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ABSTRACT The highly personalized human skin microbiome may serve as a viable
marker in personal identification. Amplicon sequencing resolution using 16S rRNA
cannot identify bacterial communities sufficiently to discriminate between individu-
als. Thus, novel higher-resolution genetic markers are required for forensic purposes.
The clustered regularly interspaced short palindromic repeats (CRISPRs) are prokary-
otic genetic elements that can provide a history of infections encountered by the
bacteria. The sequencing of CRISPR spacers may provide phylogenetic information
with higher resolution than other markers. However, using spacer sequencing for
discrimination of personal skin microbiome is difficult due to limited information on
CRISPRs in human skin microbiomes. It remains unclear whether personal micro-
biome discrimination can be achieved using spacer diversity or which CRISPRs will
be forensically relevant. We identified common CRISPRs in the human skin micro-
biome via metagenomic reconstruction and used amplicon sequencing for deep
sequencing of spacers. We successfully reconstructed 24 putative CRISPR arrays using
metagenomic data sets. A total of 1,223,462 reads from three CRISPR arrays revealed
that spacers in the skin microbiome were highly personalized, and conserved repeats
were commonly shared between individuals. These individual specificities observed
using CRISPR typing were confirmed by comparing the CRISPR diversity to micro-
biome diversity assessed using 16S rRNA amplicon sequencing. CRISPR typing
achieved 95.2% accuracy in personal classification, whereas 16S rRNA sequencing
only achieved 52.6%. These results suggest that sequencing CRISPRs in the skin
microbiome may be a more powerful approach for personal identification and eco-
logical studies compared to conventional 16S rRNA sequencing.

IMPORTANCE Microbial community diversity analysis can be utilized to characterize
the personal microbiome that varies between individuals. CRISPR sequences, which
reflect virome structure, in the human skin environment may be highly personalized
similar to the structures of individual viromes. In this study, we identified 24 putative
CRISPR arrays using a shotgun metagenome data set of the human skin microbiome.
The findings of this study expand our understanding of the nature of CRISPRs by
identifying novel CRISPR candidates. We developed a method to efficiently deter-
mine the diversity of three CRISPR arrays. Our analysis revealed that the CRISPR
spacer diversity in the human skin microbiome is highly personalized compared with
the microbiome diversity assessed by 16S rRNA sequencing, providing a new per-
spective on the study of the skin microbiome.

KEYWORDS human skin microbiome, CRISPR, metagenomics, forensic science, next-
generation sequencing

Recent studies have revealed significant variation in the structure of the human skin
microbiome among healthy individuals (1–3). Fierer et al. demonstrated that bacte-

rial communities on the hands of different people share only 13% identity (4). Several
studies have demonstrated individuality of the microbiome as a “bacterial fingerprint”
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to develop a novel method for the identification of people involved in crime scenes, in
which metagenome data sets or 16S rRNA sequencing data were analyzed (1, 5, 6). It is
expected that bacterial DNA can be easily recovered from the surface of objects
touched by a suspect, considering the abundance of bacteria on human skin (1). The
microbiome of human skin has gained attention in recent years owing to low success
rates of DNA profiling from an object touched by hands, which typically yields a small
amount of DNA (7). Identification of individuals in crime scenes based on microbial
community diversity requires characterization of the microbiome community with a
degree of high resolution. Schmedes et al. utilized whole-genome shotgun sequencing
to discriminate personal microbiomes using a strain-level taxonomic profiling (5).
Although the study achieved high accuracy for personal identification by analyzing
public data, the high cost and complexity of analysis precludes its practical use. In con-
trast, amplicon-based microbiome profiling is comparatively cost-effective, as it can be
performed using conventional methods such as microarray analysis (8–11). As a phylo-
genetic marker, the 16S rRNA gene has been widely used in microbiome studies.
However, 16S rRNA-based personal identification is easily perturbed over time (12, 13).
The temporal instability of the “bacterial fingerprint” is likely due to loss of minor spe-
cies in an environment. Moreover, the resolution of amplicon sequencing using 16S
rRNA is not sufficient to discriminate bacteria at the strain level or, in many cases, at
the species level (14). The importance of strain-level classification of specific species for
personal identification was previously proposed (5, 15). Effective personal identification
would require determination of the microbial community composition at high resolu-
tion; thus, novel strategies are needed to employ amplicon sequencing for forensic
purposes.

