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Deep Learning for Semantic 
Segmentation of Defects in 
Advanced STEM Images of Steels
Graham Roberts1, Simon Y. Haile2, Rajat Sainju3, Danny J. Edwards   1, Brian Hutchinson2,4 & 
Yuanyuan Zhu   1,3

Crystalline materials exhibit long-range ordered lattice unit, within which resides nonperiodic structural 
features called defects. These crystallographic defects play a vital role in determining the physical and 
mechanical properties of a wide range of material systems. While computer vision has demonstrated 
success in recognizing feature patterns in images with well-defined contrast, automated identification 
of nanometer scale crystallographic defects in electron micrographs governed by complex contrast 
mechanisms is still a challenging task. Here, building upon an advanced defect imaging mode that 
offers high feature clarity, we introduce DefectSegNet - a new convolutional neural network (CNN) 
architecture that performs semantic segmentation of three common crystallographic defects in 
structural alloys: dislocation lines, precipitates and voids. Results from supervised training on a small 
set of high-quality defect images of steels show high pixel-wise accuracy across all three types of 
defects: 91.60 ± 1.77% on dislocations, 93.39 ± 1.00% on precipitates, and 98.85 ± 0.56% on voids. 
We discuss the sources of uncertainties in CNN prediction and the training data in terms of feature 
density, representation and homogeneity and their effects on deep learning performance. Further 
defect quantification using DefectSegNet prediction outperforms human expert average, presenting a 
promising new workflow for fast and statistically meaningful quantification of materials defects.

Crystallographic defects are critical to the properties of materials. The physical and mechanical properties of 
metallic materials, in particular, are controlled by crystallographic defects which in turn can be modified through 
proper processing routes and by service conditions1,2. Thus, defect analysis of structural metals and alloys is 
routinely carried out in metallurgy3 and in materials degradation studies4,5. Transmission electron microscopy 
(TEM) is one of the most important standard tools for defect characterization. Besides being capable of hosting 
various analytical and diffraction techniques (e.g. energy dispersive X-ray spectroscopy and precession electron 
diffraction)6, TEM imaging alone offers direct observations of a variety of property-determining defects including 
grain boundaries, dislocations, stacking faults, precipitates, voids, etc. Specifically, well-established TEM diffrac-
tion contrast theory not only offers the determination of Burger’s vector for individual dislocation lines7, but also 
provides unique insights into dislocations’ distributions and their spatial relationships with other defects that are 
critical for the prediction of, for example, barrier hardening effects8. However, the current practice of identifying 
defects in TEM images and deriving metrics such as dislocation density and precipitates/voids diameter remains 
largely in the purview of human analysis. The lack of automated defect analysis techniques for statistically mean-
ingful quantification for various types of crystallographic defects is causing an increasingly large bottleneck for 
rational alloy design9,10.

The first and most important step of automating defect analysis is perceptual defect identification. In terms 
of digital image processing, semantic segmentation best emulates human recognition of defect features – it 
identifies the crystallographic defects and where they are located in a TEM micrograph. Early attempts were 
based mainly on traditional image segmentation utilizing low-level (non-specialized) cues such as pixel inten-
sity, texture, edges, etc.11. Without involving high-level (contextual) image features, this approach is applicable 
mainly to simple images with sparse defects12. In recent years, semantic segmentation based on convolutional 
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neural networks (CNNs) has demonstrated substantial advantages over the traditional image segmentation13,14, 
and has been successfully applied to many visual tasks such as sensing for autonomous vehicles15 and cell seg-
mentation16. However, most reported machine learning applications in the materials science domain (excluding 
bio-materials), have so far only addressed the arguably easier computer vision task of image classification, i.e., 
classifying an entire image as one microstructure category (for example17–20). Semantic segmentation, able to 
predict both feature class and location in structural alloys, has been largely limited to large-scale phases and 
microstructure constituents21,22, or to a single type of defect23.

