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1  | INTRODUC TION

Congenital heart disease (CHD) as a heart structural abnormality 
affects 8/1000 live births in worldwide.1 CHD indicates a variety 
of heart defects including outflow tract defects, valve defects, and 
septal defects 2 such as ventricular septal defect (VSD) which is 
the most common CHD and observed in girls and boys with similar 

frequency, patent ductus arteriosus (PDA) considers for 10% of 
CHDs and often has unknown reason 3 and atrioventricular septal 
defect (AVSD) constitutes more than 7.4% of CHDs, it is result from 
endocardial cushion defects.4

Causes of CHD are classified into genetic, epigenetic, and envi-
ronmental categories and in about 90% of cases, no determined cause 
can be described.5 The majority of CHDs occur just as a heart defect 
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Abstract
Background: Congenital heart disease (CHD) is the most common birth defect 
which can arises from different genetic defects. The genetic heterogeneity of this 
disease leads to restricted success in candidate genes screening method. Emerging 
approaches	such	as	next-generation	sequencing	(NGS)-based	genetic	analysis	might	
provide a better understating of CHD etiology in the patients who are left undiag-
nosed. To this aim, in this study, we survived the causes of CHD in an Iranian family 
who was consanguineous and had two affected children.
Methods: Affected individuals of this family were checked previously by PCR-direct 
sequencing for six candidate genes (NKX2-5, ZIC3, NODAL, FOXH1, GJA1, GATA4) and 
had not revealed any reported CHD causative mutations. Whole-exome sequencing 
(WES) was performed on this family probond to determine the underlying cause of 
CHD, and the identified variants were confirmed and segregated by Sanger sequencing.
Results: We	identified	one	heterozygous	missense	mutation,	c.T6797C	(p.Phe2266Ser),	
in the NOTCH1 gene, which seems to be the most probably disease causing of this fam-
ily	patients.	This	mutation	was	found	to	be	novel	and	not	reported	on	1000	Genomes	
Project,	dbSNP,	and	ExAC.
Conclusion: Worldwide, mutations in NOTCH1 gene are considered as one of the 
most known causes of CHD. The found NOTCH1 variant in this family affected indi-
viduals was the first report from Iran. Yet again, this result indicates the importance 
of NOTCH1 screening in CHD patients.
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without other organs anomaly, however, may some syndrome co-oc-
currence with CHD. Therefore, CHDs can be considered syndromic 
or non-syndromic. The CHD risk for a kindred offspring mostly de-
pends on the CHD etiology in the parent. Mutations in numerous 
genes which are involved in heart development, that is, signal trans-
duction, transcriptional regulation, and encoding cardiac proteins, lead 
to	non-syndromic	CHDs.	The	NOTCH	conduction	pathway	is	a	critical	
process which plays significant role in left-right axis subdividing.5

NOTCH1 gene is located on chromosome 9q34.3 and consist 34 
exons. It encodes 300kDa protein, which functions as a transmembrane 
receptor.6	NOTCH1	protein	regulates	several	critical	process,	such	as	
vasculogenesis and cardiac development.7 Mutations in NOTCH1 gene 
are reported in a range of CHD, comprising bicuspid aortic valve (BAV),8 
aortic stenosis (AS),9	hypoplastic	left	heart	syndrome	(HLHS),10 coarc-
tation of the aorta (COA),5 and tetralogy of fallot (TOF).11

At	present,	based	on	Human	Gene	Mutation	Database	(HGMD)	
(www.hgmd.cf.ac.uk), 30 mutations causing CHD have been in-
troduced in the NOTCH1 gene including 21 missenses/nonsenses, 
three splicings, two small deletions, and 4 gross deletions. To our 
knowledge, no NOTCH1 mutations were observed in Iranian CHD 
patients. Furthermore, there are no VSD, PDA, and AVSD clinical 
reports of NOTCH1 gene mutations in worldwide. In this study, we 
report a novel de novo germline mutation in the NOTCH1 gene that 
was detected by whole-exome sequencing (WES), associated with 
VSD, PDA, and AVSD in an Iranian family.

