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Abstract Brain science accelerates the study of intelligence and behavior, contributes fundamental

insights into human cognition, and offers prospective treatments for brain disease. Faced with the

challenges posed by imaging technologies and deep learning computational models, big data and

high-performance computing (HPC) play essential roles in studying brain function, brain diseases,

and large-scale brain models or connectomes. We review the driving forces behind big data and

HPC methods applied to brain science, including deep learning, powerful data analysis capabilities,

and computational performance solutions, each of which can be used to improve diagnostic accu-

racy and research output. This work reinforces predictions that big data and HPC will continue to
nces and
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Table 1 National brain projects
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improve brain science by making ultrahigh-performance analysis possible, by improving data stan-

dardization and sharing, and by providing new neuromorphic insights.
Introduction

A human brain has about 100 billion neurons [1]. Each neuron
must pass through approximately 1015 neurons to communi-
cate with another neuron [2]. The brain is responsible for

human intelligence. Compromised functioning of the brain
resulting from brain disease causes more than 6.3% of the glo-
bal disease burden in terms of disability-adjusted life years.
Moreover, the World Health Organization (WHO) noted that

the proportion of brain disease in the global disease burden is
projected to increase by 12% from 2005 to 2030 [3]. In 2010,
around $2.5 trillion spent on research on brain disease, an

amount that is estimated to increase to $6 trillion by 2030
[4]. According to statistics from the WHO, brain diseases
account for 12% of the world’s total deaths [5]. Also, in low-
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and middle-income countries and high-income countries,
encephalopathy accounts for 16.8% and 13.2% of the total

death toll, respectively [5].
Driven by the rising incidence of brain diseases, brain

research is important for understanding brain function mech-

anisms, promoting the diagnosis and treatment of brain dis-
eases, and improving the development of brain-like
intelligence. In 2013 [6], the European Union announced the
Human Brain Project (HBP) to strengthen neuroscience

research and gain a comprehensive understanding of brain
function through worldwide research [6]. Moreover, the
USA, China, and many other countries and organizations

had also focused on and invested in brain-research projects
(Table 1). The governments of these countries had attempted
to build platforms for studying the human brain using neu-
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roinformatics, brain simulation, and brain-tissue science to
create a validation model that runs on supercomputers [7].

The development of big data technology and HPC has con-

tributed to insights gained from these brain-research projects.
Big data methods have improved the details of brain scans in
several ways, thereby laying the foundation for the generation

of new knowledge that can drive understanding of the human
brain even further. HPC methods have advanced data storage,
computational accuracy, and computational speed, and

thereby assist in the processing of vast and very complex data
sets. The development and popularization of brain science, big
data, and HPC methods are shown in Figure 1. Data, methods,
and computing power are being continuously added to brain

science research. Particularly after 2006, brain science com-
bined with big data and deep learning has become a research
hotspot. Subsequently, the support of neural networks and

HPC for brain science research has also been enhanced consid-
erably. An overall increase in interdependence has been
observed from 2000 to 2018.

Combination and revolution

Brain science is based primarily on biological insights and

data-driven, bottom-up experimental research. Figure 2 shows
the current research fields of brain science: brain function/
mechanisms, diagnosis of brain disease, brain-like intelligence,

and refinement of sub-areas. These seemingly different
research areas are interrelated. In biology, ‘‘classical reduction-
ism” suggests that each entity comprises smaller parts. That is,

the aging process, decision-making principles, pathogenesis, or
brain cognition are the ‘‘macroscopic” consequences of ‘‘mi-
croscopic” behavior and reaction in the brain. In this sense,

‘‘microscopic” denotes less vision and more knowledge and,
most importantly, big data. In addition, these connections
between the microscopic parts are usually linear [8], and there
are approximately 1015 such linear connections in the brain [9].

Thus, exploring microscopic characteristics in such a large
number of structures and complex connections results in exten-
sive use of computational resources. Moreover, as brain

science advances, the resolution becomes infinite.
The cycle of acquisition of functional magnetic resonance

imaging (fMRI) data has accelerated from 4 s to 1 s in speed,

and the resolution has increased from 5 mm3 to 1 mm3 [10].
Faster speeds and more detailed visions bring challenges while
bringing amazing scientific discoveries. For example, genome-

wide association studies combined with functional and struc-
tural brain-imaging phenotypes to verify genes for iron trans-
port and storage are associated with the magnetic susceptibility
of subcortical brain tissue [11]. However, a single genome con-

tains around 180 GB of uncompressed data that is equivalent
to 30 copies of 3 billion bases, and 100 GB of compressed
information needs to be retained over time [12]. Therefore,

the ability to process data analysis and workflows, meet data
storage/simulation requirements, and even break the limits of
computational speed are critical factors in brain science. Here,

big data and HPC bear the brunt of these challenges. Advances
in data storage and mining technologies allow users to retain
increasing amounts of data directly or indirectly and to ana-
lyze such data for valuable discoveries [13]. HPC provides a

high-speed computing environment that meets high-
throughput and multitasking computing features, including
the use of clusters of multiple processors or computers as part
of a single machine [14].