The clustered regularly interspaced short palindromic repeat (CRISPR) array corre-
sponds to a genomic locus found in prokaryotes and is composed of identical repeats,
formerly called direct repeats, and unique sequences between repeats, called spacers
(16). Typically, CRISPR repeats range from 28 to 37 bp in length, whereas spacers range
between 32 and 38 bp (17). Each CRISPR corresponds roughly to a specific taxon.
However, some strains harbor multiple CRISPR loci and some CRISPRs are conserved in
multiple species. CRISPRs, along with CRISPR-associated proteins (Cas), comprise the
adaptive immune system of prokaryotes (18). It serves as a defensive mechanism
against foreign genetic entities, such as phages. To provide immunity against the rein-
fecting foreign DNA, the CRISPR-Cas system integrates a short DNA fragment derived
from the foreign DNA as a new spacer. Therefore, spacer sequences in a CRISPR array
represent a history of past infection encountered by a bacterial strain and reflect the
structure of the viral community, which is more personalized than that of the bacterial
community itself (19, 20).

As variable spacers in a CRISPR array are flanked by conserved repeats, it can be
used as a phylogenetic marker that provides higher resolution than other markers,
such as 16S rRNA. CRISPR typing using the spacer acquisition history of CRISPR arrays
has been utilized for phylogenetic analysis of bacteria (21–30, and see reference 31 for
a review). This typing strategy was also applied in some metagenomic studies to char-
acterize complex microbial populations or identify host-virus interactions, both by
reconstruction of CRISPRs from shotgun metagenomic data sets (32–35) and amplicon
sequencing utilizing primers targeting the repeats of CRISPR (20, 36–38). A limitation
of CRISPR typing for microbiome characterization is that the spacers of a specific
CRISPR locus recovered from a shotgun metagenome data set may be insufficient to
understand spacer diversity within the microbial community. For example, Rho et al.
could not identify the distribution of CRISPR arrays in some skin data sets by CRISPR
array reconstruction using shotgun metagenome data sets obtained from the Human
Microbiome Project (33). Another limitation is that amplicon sequencing targeting
CRISPR arrays is strongly dependent on a priori knowledge of repeat sequences (32);
CRISPR spacers cannot be sequenced by amplicon sequencing without understanding
which CRISPR arrays are in a specific environment, whereas amplicon sequencing can
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be utilized for complete sequencing of spacers in a specific CRISPR locus. Therefore, it
remains unclear whether it is possible to discriminate personal microbiomes using
spacer diversity or identify the CRISPRs that are suitable for personal identification. To
overcome these limitations, the identity of CRISPRs that are common in the human
skin microbiome must be determined to enable characterization of the spacer diversity
of CRISPRs in different individuals.

Here, we combined metagenomic and amplicon sequencing to overcome the lim-
ited information on CRISPR loci in the skin microbiome. We first identified the most
abundant CRISPR repeats in the human skin microbiome via metagenomic reconstruc-
tion of CRISPR arrays. We then sequenced the spacers of three putative CRISPR arrays
in the skin microbiome to characterize the diversity of spacer sequences and evaluate
the potential of CRISPR array sequencing as a novel tool in personal identification. We
validated our CRISPR-based analysis by comparing the pipeline with conventional 16S
rRNA sequencing.