One of the main reasons why defect semantic segmentation in TEM micrographs is a challenging deep learn-
ing task can be attributed to the nature of the images. Unlike everyday photographs, the interpretation of image 
contrast in TEM micrographs is often not straightforward; multiple contrast mechanisms may contribute to the 
observation of the defect features. A good practice is to promote one dominant contrast condition. A typical 
example is high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) that pro-
motes well behaved monotonic Z-contrast (Z: atomic number). Such HAADF STEM micrographs and simulated 
high-resolution TEM micrographs (for precise contrast control) were employed in developing deep learning 
models for the recognition of atomic defects in functional nanomaterials24,25. However, it is a more complicated 
case for the diffraction contrast in imaging crystallographic defects. Conventional TEM bright-field diffraction 
contrast, although theoretically well defined, is known to be sensitive to practical TEM foil conditions (e.g. bend-
ing, thickness, etc.) and other auxiliary strain fields26,27. As shown in Fig. 1a, under a preferred systematic row 
diffraction condition, the conventional TEM imaging mode presents obvious intensity variations (e.g. bend con-
tours) that lead to inconsistent and obscure defect contrast. These practical TEM foil conditions coupled with 
undesired artifacts introduce ambiguity in the ground truth labeling, and fundamentally hamper the supervised 

Figure 1.  Improved clarity of dislocation images using diffraction contrast imaging scanning transmission 
electron microscopy (DCI STEM) in comparison with conventional bright-field (BF) TEM. (a) Conventional 
TEM-BF image of line dislocations (network) in a pristine HT-9 martensitic steel under the standard systematic 
row diffraction condition. Red arrows point to severe bend contour and auxiliary contrast commonly observed 
obscuring defect contrast. (b) DCI STEM image of the same field of view under a similar diffraction condition. 
Yellow circles highlight the sharp defect contrast in DCI STEM image.
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deep CNN semantic segmentation training since the fidelity of the ground truth label affects the best achievable 
accuracy. Moreover, because the image artifacts are dependent on local sample strain, they also give rise to a dis-
parity in defect contrast of the same nature, posing a greater demand on feature representation and labor-intense 
pixel-wise labeling. Here, we aim at resolving this image-induced challenge by optimizing the image quality. In 
previous work, we established an experimental protocol for a diffraction contrast imaging scanning transmission 
electron microscopy (DCI STEM) technique and tailored it specifically for imaging defects in popular iron-based 
structural alloys28. As illustrated in Fig. 1, compared to the conventional TEM imaging mode, this new DCI 
STEM provided defect images of complex dislocation network with high clarity, largely free of bend contours and 
other image artifacts. Meanwhile, in Fig. 2, by slightly adjusting the sample tilt and suppressing strong diffrac-
tions, DCI STEM also offers almost monotonic contrast for the imaging of two other important defects – precip-
itates and voids. These defect images with a high clarity pave the way for the development of CNN-based defect 
semantic segmentation.

In this paper, we present DefectSegNet, a novel hybrid CNN algorithm for robust and automated semantic seg-
mentation of three crystallographic defects, including line dislocations, precipitates and voids, that are commonly 
observed in structural metals and alloys. For semantic segmentation of other defects such as grain boundaries, 
please refer to29. The DefectSegNet was trained on a small set of high-quality DCI STEM defect images obtained 
from HT-9 martensitic steels (Figs 1 and 2). The performance of the resulting model for each defect was assessed 
quantitatively by standard semantic segmentation evaluation metrics, and the resulting defect density and size 
measurement was compared to that of from a group of human experts. We find that deep learning methods show 
a great promise towards fast, accurate and reproducible feature semantic segmentation for quantitative defect 
analysis.

Methods
Diffraction contrast imaging STEM.  All defect images used for deep CNN training were acquired using 
the advanced DCI STEM imaging mode providing high-quality input images28. In this work, DCI STEM imaging 
was performed using a JEOL ARM200CF microscope operated at 200 kV, with a convergence semi-angle of 6.2 
mrad and bright-field collection angle of 9 mrad. This imaging setting was optimized previously for the HT-9 
martensitic steel with a body-centered cubic (BCC) crystal structure. To balance field-of-view size and pixel res-
olution, a magnification of 250,000× and a 2048 × 2048 pixels image size (i.e. a pixel size of 3.2 nm/pixel) along 
with a dwell time of 16 µs was used to acquire all DCI STEM images. For imaging dislocations (e.g. Fig. 1), the 
commonly used systematic row diffraction condition was satisfied by tilting a TEM sample of pristine HT-9 steel 
away from [001] zone axis to approximately 1g011 on Bragg condition. The line dislocations in this BCC crystal 
were identified as the ½〈111〉{111} dislocation. Moreover, optimal defect contrast for precipitates and voids can 
be achieved by slightly tilting the TEM sample (about 2 to 4 degrees) off the systematic row diffraction condition 
until there are no strongly excited diffractions (Fig. 2). Here, the same HT-9 martensitic steel after neutron irradi-
ation at 412 °C with a high-density of induced precipitates and voids defects was employed to provide good defect 
feature representation. For details on the DCI STEM imaging method and TEM sample preparations, one may 
refer to our previous study28.