In recent decades, research funding agencies and scientists

have placed great importance on the use of big data and
HPC techniques in brain science. With regard to big data,
the HBP’s fifth sub-project is to build a Neuroinformatics

Computing Platform (NCP) for integrating multidimensional
brain data (e.g., molecules, genes, cells, networks) and provide
powerful analysis of brain data to simplify models of actual

neuronal circuits [15]. The Allen Human Brain Atlas is a
unique multi-modal atlas that maps gene expression across
adult brains [16], including magnetic resonance imaging
(MRI), diffusion tensor imaging, histology, and gene-

expression data [17]. The BrainSpan Atlas of the developing
human brain is a unique resource for exploring the develop-
ment of the human brain. It comprises in situ hybridization

data, RNA sequencing, microarray data, as well as broad
and detailed anatomical analysis of gene expression during
human brain development [17]. The seventh sub-project of

the HBP has been to establish a platform for high-
performance analytics and computing designed to provide
the HBP and the neuroscience community with HPC systems

to meet their particular [18]. Currently, the HBP has four
tier-0 supercomputer centers: Barcelona Supercomputing Cen-
tre, Cineca, Centro Svizzero di Calcolo Scientifico and Jülich
Supercomputing Centre (JSC) [6]. The supercomputer JUR-

OPA at the JSC has developed an ultrahigh-resolution three-
dimensional (3D) human brain model called BigBrain [19].
An account of research in brain science combined with other

fields is shown in Figure 3. The amount of literature on brain
science that encompasses the other four fields detailed in Fig-
ure 3 increased from 2000 to 2018. The correlation coefficients

in Figure 3 demonstrate that these combinations have stimu-
lated productivity in brain science.

Research advances enabled by big data and HPC

Function and mechanisms within the brain

Brain activity consists of dynamic sets of input sensations and
spontaneous responses [20]. However, the brain is very active

even in the absence of explicit inputs or outputs [21]. Research-
ers often create brain-simulation models (e.g., simulations of
brain molecules and brain cells) or use fMRI data of living

human brains to gain insight into brain structure. For exam-
ple, one MRI time-course of 512 echo-planar images in a rest-
ing human brain obtained every 250 milliseconds showed
fluctuations of physiologic origin in signal intensity in each

pixel. Such data can reveal functional connections in the motor
cortex of the resting human brain [22]. Furthermore, recent
functional imaging studies have revealed co-activation in a dis-

tributed network of cortical regions that characterize the qui-
escent state or ‘‘default mode” of the human brain [23].
Subtle imaging provides a large data set that requires a large

storage space and capability to undertake high-resolution
analysis [24]. Applications that mimic brain structures could
simulate about 100 billion neurons at the molecular level,
and each requires 0.1 megabyte (MB) to 10 terabytes (TB) of

memory [25]. The fMRI divides the brain into tens of thou-
sands of voxels and then images the entire brain continuously
with high time resolution. One scan is used as a processing



Figure 1 Research overview of big data and HPC methods in brain scienceA.

The heatmap shows the changes in the number of articles published annually from 2000 to 2018 in four research directions of brain

science: brain science with HPC; brain science with deep learning; brain science with big data; and brain science with neural networks.

Articles in brain science with deep learning, brain science with big data, and brain science with neural networks reached their highest

numbers in 2013, whereas articles in brain science with HPC reached its highest number in 2018. All articles were retrieved by searching

using keywords ‘‘brain science, HPC” (BS-HPC), ‘‘brain science, deep learning” (BS-DL), ‘‘brain science, big data” (BS-BD), or ‘‘brain

science, neural network” (BS-NN) in Google Scholar in September 2019. B. Combinations between brain science and big data or HPC

methods. Big data provide a wealth of knowledge and data, from which neural networks and deep learning methods can extract features

that represent brain functions, mechanisms, or diseases. Big data can also be used to build computational models. HPC provides storage

space and formidable computing power for the study of brain science. HPC, high-performance computing.
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Figure 2 General classification of research activities in brain science