2  | MATERIAL AND METHODS

2.1 | Patient

An Iranian healthy consanguineous couple, 30-year-old mother and 
a 33-year-old father, who had two affected children was referred to 
the Rajaie Cardiovascular, Medical and Research Center, Tehran, Iran 
for	genetic	counseling	(Figure	1A).	No	syndromic	characterizes	were	
identified in their medical history as well as in clinical investigations. 
The	diagnosis	of	CHDs,	8-year-old	girl	with	VSD	and	6-month-old	
boy with PDA and AVSD (Figure 1D), was confirmed by echocardio-
gram. With informed consent, blood samples were collected from 
individuals	IV-1	and	IV-2	and	their	biological	parents	(III-5	and	III-6).	
A diagnostic algorithm starting with Karyotyping followed by a PCR-
direct Sequencing for six candidate genes (NKX2-5, ZIC3, NODAL, 
FOXH1, GJA1, GATA4),	 MLPA	 (multiplex	 ligation-dependent	 probe	
amplification)	and	Array-CGH	(array	comparative	genomic	hybridi-
zation) previously was performed for this family by our team had 
not revealed any reported CHD causative mutations. This study was 

performed due to the Declaration of Helsinki Principles and was re-
viewed by the ethics committee of Rajaie Cardiovascular, Medical 
and Research Center.

2.2 | DNA extraction and Whole-exome sequencing

DNA	was	extracted	from	blood	samples	using	standard	salting-out	
method.12	 DNA	 samples	 were	 assessed	 by	 a	 NanoDrop	 (Thermo	
Fisher Scientific) and agarose gel electrophoresis to confirm the 
quality	and	quantity	of	the	DNAs.

Exome sequencing was performed only on the proband, patient 
IV-2	 (Figure	1A)	at	Macrogen.	Briefly,	10	ng	of	genomic	DNA	was	
used for WES (library construction, exome capture and reads se-
quencing)	by	SureSelect	XT	Library	Prep	Kit	on	an	 Illumina	HiSeq	
4000 according to the manufacturer's protocol (Illumina). The gen-
erated	 reads	were	 aligned	 to	 the	human	 reference	 genome	 (NCBI	
GRCh37/hg	 19	 version)	 with	 Burrows-Wheeler	 Aligner	 (BWA)	
alignment software (http://bio-bwa.sourc eforge.net/).13	 Genome	
Analysis	 Toolkit	 (GATK)	 (https	://www.broad	insti	tute.org/gatk/)	 14 
was	used	to	call	sequence	variants.	Genetic	variants	annotation	were	
carried	out	with	the	ANNOVAR	(http://annov	ar.openb	ioinf	ormat	ics.
org/) 15 by consideration of splice site, intronic, exonic, 5´ UTR, 3´ 
UTR, intergenic, upstream, or downstream locations and then frame 
shift, synonymous, non-synonymous, insertion/deletion or stop 
exonic functions. To make possible detection of de novo variants, 
we considered that disease-causing variants would be absent in the 
public available populations. Therefore, the variants were filtered 
against	1000	Genomes	Project,	the	Single	Nucleotide	Polymorphism	
Database	 (dbSNP)	 and	 Exome	 Aggregation	 Consortium	 (ExAC)	
with respect to minor allele frequency (MAF) < %1. To analyses of 
non-synonymous	variants,	we	used	the	result	of	ANNOVAR	based	
on prediction tools such as mutation taster,16 sorting intolerant from 
tolerant (SIFT),17 polymorphism phenotyping v2 (PolyPhen-2) 18 and 
combined annotation dependent depletion (CADD).19 The variants 
were selected if they were recognized to be damaging by two of the 
prediction	 tools.	Nucleotide	numbering	was	according	NCBI	Gene	
Bank	cDNA	Accession	Number	NM_017617.	ACMG	Standards	were	
used for the sequence variants interpretation.20

2.3 | Segregation analyses

Candidate variant was validated and segregated in family mem-
bers by standard Sanger sequencing. One PCR primer pair were 
designed using Primer3 v. 0.4.0 (http://bioin fo.ut.ee/prime 

F I G U R E  1  Genetic	and	protein	changes	of	NOTCH1.	A,	Pedigree	of	the	family.	B,	Genotypes	of	a	novel	de	novo	mutation	c.T6797C	
(p.Phe2266Ser)	detected	in	both	affected	children,	and	parents	had	normal	genotypes	(C)	Schematic	of	NOTCH1	protein	domains	
(up)	displays	epidermal	growth	factor	(EGF),	Lin/Notch	repeat	(LNR),	heterodimerization	domain	(HD),	transmembrane	domain	(TD),	
RBPJ-associated	molecule	domain	(RAM),	ankyrin	repeat	(ANK),	transactivation	domain	(TAD),	and	PEST	domain	(PEST).	Multiple	
sequence	alignment	of	the	NOTCH1	protein	sequences	(down)	indicates	the	Phe2266	residue	is	highly	conserved	among	species.	D,	The	
echocardiograms	of	affected	family	members,	ventricular	septal	defect	(left)	and	patent	ductus	arteriosus	(right).	Ao,	aorta;	LA,	left	atrium;	
LPA,	left	pulmonary	artery;	RV,	right	ventricle

