reflects the genetic heterogeneity in non-small cell lung
carcinomas. This is a key factor for enhancing the predictive power and robustness of ra-
diotranscriptomic models. Another issue was the limited simultaneous availability of both
imaging and transcriptomic data. The small dataset size increased prediction variability
in many experiments, particularly in some transcriptomics and radiomics for molecular
subtype models. The standardization, robustness and reproducibility of radiomics is an
important issue in AI analysis that requires multiple examinations of the studied patient
cohort. Nonetheless, CT scans use Hounsfield Units to capture the tissue’s electron density
inside a particular voxel, which is a constant value for each tissue type, offering a unique
radiation absorption signature and making CT quantitative by nature. The variability in
the genetic and phenotypic profile of NSCLC tumors, which makes radiomic and transcrip-
tomic analysis difficult, was another limiting factor. This can be observed in Table 1 where
the standard deviation of the experiments can reach up to 0.22 in terms of AUC variability.
As a result, parameter optimization in the machine learning methods that was used was
especially challenging since it was difficult to assess the impact of the tuning. Therefore,
the default parameters were used for every component of the pipeline, despite the feature
type. Additionally, instead of a unified feature space, fusion could be achieved at the
decision level with different classifiers or analysis pipelines for each data type. Finally,
another limiting factor was the lack of the multi-modal fusion of imaging features because,
while PET/CT examinations are available in this dataset, calculating radiomic and deep
features was not feasible due to the lack of pixel-based annotations. The latter requires at
least two expert clinicians to perform the delineation and achieve a consensus in terms of
tumor margins.

Lastly, future research with a multi-institutional and independent patient cohort is
a necessary step to evaluate the current experimental procedure by offering increased
variety in the examined data sources through integrating different imaging equipment
and genome extraction protocols. Additionally, an extension of the proposed data analysis
methodology will be explored on the same patient cohort, including endpoints that rely on
statistically depended clinical variables, such as lesion recurrence, overall survival or novel
therapy-related markers, in order to adapt the therapeutic strategy [74,75] according to the
patient’s radiogenomic profile into a personalized diagnosis and treatment plan. Other
important molecular indicators for assessing targeted treatments include ALK rearrange-



Diagnostics 2021, 11, 2383 11 of 15

ments, BRAF mutation status and programmed death-ligand 1 (PDL1) expression, which
will be investigated in a future radiogenomic study.

5. Conclusions

The deep radiotranscriptomics framework achieved state-of-the-art performance and,
most importantly, improved classification metrics, such as AUC and sensitivity, compared
to the baseline single source models in the examined molecular and histology subtype
analyses. The proposed machine learning selection and feature fusion provided signif-
icant evidence supporting the hypothesis presented in the introduction regarding the
complementary nature of the two feature types in the context of radiotranscriptomics. A
closer collaboration between physicians and data scientists is essential for developing a
trustworthy and explainable AI framework that aims to minimize erroneous diagnosis and
optimize the planning of a personalized treatment strategy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11122383/s1: Figure S1, Spearman’s correlations (rho > 0.6) among radiomic and
transcriptomic features. No statistically significant radiogenomic correlations were found; Figure S2,
ROC curves for radiotranscriptomics- (left column), transcriptomics- (center column) and radiomics-
based (right column) analysis. The top row represents EGFR (SMOTE), the middle row is KRAS and
the bottom row is histology subtypes. The gray region represents the prediction variability among
the unseen testing folds. AUC, area under curve, ROC, receiver operating characteristic, EGFR,
epidermal growth factor receptor, KRAS, Kristen rat sarcoma, SVM, support vector machine, SMOTE,
synthetic minority oversampling technique; Figure S3, ROC curves for radiotranscriptomics- (left
column), transcriptomics- (center column) and radiomics-based (right column) analysis. The top
row represents EGFR, the middle row is KRAS and the bottom row is histology subtypes; Figure S4,
ROC curves for SMOTE radiotranscriptomics- (left column), transcriptomics- (center column) and
radiomics-based (right column) analysis. The top row represents EGFR, the middle row is KRAS and
the bottom row is histology subtypes; Figure S5, ROC curves for deep radiotranscriptomics- (left
column), transcriptomics- (center column) and deep descriptor-based (right column) analysis. The top
row represents EGFR, the middle row is KRAS and the bottom row is histology subtypes; Figure S6,
ROC curves for SMOTE deep radiotranscriptomics- (left column), transcriptomics- (center column)
and deep descriptor-based (right column) analysis. The top row represents EGFR, the middle row is
KRAS and the bottom row is histology subtypes; Table S1, Performance of the ML-based pipeline
on CT 3D radiomics, transcriptomics and radiotranscriptomics analysis. The highest overall score
is presented in bold; Table S2, Performance of the SMOTE ML-based pipeline on CT 3D radiomics,
transcriptomics and radiotranscriptomics analysis. The highest overall score is presented in bold;
Table S3, Performance of the ML-based pipeline on deep descriptors, transcriptomics and deep
radiotranscriptomics analysis. The highest overall score is presented in bold; Table S4, Performance
of the SMOTE ML-based pipeline on deep descriptors, transcriptomics and deep radiotranscriptomics
analysis. The highest overall score is presented in bold; Table S5, The most significant transcriptomic
features; Table S6, The most significant radiomic features.
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