This figure shows the main research directions in contemporary brain science.
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unit, so the entire brain generates a very large amount of high-
dimensional data [26]. Although extant computational models
often carry out feature combinations (e.g., Suk et al. [27]) in

studies on brain function and brain mechanisms and even mul-
timodal fusions of features (Liu et al. [28]) to reduce ‘‘dimen-
sional disasters”, their capacity to leverage computational

power to analyze highly multidimensional data is limited.
Deep learning computational models use eigenvector sets to

represent biological information. This strategy enables compu-
tational models that consist of multiple processing layers to

learn data representations with multiple levels of abstraction
[29]. Li et al. [30] used image-analysis technology combined
with a Statistical Parametric Mapping (SPM) and Voxel-

Based Morphometry (VBM) toolbox to visualize cerebrospinal
fluid and other brain components. Besides, Vidaurre et al. [31]
proposed a framework that used a hidden Markov model to

infer a consistent and interpretable dynamic brain network
in different data sets. Spitzer et al. [32] proposed a model based
on a convolution neural network (CNN) to predict 13 regions

of the human visual system. Even though deep learning pro-
vides important insights, the deep neural network is a complex
hierarchical structure similar to a biological neural network.
Each layer consists of several ‘‘artificial neurons”; the more

layers in the neural network, the better the insights. However,
mapping relationships from input layers to output layers often
reveals non-linear relationships, and some deep learning

models may even extend to brain mechanisms at the 3D level
(e.g., Payan et al. [33], Hosseini-Asl [34]).

Whether using data or computational models, it is clear

that the exploration of brain function and brain mechanisms
demands a great deal of storage capacity and powerful com-
puting capabilities. Big data and HPC approaches are, there-
fore, necessary in all brain science studies that generate such

data. This is especially true if supercomputers are used to
model brain function. For instance, Apache Spark with
autoencoder for fMRI [35], and JUROPA in JSC have both

implemented ultrahigh-resolution 3D models of the human
brain [36], thereby greatly improving computational perfor-
mance and the speed of data processing. In addition, research-
ers in China have used the Tianhe-1A supercomputer for
NEST (NEural Simulation Tool), which showed that a single

compute node implements a neural-network simulation of
7.3 � 104 neurons and implementation of 5.6 � 106 neurons
on 128 compute nodes [12]. Use of an NVIDIA graphic pro-

cessing unit (GPU) accelerates the Groningen MAchine for
Chemical Simulation (GROMACS) [37] by a factor of 3–4,
thereby reducing the time spent on simulations of molecular
dynamics in the brain from days to hours. HPC helps virtual

epilepsy (VEP) brain model to explore system parameter space,
fit and validate brain model, thus promoting large-scale brain
models to encourage the development of personalized treat-

ment and intervention strategies [38]. HPC methods not only
allow new studies on brain science to overcome traditional
hardware and software constraints, they also foster a new

research dynamic whereby studies of intrinsically biological
problems can be studied by relying on HPC methods only.
The advantage of this development is that HPC methods

enable in-depth quantification that was impossible previously
[19]. For instance, the Salk Institute has established a 3D
molecular computational model to understand the human
brain through neural communication processes in the ciliary

ganglion of the chicken, which model adjusts data parameters
with the aid of a central HPC system in the San Diego Super-
computer Center.

Research on brain disease

The diagnosis and treatment of brain diseases—especially Alz-

heimer’s disease (AD) and Parkinson’s disease (PD)—is an
important focus of clinical research into brain disease in many
countries. AD is a progressive neurologic disease that presents
as memory and cognitive dysfunctions [39]. Major clinical

manifestations include memory impairment, aphasia, agnosia,
altered personality, and behavior changes [40]. The failure rate
of treatment in the human brain in clinical trials for AD

reached 99.6% from 2002 to 2013 [41]. In 2010, the total num-



Figure 3 Research status of brain science in combination with other fields

This figure shows the number of articles listed in GoogleTM Scholar each year from 2000 to 2018 by the following terms: BS, BS-NN, BSBD,