Image pre-processing and labeling.  Prior to ground truth labeling, the DCI STEM micrographs were 
preprocessed including background subtraction and full variance normalization30 to further enhance defect 
contrast in regions where diffraction condition is not ideal. Each precipitate and void image (e.g. Fig. 2a), after 
the pre-processing, was then plotted into two images with reversed intensity. In this way, all images present 
bright-contrast defect features on a dark background (Fig. S1a). The ground truth labeling of the pre-processed 

Figure 2.  Versatile DCI STEM imaging offers high-quality defect imaging for two other crystallographic 
defects precipitates and voids. Off-diffraction DCI STEM image of the same HT-9 martensitic steel after 
introducing precipitates and voids by neutron irradiation. Enlarged region presents nanometer scale defects of 
precipitates in dark contrast, voids in bright contrast, accompanied by residual line dislocations.
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micrographs was created by manual annotation. Lines with a width of 3 pixels were used to segment the disloca-
tions. For voids and precipitates, after identifying the feature outline the inner region was filled evenly. As shown 
in Fig. S1b, all labeled features were assigned an intensity of 255, and background intensity is 0. Three research-
ers experienced in defect analysis worked collaboratively and cross-examined the ground truth labels over sev-
eral iterations. Great care was taken throughout the labeling process to achieve, to a large extent, a pixel-level 
precision.

Image augmentation.  To reduce the risk of overfitting31, a data augmentation strategy was applied to the 
input images and their corresponding labels. As demonstrated in Fig. 3a, a full 2048 × 2048 pixels image was 
divided into five regions, including three training subsets (each 1024 × 1024 pixels), and one development set and 
one test set (each 1024 × 512 pixels). Then, each training subset was augmented by rotation (i.e. 90°, 180°, and 
270° clockwise) and by horizontal flipping each rotated image. This increases the training set size by a factor of 
8, yielding new training data sets (both images and labels) that are not identical but maintain the defect features 
present in the images. The development sets and testing sets are not augmented. In all, two original 2048 × 2048 
pixels micrograph/label sets are augmented to produce 48 1024 × 1024 pixels training image and label pairs used 
for the training of deep CNN models for defect semantic segmentation.

Semantic segmentation deep CNN architecture and DefectSegNet.  Semantic image segmenta-
tion is a pixel-wise dense classification computer vision task. While the end goal of a deep image classification 
network is to classify an entire image (i.e. predict the class presence probability), semantic segmentation requires 
semantically meaningful discrimination at the pixel level14,32. Thus, a general semantic segmentation deep CNN 
architecture typically consists of two parts: an encoder functioning in a similar fashion to classification network 
like AlexNet33, VGG34, etc., and a decoder that projects discriminative high-level (low-resolution) features back 
to high-resolution space to achieve pixel-wise classification. Among the large variety of deep semantic segmenta-
tion architectures today, the biggest differences are in the design of the decoder (e.g. in the choice of up-sampling 
mechanism) and the design of skip connections within the network. For example, the ground-breaking Fully 
Convolution Networks (FCNs)35 utilizes bilinearly initialized interpolation for up-sampling and simple addition 
to fuse features from the encoder to decoder path. The U-Net36 which is known for effective performance in 
data-limited scenarios, proposed a 2 × 2 “up-convolution” path, combined with skip concatenation connections 
allowing the decoder to leverage relevant encoder feature maps at each stage. Recently, the DenseNet37 model 
took the design of skip connections further and introduced dense blocks within which there is an iterative concat-
enation of previous feature maps. In this work, we explored several hybrid deep networks for pixel-wise semantic 
segmentation of the three defect features. Our DefectSegNet was inspired by the U-Net and DenseNet and we 
find it offers the best performance, particularly for dislocations. The DefectSegNet architecture, shown in Fig. 4, 
consists of a total of 19 hidden layers. On the encoder side, max pooling is performed after each dense block, 
enabling the succeeding block to extract higher level, more contextual (and abstract) features from the defect 
images. For the decoder, to recover the resolution we employed the transposed convolutions, a more sophisti-
cated operator than bilinear interpolation35, for up-sampling. There are equal numbers of max pooling layers and 
transposed convolution layers, so the output probability map has the same spatial resolution as the input image. 
For the design of skip connections, besides those already introduced in dense blocks, feature maps created during 
encoding are input to all the decoder layers of the same spatial resolution. This allows the feature maps of a certain 
spatial resolution to connect cross the encoder-decoder performing in a similar manner to a single dense block. 
The incorporation of these skip connections both within and across blocks is the primary difference between 
our DefectSegNet and the U-Net36 and the fully convolutional DenseNet38. Lastly, the final hidden layer is a 3 × 3 
convolutional layer with a sigmoid activation function for classification.