http://www.hgmd.cf.ac.uk
http://bio-bwa.sourceforge.net/
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r3-0.4.0/).21 To amplify of the variant, polymerase chain reaction 
(PCR) was performed on a SimpliAmp™ Thermal Cycler (Thermo 
Fisher	Scientific)	considering	100	ng	DNA,	10	PM	primers	(Forward	
primer,	 AAGGCACGGAGGAAGAAGTC	 and	 Reverse	 primer:	
AGGGTTGTATTGGTTCGGC)	 1.5	 mmol/L	 MgCl2,	 200	 mmol/L	
dNTP,	and	1	U	of	Taq	DNA	polymerase	(Amplicon).	PCR	was	ordered	
as follows: incubation at 95°C for 5 minutes and then 35 amplifica-
tion	cycles	(40	seconds	at	95°C,	30	seconds	at	60°C,	and	30	seconds	
at 72°C). The confirmed PCR products by gel electrophoresis were 
directly	Sanger	sequenced	on	an	ABI	Sequencer	3500XL	PE	(Applied	
Bio Systems) and were analyzed using Codon Code Aligner v. 7.1.2 
(https ://www.codon code.com/align er/). When the variant was con-
firmed, all family members (healthy/patient) were surveyed to define 
variant segregation.

2.4 | Protein analyses

The	NOTCH1	protein	domains	have	been	obtained	by	Pfam	v.	32.0	
(https ://pfam.xfam.org/)22	 with	 Uniprot	 code	 P46531	 (Figure	 1C/
Up).	We	 also	 used	CLUSTALW	 (https	://www.genome.jp/tools-bin/
clustalw)23 for multiple protein sequence alignment in the human as 
compared with other species (Figure 1C/Down).

3  | RESULTS

The CHD of the family children, 8-year-old boy with VSD and 
6-month-old	girl	with	PDA	and	AVSD	(Figure	1D)	were	diagnosed	ac-
cording to clinical examinations, that is, angiography, echocardiogra-
phy, and MRI, by expert cardiologist. WES was performed on patient 
IV-2	DNA	sample.	After	WES	results	 filtering,	nine	candidate	vari-
ants including seven dominants and two recessives were determined 
in	 the	 probond.	 Among	 these,	 only	 a	 missense	 variant,	 c.T6797C	
(p.Phe2266Ser),	which	identified	in	NOTCH1 gene, was found as the 
most probably disease reason in this family affected individuals. This 
heterozygous	 variant	 was	 not	 present	 in	 1000	 Genomes	 Project,	
dbSNP	and	ExAC.

Sanger	sequencing	of	the	patient	and	her	family	members	DNA	
samples validated this mutation. Her affected brother (IV-1) carried 
this	 substitution;	 however,	 both	 their	 parents	 (III-5	 and	 III-6)	 had	
normal sequence (Figure 1B). This suggests that a de novo muta-
tion would be occurred in one of the parent's germline which has 
not detected by somatic-line Sanger sequencing but inherited to the 
children.

The	 novel	 de	 novo	mutation	 c.T6797C	was	 located	within	 the	
exon 34 of the NOTCH1 gene. In wild type NOTCH1, the TTT nucle-
otides	at	c.6796-6798	position	encode	phenylalanine	at	p.2266.	The	
c.6797T	>	C	substitution	resulting	in	Phe2266	changes	to	serine.	The	
pathogenicity	effect	of	this	mutation	was	confirmed	by	ANNOVAR	
prediction tools (Mutation taster, SIFT, PolyPhen-2, and CADD). 
Furthermore, alignment of the targeted region has indicated this po-
sition is highly conserve among various species (Figure 1C/Down).

4  | DISCUSSION

CHD is a complex disease which often has poorly understood rea-
son. Approximately 8% of CHDs are associated with single genes 
mutations, 2% with environmental agents, and 90% have multifacto-
rial etiology.5 In the last decades, several single gene variants have 
been determined in patients with non-syndromic CHDs, including 
NKX2-5, GATA4, GATA6, MYH6, TBX5, and TBX20.24 Although prob-
able gene sequencing has detected multiple disease-causing muta-
tions in many disorders, it has had restricted achievement in CHD, 
as described about our cases which were screened for six candidate 
genes (NKX2-5, ZIC3, NODAL, FOXH1, GJA1, GATA4) in previous 
study of our team and had not revealed any CHD causative muta-
tions, likely because of genetic heterogeneity that numerous genes 
are	 involving	 in	heart	development.	New	approaches	such	as	NGS	
can provided CHD genetic etiology.25