BS-DL, and BS-HPC. This figure comprises three parts. The histogram shows trends in the number of articles on BS combined with each of the

other four fields. Each thumbnail in the lower triangular area consists of a correlation ellipse, a scattergram of the corresponding rows and

columns, and its LOWESS smoothing curve. The correlation ellipse indicates the correlation between corresponding rows and columns. A flatter

oval indicates a stronger correlation. The LOWESS smoothing curve shows the trend between the two sets of data over time. Each thumbnail in

the upper triangle contains a value that represents the correlation coefficient of the corresponding row and column. For example, the value 0.44 in

the first row and the second column refers to the correlation coefficient between BS and BS-NN. BS, brain science; BS-NN, brain science with

neural network; BS-BD, brain science with big data; BS-DL brain science with deep learning; BS-HPC, brain science with high-performance

computing.
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ber of people with dementia globally was approximately 35.6
million. This figure is expected to double every 20 years to

reach 65.7 million in 2030 and 115.4 million in 2050 [42]. PD
is a common dyskinetic disease in the elderly that affects
1.5–26 per 100,000 of the general adult population [43]. Projec-

tions suggest that the number of patients with PD aged over
50 years may reach 8.7–9.3 million worldwide by 2030 [44].
Research on brain disease has become a high priority in several

countries. The Japan Brain Project [45] seeks to improve the
understanding of human brain diseases such as AD and
schizophrenia via experimentation on marmoset brains. The
China Brain Project seeks to study pathogenic mechanisms

and to develop efficacious diagnostic and therapeutic
approaches for developmental disorders of the brain
(e.g., autism, intellectual disabilities), neuropsychiatric

disorders (e.g., depression, addiction), and neurodegenerative
disorders (e.g., AD, PD) [46]. The urgency to reduce the esca-
lating societal burden associated with these disorders and the

ineffectiveness of current therapies has resulted in calls for
early diagnoses at pre-symptomatic and prodromal stages so
that early intervention may halt or delay disease progression

[46].
With a more profound understanding of brain function and

mechanics driven by big data and HPC approaches, research-

ers are better able to diagnose and treat disease. More infor-
mation about brain diseases is key to improving the
diagnosis and treatment of brain diseases, so it is necessary
to use big data and HPC methods to build detailed and effec-

tive disease computational models. For example, big data col-
lected from traditional medical imaging or advanced wearable
sensing devices (see Shamir et al. [47]) has produced huge vol-

umes of information. Also, Gupta and colleagues [48] used an
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autoencoder to understand the features of 2D patches through
MRI. Yang and co-workers [49] used MRI data from the Open
Access Series of Imaging Studies and Alzheimer’s Disease

Neuroimaging Initiative (ADNI) to develop a classification
of AD. Machine learning and deep learning methods for dis-
ease diagnosis (e.g., support vector machine (SVM) [50], Gaus-

sian kernel SVM [51], enhanced logistic regression model [52],
deep belief networks [53]) have also been found to be indis-
pensable in improving efficiency. Big data combined with deep

learning models not only provide increased information gener-
ation and analytical efficiency but also improve accuracy.
Experimental accuracy with respect to AD, mild cognitive
impairment (MCI), and MCI-converter diagnoses have

reached 95.90% in the ADNI data set [25]. Moreover, Sarraf
et al. [54] used fMRI data with CNN and LeNet-5 to diagnose
AD, and achieved an accuracy of 96.86% using test data.

Payan [28] used 3D-CNN to achieve accuracy �95.39% when
classifying patients as AD or healthy controls.

While big data and deep learning methods have yielded

notable benefits, they have also introduced new computational
challenges that can be resolved only by HPC methods. The
machine from Hewlett–Packard Development Company con-

tains 160 TB of single memory (equivalent to 160 million
books of active memory). This helps the German Center for
Neurodegenerative Diseases speed up the genomics pipeline
by nine times, meaning that the process would have taken only

approximately 36 seconds instead of the original 25 min [22].
Moreover, a research team at the Friedrich-Alexander-Univer
sität (Germany) used a supercomputer from the Regionales

Rechenzentrum Erlangen to carry out all-atom molecular
dynamics simulations in an explicit solvent of 0.7 ls in total
on five Ab9-42 oligomers (monomers through to pentamers)

to reveal Ab peptides, an important factor in AD [55]. All in
all, these examples show the indispensable nature of HPC
approaches.