Figure 3.  Illustration of (a) division and (b) augmentation of a pre-processed DCI STEM voids image 
(2048 × 2048 pixels). For a clear illustration, the label of training set #1 (1024 × 1024 pixels) was employed to 
show data augmentation.
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Training procedure.  All of the deep learning networks were trained using TensorFlow39 with a batch size of 
16 image patches of 512 × 512 pixels. To prevent overfitting several regularization techniques were implemented 
in addition to data augmentation, including L2 regularization40, Dropout41 and early stopping42,43. Meanwhile, IU 
curves of the training and development sets were monitored as a training protocol to inform possible overfitting. 
A learning rate (i.e. optimization step size) ranging between 0.00001 and 0.01 was tuned as a hyperparameter. 
For each experiment, the training was conducted for 100 passes through the training set (epochs). The learning 
rate was decayed each time that ten epochs without improvement was encountered. Training was terminated 
after the sixth learning rate decay. To compensate for class imbalance, we modified the pixel-wise cross-entropy 
loss function42, which is commonly used in segmentation tasks, by adding a tunable weight coefficient (i.e. a 
hyperparameter) that scales each positive pixel’s contribution to the cross-entropy loss. As training progresses, 
the weight coefficient is decreased, and this weighted loss function was minimized by the Adam optimizer. For 
each defect feature (and each architecture tested), the network was trained over a collection of random configura-
tions of hyperparameters, and then evaluated on development sets. The top-performing models in each training 
experiment were then saved to warm start additional models (i.e. initializing with the weights and biases of the 
previously best prediction) and were further trained and then evaluated on the development sets until no perfor-
mance improvement was observed. Lastly, the best model was applied to test sets. All training and evaluation for 
the experiments reported in this manuscript were carried out at PNNL’s Institutional Computing Cluster using 
NVIDIA P100 GPUs.

Performance evaluation.  In this work, we first report four evaluation metrics common for semantic seg-
mentation tasks21,35. In particular, to account for the class imbalance between defects and background pixels, 
informative metrics besides pixel accuracy are also evaluated. To facilitate the assessment of pixel-wise dense 
classification in semantic image segmentation, a confusion matrix consisting of true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN) at each pixel of prediction maps is used to introduce the evalu-
ation metrics below,

•	 Pixel accuracy: the percentage of pixels correctly predicted by DefectSegNet.

Pixel accuracy (TP TN)/(TP FP TN FN)= + + + +

•	 Precision (positive predictive value): the fraction of pixels that are true positives (correctly predicted pix-
els of the targeting class) among the total positive predictions; it penalizes false positives that could lead to 
overestimation.

= +Precision TP/(TP FP)

•	 Recall (true positive rate): the fraction of pixels that are true positives among the total class-relevant pixels; it 
penalizes false negatives that could cause underestimation.

= +Recall TP/(TP FN)

•	 Region intersection over union (IU or IoU): the fraction of pixels that are true positives among the union of 
pixels that are positive predications and belong to the target class. Since both FP and FN are included in the 
denominator of IU, it penalizes both over and under estimations.