RESULTS
Identification of conserved CRISPR arrays in skin microbiomes among

individuals by using metagenome data sets. Amplicon-based CRISPR sequencing
cannot be used without prior knowledge of the CRISPRs present in a microbial commu-
nity. Thus, we first investigated the diversity of CRISPRs in metagenome data sets of
skin samples obtained in a previous study (2) via metagenomic reconstruction of
CRISPRs. Although reconstructions of the CRISPR arrays in the human microbiome
were previously reported (33, 34), the diversity of CRISPR arrays in the skin metage-
nomic data remained unclear. Here, we focused on the data of samples collected from
the hypothenar palm (Hp) region, as DNA from the hands are most likely to be col-
lected from crime scenes. The metagenomic data were assembled using the de novo
assembler MEGAHIT (39). CRISPR arrays were identified by PILER-CR, a tool developed
for identifying CRISPRs (40). Using this pipeline, we identified 862 arrays from 15 sam-
ples among 14 individuals (see Data Set S1, sheet 1, in the supplemental material). No
CRISPR arrays were obtained from samples MET0022 (HV01), MET0161 (HV08), or
MET0177 (HV07). This may be attributed to insufficient assembly, as the number of
reconstructed CRISPR arrays greatly depends on the assembly quality. Interestingly,
two samples, MET0177 (HV07; Hp-L) and MET0190 (HV07; Hp-R) derived from the same
individual, yielded metagenomes with different detectable CRISPR arrays. These results
suggest that the repeatability of metagenomic reconstruction is insufficient to fully
measure CRISPR diversity.

The origins of the repeats identified via metagenomic CRISPR reconstruction were
identified by a BLAST search. Among 24 CRISPR repeat sequences, 14 CRISPR repeats
were identical to their respective reference genomes, while the other 10 did not match
exactly to the reference genomes (Data Set S1, sheet 2). Thus, the latter repeats may
have been derived from previously unknown CRISPR arrays, although it remains
unknown whether these putative CRISPRs were correctly reconstructed. Note that, in
such cases, the annotation of CRISPRs, including host species, subtyping, or orienta-
tion, might not be precise or be impossible and should be clarified in future studies.
The most frequently observed repeat was derived from Streptococcus equinus, which
was observed in eight individuals (Fig. 1A; Data Set S1, sheet 1). This specific strepto-
coccal repeat has been targeted in other studies using specific primers to amplify the
spacers of Streptococcus species in the oral and skin microbiomes (38). In total, 24 puta-
tive CRISPR arrays were observed for at least two individuals, indicating that some
CRISPR arrays were conserved among the population. To validate the reconstructed
CRISPR arrays, we subtyped the CRISPR-Cas system based on nomenclature proposed
by Makarova et al. (41) using CRISPRCasFinder (42) and compared the arrays with a
known CRISPR database if cas genes were also detectable. Using CRISPRCasFinder, 42
CRISPRs that associated with cas genes were identified (Data Set S1, sheet 3); a repre-
sentative CRISPR-Cas locus is shown in Fig. 1C. We compared some examples of
CRISPR arrays with the most relevant arrays in a public database. For the most
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FIG 1 Metagenomic reconstruction of CRISPR arrays identified commonly shared repeats in skin metagenome data sets. (A) Heat map of the repeat matrix
depicting the abundance of each repeat derived from putative CRISPR arrays detected in metagenomic data of the bacterial community on human skin.
The bar chart below the heat map shows the total contig length after de novo assembly. (B) Heat map indicating the abundance of CRISPR repeats in
metagenomic data sets detected by BLAST search against SRA data. Each column was standardized by the Z-score. The bar chart below the heat map
shows reads containing repeats used as queries in the BLAST search. Hp, palm; N, nares; Ch, cheek. (C) Representative putative S. equinus CRISPR-Cas
system detected by metagenomic reconstruction. CRISPR-Cas locus of Streptococcus oralis strain FDAARGOS_367 (GenBank CP023507) is shown as the