Brain models and connectomes

The human brain is a complex multi-scale structure in space
and time, and produces fine molecular, cellular and neuronal

phenomena [56,57]. Neuroimaging can provide brain images
with high temporal and spatial resolution, but dynamic infor-
mation for the brain is lacking. Therefore, in brain science

research, simulation tools, brain models, and connectomes
have been developed gradually and built to provide simulation
information of neurons, brain structures, and networks. Simu-

lation tools focus on individual neurons and the corresponding
models of ion channels [58]. For example, the GEneral NEt-
work SImulation System (GENESIS) was designed to simulate
neural networks using standard and flexible methods to obtain

detailed and realistic models [59]. A model of the human brain
is a ‘‘reference brain” that provides important biological
details. It outlines the spatial framework and brain composi-

tion from a macroscopic perspective and helps researchers
extract and analyze microscopic data from molecular processes
to various behaviors for modeling and simulation. The brain

connectome is the ‘‘GoogleTM Maps” for brain models. It pro-
vides precise human brain coordinates and helps researchers
transform detailed neural connections with human brain cog-

nition and behavior. Connectomes map elements to human
brain networks dynamically [60], where circuit abnormalities
presumably reflect a complex interplay between genes and
the environment [61]. Large-scale models of the human brain
and connectomes not only provide basic insights of brain

structure [62] but also serve as biomarkers of brain diseases
to help researchers explain diseases such as AD and PD [63–
67] and even help researchers understand the sex-based differ-

ences in human behavior [68].
Vast human brain structures and high-resolution imaging

technology determine the essence of brain models and connec-

tomes to be a big data set. The brain model of the HBP con-
sists of 100 neocortical columns [69]. Defense Advanced
Research Projects Agency (DARPA)’s Synapse project 500 bil-
lion neurons [70–72]. Also, Izhikevich et al. published a

detailed large-scale thalamocortical model that simulates one
million multicompartmental spiking neurons [73]. On a micro-
scopic scale, the number of neurons and synapses contained in

brain connectomes is approximately 1010–1011 and 1014–1015

[74]. At the macroscopic scale, the cortical hypothalamic junc-
tion contains hundreds of brain regions and thousands of com-

prehensive pathways data sets [75]. Currently, the Human
Connectome Project (HCP) already has 7-T diffusion magnetic
resonance imaging (dMRI) and 3-T resting-state fMRI (R-

fMRI) data [76,77,78]. Not only structure but also high-
resolution imaging. When building a brain model, an optical
microscope sufficient to track a single neuron has a resolution
of 0.25–0.5 microns, and an electron microscope capable of

displaying synaptic or chemical signals has a resolution of
nanometers [79]. Diffusion tensor imaging [80] and four main
MRI modes (structural MRI, task fMRI, dMRI, R-fMRI) can

be used to measure connectivity in the brain [61] with resolu-
tion of 1–3 mm or even smaller [81]. Brain models and connec-
tomes as big data sets provide abundant information and

knowledge to drive the development of brain-research pro-
grams. The Izhikevich neuron model has influenced more than
3000 academic studies by 2019. Based on the 500-subject

release of the HCP, the Budapest Reference Connectome Ser-
ver v2.0 and v3.0 has generated the common sides of connec-
tomes in 96 and 477 different cortical layers [82,83]. Also,
disease research by the HCP applies HCP-style data to people

at risk or suffering from brain disease (e.g., anxiety, depres-
sion, epilepsy) [84].

The human brain is not only a simple big data set, but also

a complex mathematical object. Hence, building models of the
human brain and connectomes requires powerful platforms for
data storage and processing. To meet the HPC requirements

for brain models, the Izhikevich neuron model [85] used the
Beowolf Cluster [86] with 60 processors of 3-GHz each, the
HBP and Synapse project used the IBM Blue Gene supercom-
puter, and Spaun used eight Core Xeon processors (2.53 GHz)

[71]. The HCP infrastructure uses IBM HPCS from the WU
Center for High Performance Computing to execute pipelines
and user-submitted jobs to meet the high-throughput data-

processing requirements of approximately 200,000 inputs and
outputs per second [71,87]. In addition, the HCP has estab-
lished a set of informatics tools, including ConnectomeDB

[88] and Connectome Workbench [89], to collect, process,
share and visualize high-throughput data [90]. Not only brain
models and connectomes, workflows and simulation tools are

moving toward high-performance computing and distribution.
Simulation tools such as GENESIS [59], NEURON [91],
NEST [84], Network and Cache Simulator (NCS) [92], Neosim
[93], and SpikeNET [94] have also been extended to support



Table 2 Databases related to brain science

Note: AD, Alzheimer’s disease; BIRN, Biomedical Informatics Research Network; BP, bipolar disorder; MRI, magnetic resonance imaging; fMRI,

functional MRI; tfMRI, task-based fMRI; HCP, Human Connectome Project; BCP, Baby Connectome Project; ABCD, Adolescent Brain