IU TP/(TP FP FN)= + +

Figure 4.  Schematic illustration of the DefectSegNet architecture. The final softmax layer outputs a pixel-wise 
classification for each defect type. Note that not only each dense block but also the feature maps with the same 
spatial resolution across the encoder and decoder are all connected.
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In addition, to assess the practical impact of the deep learning enabled defect semantic segmentation, a series 
of quantitative defect metrics that are directly relevant to alloy research are measured from the DefectSegNet 
predicted defect maps. These materials metrics include (1) dislocation density, (2) precipitates/voids number 
density and (3) precipitates/voids particle sizes (diameter) and the standard deviation of the particle diameter. 
Measurement methods such as the grid-intersection method for dislocation density estimation44 are quite stand-
ard in the metallurgy community, thus the outcomes reflect mainly how the imperfections in defect semantic 
segmentation translate into errors in determining these materials metrics. We carried out these standard defect 
quantifications in a set of dedicated MATLAB algorithms45 developed in-house to automate this process. In par-
allel, a group of six experienced human experts performed independent defect analysis on the same test images. 
The metrics generated by both the algorithm and the human experts were compared to the ground truth. Note 
that the three researchers who produced the ground truth did not participate in the manual defect quantification 
to ensure the integrity of the comparison.

Results and Discussion
DefectSegNet semantic segmentation of line dislocations.  Figure 5 presents the DefectSegNet 
semantic segmentation predictions for the development/validation sets and the test sets (combined as a squared 
1024 × 1024 pixels image) of the first defect type: line dislocations. Comparing the ground truth label with the 
deep learning predicted dislocation maps (both are binary images) shows satisfactory resemblance, especially 
for the complex case of the dislocation network. Table 1 summarizes the semantic segmentation performance of 
the DefectSegNet on the test sets. A pixel accuracy of 91.60 ± 1.77% and an IU of 44.34 ± 0.63% was achieved for 
the dislocation lines. To correlate this prediction performance with the defect image characteristics, we applied 
a color-coded confusion matrix, i.e. TP in turquoise (defect feature), TN in black (background), FP in red and 
FN in yellow, at each pixel of the dislocation prediction map, providing direct visualization of the model perfor-
mance. We can see that the majority of pixels in the prediction map are in black and turquoise and thus correctly 
classified as the background and the dislocations, respectively. In particular, striking details in the top right corner 
of the complex dislocation network were almost perfectly predicted by the DefectSegNet model. This might be 
attributed to the incorporation of the dense skip connections in the architecture of the DefectSegNet, which enable 

Figure 5.  DefectSegNet pixel-wise semantic segmentation prediction of line dislocations using DCI STEM 
images. The corresponding ground truth labels, DefectSegNet prediction maps and the comparison maps 
color coded based on the confusion matrix: true positive (turquoise), true negative (black), false positive (red) 
and false negative (yellow) at each pixel for both development and test sets. Yellow arrows mark uncommon 
dislocation lines with weak contrast, and red arrows point to overestimation of FP.

DefectSegNet 
Performance Pixel accuracy Precision Recall IU

Dislocations 91.60 ± 1.77% 55.37 ± 2.22% 69.10 ± 1.93% 44.34 ± 0.63%

Precipitates 93.39 ± 1.00% 72.06 ± 4.44% 78.38 ± 2.05% 59.85 ± 2.07%

Voids 98.85 ± 0.56% 89.17 ± 1.28% 90.17 ± 5.84% 81.19 ± 3.68%

Defect Overall 94.61 ± 1.13% 72.12 ± 2.73% 79.22 ± 3.27% 61.79 ± 2.13%

Table 1.  Semantic segmentation performance of the DefectSegNet for the crystallographic defects in steel. The 
number reported here are averaged metrics with standard deviation over test sets.
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precise feature localization by directly propagating information across high-resolution feature maps. Even the 
early FCNs35 included some skip connections to preserve and reuse feature maps at different pooling stages, while 
the DenseNet37 took it further by iteratively concatenating feature maps within each dense block to aid propaga-
tion of information through the network. Considering that defect features such as line dislocations possess both 
distinctive location and extended features, we designed the DefectSegNet to leverage “dense skip connections” 
across the encoder and decoder (blue lines in Fig. 4). Among the several hybrid CNN models we tested so far, the 
DefectSegNet with dense skip connections offers the best semantic segmentation performance for the dislocations 
and for the three defects overall (Table S1). We analyzed the source of the CNN prediction uncertainties. In Fig. 5, 
the red FP and yellow FN pixels in the comparison maps suggest that the uncertainties are probably related to 
feature representation and to the protocol of ground truth labeling. As indicated by the yellow arrows, several 
dislocation lines exhibiting a relatively weak contrast were missed (FN) by the model. The occasional presence of 
these dislocations with weak contrast is due to the fact that diffraction contrast is sensitive to local lattice strain, 
which sometimes leads to unsatisfying the dislocation contrast. These underrepresented input patterns can then 
give rise to missed predictions and affect the corresponding recall (and the IU), especially when training data is 
small. Although this problem can usually be mitigated by increasing the training data set, the cost of additional 
ground truth labeling is often high in semantic segmentation; this is particularly true for our microscopy data. 
Here, we further assessed the situation by evaluating the material metric related to dislocations, i.e. dislocation 
density, in the third section below. Moreover, the model also produces some false positives (in red). Some can be 