Our study indicates the first novel de novo germline muta-
tion identified by WES in an Iranian family with different types 
of CHD. Although we surveyed nine likely pathogenic variants in 
the family members but none of them were completely segregated 
except	one,	c.T6797C	in	the	NOTCH1 gene, and this illustrates the 
complexity of the CHD causing identification. According to the 
previous studies 11,26-28 and our finding, we think the NOTCH1 
c.T6797C	 (p.Phe2266Ser)	 variant	 have	 a	 significant	 role	 in	 the	
CHD of this family. The relation of NOTCH1 with CHD is consistent 
with	 NOTCH1	 roles	 during	 cardiac	 development.	 NOTCH1	 is	 in	
the endocardium and NOTCH1 knockout mice harbors abnormal-
ity in the ventricle and cardiomyocyte.29	NOTCH	signaling	 leads	
to epithelial-to-mesenchymal transduction which is critical for 
valvulogenesis.	The	mutations	of	this	pathway	proteins,	NOTCH1	
and	NOTCH2,	decrease	ligand-induced	signaling	and	cause	aortic	
valve malformations.9 In a study by Krebs et al,30	on	NOTCH	mu-
tant	mouse	was	demonstrated	that	NOTCH	pathway	has	a	major	
role	in	the	LR	asymmetry	establishment	by	expression	regulation	
of the NODAL gene.

NOTCH1	protein	consists	eight	structural	domains,	including	epi-
dermal	growth	factor	(EGF),	Lin/Notch	repeat	(LNR),	heterodimeriza-
tion domain (HD), transmembrane domain (TD), RBPJ-associated 
molecule	domain	(RAM),	ankyrin	repeat	(ANK),	transactivation	do-
main (TAD), and PEST domain (PEST) (Figure 1C/Up). Phenylalanine 
2266	is	lined	in	a	TAD	domain	of	NOTCH1	which	is	from	amino	acids	
2193-2396	 and	 induces	 autonomous	 transcription.	 The	phenylala-
nine	residue	at	p.2266	and	around	amino	acids	are	highly	conserved	
among different species (Figure 1C/Down). In our study, the iden-
tified	mutation	was	 located	 at	 the	TAD	domain	 of	NOTCH1,	 thus	
impairs the function of this domain in target gene transcription, such 
as the Hey1 and Hey2 genes which are required for the canal myo-
cardial boundary.31	Gerhardt	et	al	generated	knockout	mice	lacking	
NOTCH1	TAD	to	investigate	the	role	of	this	domain,	their	functional	
assays displayed the importance of the TAD in mammalian cardiac 
development.32

NOTCH1 variants have been observed in several types of CHD 
including BAV,33	 AS,	HLHS,	COA,	TOF,34 left ventricular outflow 

http://bioinfo.ut.ee/primer3-0.4.0/
https://www.codoncode.com/aligner/
https://pfam.xfam.org/
https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw
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tract	 obstructive	 (LVOTO),35 and pulmonary stenosis (PS).36 In 
our pedigree, we found a patient with VSD (IV-1) and other with 
PDA and AVSD (IV-2). Autosomal dominant (AD) inheritance and 
variable expressivity which were observed in this pedigree could 
lead to different phenotypes of the offsprings. As seen in different 
types of CHD, the phenotype for a specific mutation may be not 
the same.24

De novo variants are an important reason of early-onset genetic 
disease such as CHD, hearing loss.37 The identified NOTCH1 vari-
ant was found to be novel de novo which not reported on 1000 
Genomes	Project,	dbSNP,	and	ExAC.	Given	that	some	of	NOTCH1 
mutations were also identified in healthy parents and considers 
as rare variants with reduced penetrance, presenting of the novel 
pathogenic variant in both affected individuals of a kindred and 
absent in healthy parents, highlights the hypothesis that dominant 
NOTCH1	c.T6797C	variant	has	occurred	in	one	of	the	parent's	germ	
line and transmitted to children, this happening is probably more 
from father side according to the study of Kong et al which identi-
fied a de novo mutation in both sibling of a family but not the par-
ents, they had believed de novo mutations in men different sperms 
are not completely independents.38 Mutational hotspots as a pos-
sible source of de novo mutations and founder effect which may 
lead to population-specific variants are important to consider for 
primary care plans.39,40

It should be noted as a limitation of the present study, WES will 
miss regulatory/intronic variants which may have role in the phe-
notype modifying, as it was observed in the ERBB4 41	 and	 ISL142 
genes which these loci non-coding regions were associated with 
CHD susceptibility.

In conclusion, we report a family with CHD with a novel de novo 
germline mutation. Regarding the CHD causing mechanisms are 
largely obscure and the variant spectrum of non-syndromic CHD, we 
suggest that WES approaches could identify novel sequence changes 
to improve our understanding about CHD etiology. However, the im-
portance of bioinformatics challenges and family analyses informa-
tion should be considered in this subject.
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