Cognitive Development; OASIS, Open Access Series of Imaging Studies.
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parallel processing systems to improve performance. After par-
allelization, NEURON achieved almost linear acceleration. It

requires an integration time of 9.8 seconds and communication
time of 1.3 seconds if running 40,000 realistic cells on 2000 pro-
cessors on the IBM Blue Gene supercomputer [95]. Also, the

BigBrain-based 3D-PLI workflow uses the JUDGE and JUR-
OPA supercomputers from the JSC to meet the requirements
for data reading, analysis, and calculation [96]. The JUROPA

supercomputer owns 26,304 cores, and its Rpeak reaches
308.3 TP/s. With HICANN from Heidelberg University, brain
activity can be simulated at 10,000 times the normal speed to
compress one day into ten seconds [72]. The HBP estimates
that supercomputers with exaflop computing speed and exa-
byte computing memory can simulate a complete human brain

(1000 times that of the rodent brain) [69]. With the develop-
ment of ultrahigh-performance computers and computing
environments, a model of the whole brain and dynamic brain

connectomes will be completed eventually.

Prospects for brain science

Using big data and HPC methods to address problems in high-

dimensional brain science research is important. Hence,
research programs on brain science (and especially large



Table 3 Supercomputers related to brain science
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government-led programs) are becoming more reliant on
supercomputers and large databases. Table 1 introduces the

basic concepts of some national brain programs, including
commonly used platforms and supercomputers. Table 2 lists
several large databases on brain science research. At this stage,

governments and funding agencies have resolved economic
problems, and several mature HPC environments (and some
customized for brain science research) are available. However,

three main limitations exist. First, computing resources are
scattered. As shown in Table 3, Sequoia, K, JURECA, and
Tianhe-1A are among the top-500 supercomputers in the
world, and are ranked 13th, 20th, 52th, and 87th, respectively

(June 2019). These supercomputers are in the USA, Japan,
Germany, and China, respectively. In the near future, we hope
that a cooperative high-performance platform, shared high-

performance resources, and universal standards for analysis
of brain science data can be created. The second limitation is
based on storage capacity and computational performance.

As shown in Figures 1 and 3, the correlation coefficient
between brain science and the HPC is smaller than that of
the others, but the research output in these fields has been
increasing from 2000 to 2018. In contrast, although the corre-

lation coefficient is larger, the number of published articles in
brain science and other fields decreased slightly after 2013.
These results could be because brain science using HPC is con-

stantly evolving, but the support provided by HPC is insuffi-
cient and limits the further development of brain science
with other fields. As one of the most important elements of

the brain model, the amount of imaging data of a neuron
can reach the petabyte (PB) level readily at a resolution of
microns or even nanometers, which is far beyond that in the

human genome. The Sequoia supercomputer can simulate
530 billion neurons and 137 trillion synapses, but this is less
than 1% of the information-processing capacity of humans
[10]. The K supercomputer analyzed approximately 1% of

neuron connections in the simulated human brain; this implies
that simulation of the entire brain neuron requires 100 times
the power of the best supercomputer performance. The JSC
has developed an algorithm that can simulate 100% of neuron
connections but, unfortunately, no supercomputer can run this

algorithm [97]. Alternatively, a neuromorphic computer that
breaks the conventional Von Neumann architecture could be
developed [98] or even a combination of traditional supercom-

puters with neuromorphic computing could be initiated. The
third limitation is the lack of randomness and dynamics. To
fully grasp the relationship between the human brain and con-

sciousness, emotions, and even thinking, a dynamic and com-
plete brain model is, ultimately, what is needed. The ‘‘perfect”
brain should be able to simulate all dynamic neural activity
(not just static images), support the ability to switch visual

imaging at any resolution, and even provide brain coordinates
at any scale. This perfection requires not only sufficient storage
space and flexible and variable computing environments, but

also meticulous process design and impeccable visualization
tools. To further meet random and dynamic requirements,
these tools should be developed to be distributed and parallel,

and they should even be highly portable.
In general, the development of brain science is destined to

be inseparable from the support of big data and HPC. Big
data, HPC and brain science promote each other and will

break all the technical bottlenecks. A detailed and accurate
atlas of the brain, and a fully simulated dynamic computer
model will be produced through the use of big data and

HPC methods, which could be used as an adjunct to the mouse
model for developing new drugs associated with brain disease.