Figure 6.  DefectSegNet pixel-wise semantic segmentation prediction of precipitates and voids using pairs of 
DCI STEM images. (a) Set #1 and (b) #2 precipitates and voids pairs and their corresponding ground truth, 
DefectSegNet prediction maps and comparison maps with the same confusion matrix color coding as Fig. 5. 
Similarly, the development/validation and the test sets are combined as a squared 1024 × 1024 pixels image for 
better illustration. Red arrows mark the source of false positives for precipitate prediction, and yellow arrows 
point to overlapped voids with precipitates.
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attributed to background noise (and thus are legitimate false alarms), while others reflect a deficiency in ground 
truth annotations. As marked by the red arrows in Fig. 5, the red FP pixels surrounding the dislocation lines are in 
fact due to that the fixed width adopted for dislocation line label (3 pixels) is too narrow to capture the full defect. 
Despite the fact that this leads to an increased FP rate (and lower precision) in semantic segmentation evaluation 
(Table 1), the ground truth was kept as it is since the width of a dislocation line does not affect the final dislocation 
density measurement.

DefectSegNet semantic segmentation of precipitates and voids.  Compared to the evaluation met-
rics of the dislocations (Table 1), both precipitates and voids present higher pixel accuracies with a particular 
high accuracy of 98.85 ± 0.56% for voids prediction. A more dramatic improvement is observed in the evalua-
tion of precision, recall and IU for these two defects. In particular, the IU of precipitates is 59.85 ± 2.07%, and 
81.19 ± 3.68% is achieved for voids. Here, we first investigate false positive errors. The DefectSegNet semantic 
segmentation prediction and comparison maps of the precipitates and voids are shown in Fig. 6. Marked by red 
arrows, two sources of false positive in precipitate prediction are identified, (1) local residual dislocation contrast 

Figure 7.  Comparison of materials evaluation metrics for defect quantification performed by computer and by 
human experts. Materials metrics include (a) dislocation density, and precipitates and voids number density, 
(b) the diameter and (c) diameter standard deviation of precipitates and voids. (d) The time spend for computer 
and human experts to quantify these defects. The defect set number is corresponding to the image sequence in 
Figs 5 and 6.

Defect quantification

Density (m−2) Number density (m−3)

Dislocations #1 Dislocations #2 Precipitates #1 Precipitates #2 Voids #1 Voids #2

Ground Truth 8.91E + 14 9.19E + 14 6.56E + 21 8.42E + 21 5.25E + 20 1.04E + 21

DefectSegNet Prediction 8.58E + 14 8.78E + 14 7.46E + 21 8.87E + 21 4.20E + 20 9.00E + 20