Conclusion

Big data and HPC have become indispensable for: (i) explo-
ration of brain function; (ii) determining the mechanisms of

brain disease; (iii) building a whole-brain model and dynamic
connectomes. Big data provides large databases on knowledge
of the brain, such as the Allen Human Atlas, and efficient

frameworks for big data analysis, such as Apache Spark.
HPC methods use platforms such as the JSC and supercom-
puters such as Sequoia, and can solve the challenges of compu-
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tational performance caused by large data sets and complex
models. HPC methods require more storage space but provide
increasingly powerful simulation capabilities to reduce run-

times for complex simulations from days to hours. Big data
combined with deep learning models can increase the diagnos-
tic accuracy of AD to more than 90%. HPC has also trans-

formed biology into a science of deep quantitative analysis,
and has made breakthroughs in characterizing neural
communications.

Brain science will continue to develop in a more compre-
hensive, precise, and detailed direction with the support of
governments and the scientific community. Over time, big data
analysis for brain science will be standardized, HPC will be

shared and coordinated, and new, ultrahigh-performance
forms of computer will become a universal reality. However,
as big data methods generate ever-larger pools of data, ever-

faster and more powerful computational methods will be
required to analyze them. Therefore, the ‘‘one-way ratchet”
of this relationship suggests that brain science will become

more reliant on big data and HPC methods in the future.
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trums Jülich IAS Series 2018;40:18–9.

[13] Michael K, Miller KW. Big data: new opportunities and new

challenges [guest editors’ introduction]. Computer 2013;46:22–4.

[14] Buyya R. High performance cluster computing: architectures and

systems (volume 1). 1st ed. Upper Saddle River: Prentice Hall;

1999.

[15] Calimera A, Macii E, Poncino M. The Human Brain Project and

neuromorphic computing. Funct Neurol 2013;28:191–6.

[16] Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng

L, Miller JA, et al. An anatomically comprehensive atlas of the

adult human brain transcriptome. Nature 2012;489:391–9.

[17] Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson

CL, et al. Allen Brain Atlas: an integrated spatio-temporal portal

for exploring the central nervous system. Nucleic Acids Res

2013;41:D996–1008.

[18] Amunts K. The EU’s Human Brain Project (HBP) Flagship–

accelerating brain science discovery and collaboration. CEUR-

WS 2017;2022:187–8.

[19] Casanova H, Berman F, Bartol T, Gokcay E, Sejnowski T,

Birnbaum A, et al. The virtual instrument: support for grid-

enabled mcell simulations. Int J HighPerform C 2004;18:3–17.

[20] Wu X, Xu L, Yao L. Big data analysis of the human brain’s

functional interactions based on fMRI. Chin Sci Bull

2014;59:5059–65.

[21] Fox MD, Raichle ME. Spontaneous fluctuations in brain activity

observed with functional magnetic resonance imaging. Nat Rev

Neurosci 2007;8:700–11.

[22] Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional

connectivity in the motor cortex of resting human brain using

echo-planar MRI. Magn Reson Med 1995;34:537–41.

[23] Greicius MD, Srivastava G, Reiss AL, Menon V, Raichle ME.

Default-mode network activity distinguishes Alzheimer’s disease

from healthy aging: evidence from functional MRI. Proc Natl

Acad Sci U S A 2004;101:4637–42.

[24] Luo SQ. Study on digitized atlas of the human brain. Zhongguo

Yi Liao Qi Xie Za Zhi 2001;25:91 (in Chinese with an English

abstract).

[25] Lippert T, Orth B. Supercomputing infrastructure for simulations

of the human brain. BrainComp 2013;8603:198–212.

[26] Zhao XW, Junzhong JI, Liang PP. The human brain functional

parcellation based on fMRI data. Chin Sci Bull 2016;61:2035–52.

[27] Suk H-I, Shen D. Deep learning-based feature representation for

AD/MCI classification. Miccai 2013;8150:583–90.

[28] Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal

neuroimaging feature learning for multiclass diagnosis of Alzhei-

mer’s disease. IEEE T Bio-Med Eng 2015;62:1132–40.

[29] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature

2015;521:436.

[30] Li KC, Yang XP. Imaging diagnosis of Parkinson’s disease. Diagn

Theory Pract 2005;4:273–4 (in Chinese with an English abstract).

http://refhub.elsevier.com/S1672-0229(19)30156-1/h0005
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0005
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0005
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0010
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0010
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0015
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0015
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0015
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0020
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0020
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0020
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0030
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0030
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0030
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0030
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0035
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0035
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0035
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0040
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0040
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0040
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0040
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0045
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0045
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0050
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0050
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0050
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0055
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0055
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0055
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0060
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0060
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0060
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0065
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0065
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0075
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0075
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0080
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0080
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0080
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0085
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0085
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0085
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0085
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0090
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0090
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0090
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0095
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0095
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0095
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0100
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0100
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0100
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0105
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0105
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0105
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0110
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0110
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0110
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0115
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0115
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0115
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0115
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0120
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0120
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0120
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0125
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0125
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0130
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0130
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0135
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0135
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0140
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0140
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0140
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0145
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0145
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0150
http://refhub.elsevier.com/S1672-0229(19)30156-1/h0150


Chen S et al /Driving Force of Brain Science 391
[31] Vidaurre D, Abeysuriya R, Becker R, Quinn AJ, Alfaro-Almagro

F, Smith SM, et al. Discovering dynamic brain networks from big

data in rest and task. Neuroimage 2017;180:646–56.

[32] Spitzer H, Amunts K, Harmeling S, Dickscheid T. Parcellation of

visual cortex on high-resolution histological brain sections using

convolutional neural networks. Proc IEEE Int Symp Biomed

Imaging 2017:920–3.

[33] Payan A, Montana G. Predicting Alzheimer’s disease: a neuroi-

maging study with 3D convolutional neural networks. Comput Sci

arXiv 2015;1502.02506.

[34] Hosseini-Asl E, Ghazal M, Mahmoud A, Aslantas A, Shalaby

AM, Casanova MF, et al. Alzheimer’s disease diagnostics by a 3D

deeply supervised adaptable convolutional network. Front Biosci

2016;23:584–96.

[35] Makkie M, Huang H, Zhao Y, Vasilakos AV, Liu T. Fast and

scalable distributed deep convolutional autoencoder for fMRI big

data analytics. Neurocomputing 2017;325:20–30.

[36] Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T,
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[81] Uğurbil K, Xu J, Auerbach EJ, Moeller S, An TV, Duarte-

Carvajalino JM, et al. Pushing spatial and temporal resolution for

functional and diffusion MRI in the Human Connectome Project.

Neuroimage 2013;80:80–104.

[82] Szalkai B, Kerepesi C, Varga B, Grolmusz V. The budapest

reference connectome server v2.0. Neurosci Lett 2015;595:60–2.

[83] Szalkai B, Kerepesi C, Varga B. Grolmusz V. Parameterizable

consensus connectomes from the human connectome project: the

budapest reference connectome server v3.0. Cogn Neurodyn

2016;11:1–4.

[84] Gewaltig MO, Diesmann M. NEST (neural simulation tool).

Scholarpedia J 2007;2:1430.

[85] Izhikevich EM. Simple model of spiking neurons. IEEE Trans

Neural Netw 2003;14:1569–72.

[86] Sterling T, Lusk E, Gropp W. Beowulf cluster computing with

linux. Cambridge: MIT Press; 2002.

[87] Marcus DS, John H, Timothy O, Michael H, Glasser MF, Fred P,

et al. Informatics and data mining tools and strategies for the

human connectome project. Front Neuroinform 2011;5:4.

[88] Hodge MR, Horton W, Brown T, Herrick R, Olsen T, Hileman

ME, et al. ConnectomeDB—sharing human brain connectivity

data. Neuroimage 2016;124:1102–7.
[89] Glasser MF, Smith SM, Marcus DS, Andersson JLR, Auerbach

EJ, Behrens TEJ, et al. The human connectome project’s

neuroimaging approach. Nat Neurosci 2016;19:1175.

[90] Elam JS, Van Essen D. Human Connectome Project. In: Jaeger D,

Jung R, editors. Encyclopedia of computational neuro-

science. New York: Springer New York; 2013. p. 1–4.

[91] Hines ML, Carnevale NT. The NEURON simulation environ-

ment. Neural Comput 2014;9:1179–209.

[92] Davison BD. NCS: network and cache simulator – an introduc-

tion. In: Technical report DCS-TR-444 [Internet] New Brunswick:

The State University of New Jersey; 2011, https://rucore.libraries.

rutgers.edu/rutgers-lib/59031/.

[93] Goddard N, Hood G, Howell F, Hines M, De Schutter E.

NEOSIM: portable large-scale plug and play modelling. Neuro-

computing 2001;38:1657–61.

[94] Delorme A, Gautrais J, Van Rullen R, Thorpe S. SpikeNET: A

simulator for modeling large networks of integrate and fire

neurons. Neurocomputing 1999;26:989–96.

[95] Migliore M, Cannia C, Lytton WW, Markram H, Hines ML.

Parallel network simulations with NEURON. J Comput Neurosci

2006;21:119.
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