Machine Percent Error 0.04 0.05 0.14 0.05 0.20 0.13

Human Expert 1 9.96E + 14 8.61E + 14 7.04E + 21 4.86E + 21 4.73E + 20 7.20E + 20

Human Expert 2 9.50E + 14 1.01E + 15 5.09E + 21 4.68E + 21 5.25E + 20 8.55E + 20

Human Expert 3 1.26E + 15 1.66E + 15 2.08E + 22 8.36E + 21 6.88E + 20 9.90E + 20

Human Expert 4 8.45E + 14 4.81E + 14 \ \ \ \

Human Expert 5 5.20E + 14 6.92E + 14 4.10E + 21 3.78E + 21 5.25E + 20 8.56E + 20

Human Expert 6 1.03E + 15 1.02E + 15 6.10E + 21 5.70E + 21 5.30E + 20 9.00E + 20

Avg. Human Percent Error 0.20 0.30 0.58 0.35 0.08 0.17

Table 2.  Defect quantification results of dislocation density and the number density of precipitates and voids 
performed by computer and by human experts.
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(Fig. 6a), and (2) occasional lattice strain induced image contrast dilates the size of precipitates (Fig. 6b). These 
false alarms lead to the precision (72.06 ± 4.44%) being lower than the recall (78.38 ± 2.05%) for the semantic 
segmentation of precipitates. In contrast, the precision and recall for voids are similar (~90%). Noticeable false 
negatives (yellow arrows in Fig. 6) appear to be related to the precipitates that overlap with voids (opposite con-
trast canceled out). In all, except for few uncommon features that induce false predictions, the DefectSegNet has 
demonstrated an excellent performance in semantic segmentation of particle-like defects with an average IU of 
~70%. The current DefectSegNet was trained over a limited number of labeled DCI STEM images, but it achieved 
quite promising semantic segmentation performance with an overall accuracy of ~95% and an overall IU of 
~62% for the three defects. In computer vision, the size of a training set, which is usually judged by the number 
of images, is known to be an important factor for model performance. This is particularly true for image classifi-
cation. For semantic segmentation tasks, we argue that the training data in data-driven learning are the features 
rather than the images. The performance of semantic segmentation models depends highly on the density and 
homogeneity of the features to be identified in the input images. By choosing an HT-9 sample with a high-density 
defect features, despite being limited to only two training images for precipitates and voids prediction, our train-
ing set contains 823 precipitates and 110 voids. Moreover, we also noticed that unlike certain features exhib-
iting different shapes and with a complex combination of contrast23, both precipitates and voids have a rather 
monotonic contrast and uniform feature representation. This makes our training set of several hundred repeating 
features sufficient supervision for the DefectSegNet to achieve strong generalization. Furthermore, as discussed 
above, many of the incorrect predictions can be attributed to uncommon features such as the dislocations with 
weak contrast or the lattice strain induced additional contrast. In this work, the adoption of the advanced DCI 
STEM for defect imaging that largely eliminates bend contours and other auxiliary contrast, is a valuable step in 
reducing the abnormalities and improving feature homogeneity in training sets. Thus, for dense classification 
tasks like semantic segmentation, in addition to the size of training data, the representation and quality of the 
features play an important role in model performance.

Defect quantification metrics and comparison with human experts.  How the above semantic seg-
mentation evaluations translate into the more practical materials evaluations is discussed in this section. Figure 7 
presents the plots of materials evaluation metrics for defect quantification performed by computers and by human 
experts. Among all categories of the defect quantifications, including dislocation density, number density, diam-
eter, and diameter standard deviation of precipitates and voids, except for one set of data, the computer-based 
method provides an overall more accurate result. To quantitatively evaluate the degree of accuracy, the absolute 
percent errors were calculated and summarized in Tables 2, 3. Taking dislocation density for example, for set #1 

Defect quantification

Precipitates #1 Precipitates #2 Voids #1 Voids #2

Diameter (nm) StDev. (nm) Diameter (nm) StDev. (nm) Diameter (nm) StDev. (nm) Diameter (nm) StDev. (nm)

Ground Truth 10.17 5.12 10.83 4.51 22.64 8.50 20.26 6.76

DefectSegNet Prediction 10.32 5.36 11.04 4.41 25.77 7.99 21.09 6.86

Machine Percent Error 0.01 0.05 0.02 0.02 0.14 0.06 0.04 0.01

Human Expert 1 9.65 3.00 12.35 4.03 23.56 8.60 22.41 4.24

Human Expert 2 11.70 4.60 12.80 5.30 22.30 7.90 22.10 5.30

Human Expert 3 9.00 3.00 13.00 3.00 27.00 9.00 23.00 5.00

Human Expert 4 \ \ \ \ \ \ \ \

Human Expert 5 9.86 3.96 13.12 3.98 23.71 8.24 21.45 5.51

Human Expert 6 9.70 3.90 12.40 4.20 23.80 9.10 21.80 4.70

Avg. Human Percent Error 0.08 0.28 0.18 0.16 0.07 0.05 0.09 0.27

Table 3.  Defect quantification results of precipitates and voids diameter and diameter standard deviation 
performed by computer and by human experts.

Time Spend Dislocations #1 Dislocations #2 Precipitates #1 Precipitates #2 Voids #1 Voids #2

DefectSegNet Segmentation (s) 0.025 0.027 0.027 0.026 0.030 0.025

MATLAB Defect Quantification (s) 1.69 1.92 3.73 4.66 0.97 1.01

Total Computer Time (s) 1.71 1.95 3.76 4.69 1.00 1.03

Human Expert 1 (min) 90.0 120.0 120.0 108.0 30.0 20.0

Human Expert 2 (min) 25.0 25.0 25.0 25.0 5.0 5.0

Human Expert 3 (min) 20.0 30.0 13.0 13.0 10.0 10.0

Human Expert 4 (min) 23.0 27.0 \ \ \ \

Human Expert 5 (min) 14.0 21.0 20.0 20.0 15.0 15.0

Human Expert 6 (min) 30.0 30.0 40.0 40.0 25.0 25.0

Human Expert Average (min) 33.7 42.2 43.6 41.2 17.0 15.0

Table 4.  Time spend on quantitative defect analysis for the three defects by computer and by human experts.
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(the typical dislocation in Fig. 5) the ground truth density is 8.91 × 1014 m−2. The DefectSegNet gives a result of 
8.58 × 1014 m−2 with a small error of ~4%. It’s interesting to see that while the occasional dislocation lines with 
weak contrast affect the recall (and IU), they do not seem to induce a large error in the density quantification. In 
contrast, a density value between 5.20 × 1014 to 1.26 × 1015 m−2 with an average error of ~20% was produced by 
six human experts. A similar gap in percent error can also be found in the quantification of precipitates number 
density and size. In particular, due to that the precipitates are high in density and small in size, the human quanti-
fication of precipitate number density becomes less reliable, with an average error of ~45%, while the DefectSegNet 
limits the error to ~10% on average. A very small error of only ~2% for the DefectSegNet was achieved in deter-
mining the precipitates size; whereas, average human error was around ~13%. One case where humans performed 
better was during the analysis set #1 voids. As discussed above (yellow arrows in Fig. 6a), due to that the two small 
voids overlap with precipitates, the resulting abnormally low void contrast leads to missed predictions. Although 
it only leads to mild reduction in recall and IU (since a small number of pixels are involved), in this case of sparse 
voids in the field of view, missing two counts results in an error of 20% in number density, and of 14% in diameter 
quantification. It is recommended to carry out a quick manual check after the automated semantic segmentation 
to catch such missed voids. Lastly, when comparing the time efficiency of the quantification methods, as shown in 
Table 4 and Fig. 7d, the computer-assisted analysis performs better by a large margin. For the defect quantification 
that typically takes at least half an hour even for an expert, the DefectSegNet and associated MATLAB algorithms 
can produce results in a more reproducible and reliable manner in a few seconds.

Concluding remarks.  We demonstrate the feasibility of automated identification of common crystallo-
graphic defects in steels using deep learning semantic segmentation, based on high-quality microscopy data. 
In particular, the DefectSegNet – a new hybrid CNN architecture with skip connections within and across the 
encoder and decoder was developed, and has proved to be effective at perceptual defect identification with high 
pixel-wise accuracy across all three prototypical defect classes. Direct comparison between the DefectSegNet pre-
diction and ground truth using color-coded confusion matrices revealed that uncommon feature representation, 
particularly those with divergent contrast, is one of the main sources of uncertainties in model prediction. This, in 
turn, confirmed that the prior efforts on improving input defect image quality have not only led to a ground truth 
with high fidelity, but also promote feature homogeneity in training data and thus advance model performance. 
Moreover, we found that the training data is better assessed by also taking feature density and consistency into 
consideration for pixelwise semantic segmentation tasks.

The application of the DefectSegNet predicted defect maps to quantifying materials metrics, in general, out-
performed the manual quantification by human experts. This is particularly advantageous for the analysis of 
high-density features, which are critical for understanding extreme processing/degradation conditions, but is 
time demanding and error-prone in conventional manual counting. We conclude that the deep learning semantic 
segmentation established on advanced microscopy and on optimized CNN architecture offers a path forward to 
the high-throughput defects quantification needed for rational alloy design.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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