(Continued on next page)
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abundant CRISPR, S. equinus, we identified three CRISPR arrays by CRISPRCasFinder,
one of which was subjected to a BLAST search to identify the most relevant CRISPR loci
in the NCBI database. We found that the most similar CRISPR-Cas region for S. equinus
CRISPR (see Fig. S1A) was that of Streptococcus oralis strain FDAARGOS_367 (GenBank
CP023507), and S. equinus CRISPR was classified into type IIA, which is characterized by
the cas9 gene (Fig. S1B). Another example of CRISPR loci with cas genes was that of
Streptococcus thermophilus. For S. thermophilus CRISPR, we obtained one contig con-
taining both CRISPR and cas genes (Fig. S1C) that was close to the CRISPR-Cas system
of Streptococcus mitis strain S022-V3-A4 (GenBank CP047883), which was also classified
into type IIA (Fig. S1D). Repeats of both S. equinus CRISPR and S. thermophilus CRISPR
were identical to those of CRISPR1 and CRISPR3 of Streptococcus thermophilus (43),
although the entire loci were close to those of other Streptococcal species, suggesting
that these CRISPRs are widely preserved among Streptococcus organisms. We then
compared three representative S. equinus CRISPRs, which were detected with cas
genes, against those with the same repeats (see Fig. S2). Given that all spacers in the
reconstructed arrays were unique among the 25 references in CRISPRCasdb (44), it is
difficult to precisely identify the array origin. Expansion of the CRISPR database may
improve classification accuracy in the future. Altogether, the results suggest that
CRISPR reconstruction using metagenomic data accurately detects repeats present in
the skin microbiome.

CRISPR repeat abundance in the skin microbiome. Insufficient CRISPR arrays
were detected in multiple data sets, with some individuals sharing no CRISPR arrays
with others, perhaps due to the low coverage of CRISPR arrays. Reads containing
CRISPR repeats may be observed more frequently in metagenome data sets, even in
those where no CRISPR arrays were reconstructed. For repeats observed in metage-
nomic CRISPR reconstruction, we measured the number of reads containing each
repeat using BLAST. We enumerated the reads containing repeats by searching the
repeat sequence as a query against the metagenome data set using the Sequence
Read Archive as a subject. Repeats observed in at least three individuals in the CRISPR
reconstructions were included as queries for read counting. Among the CRISPR repeats
identified in CRISPR reconstructions, the repeats derived from S. equinus, S. thermophi-
lus, Neisseria polysaccharea, and Syntrophomonas wolfei were most frequently observed
in read counting (Fig. 1B; Data Set S1, sheet 4, repeat identifiers are listed in sheet 2).
Reads containing the repeats of these CRISPRs were detected from the hands of 14 of
the 15 individuals by read counting, while those CRISPRs were observed in 8, 5, 6, and
3 individuals, respectively, by metagenomic CRISPR reconstructions (Data Set S1, sheet
2). As shown in Fig. 1B, individuals were categorized into three clusters based on the
most abundant repeat; the most abundant repeats in the first and the second groups
were derived from Micrococcus luteus and Chryseobacterium, respectively. In the last
group, repeats derived from M. luteus and Chryseobacterium were less abundant than
other repeats, such as those derived from S. equinus or N. polysaccharea. Clustering of
repeat abundances was plausible because four samples from the same individual
(HV07), including two samples each from nares and cheek (representing moist and oily
sites, respectively), were grouped into the same cluster. Some repeats were observed
in individuals even when no CRISPR array was detected in the assembled contigs
(HV01 and HV08), suggesting that the prevalence of CRISPR arrays was underestimated
by metagenomic reconstruction. Therefore, amplicon sequencing may be a more effec-
tive tool for studying CRISPR diversity.

FIG 1 Legend (Continued)
reference. The presence of the characteristic csn2 gene in the locus suggests that this system is type II-A CRISPR-Cas system; the cas9 gene, the effector
protein of type II system, was partially detected in the reconstructed CRISPR array, because the 59 end of the entire CRISPR-Cas locus was truncated. The
box at the bottom indicates the partial sequence of the CRISPR array. The marked sequences are repeat sequences, while the sequences colored in green
are spacer sequences. Forward and reverse primer binding sites on the repeats are indicated by red and blue arrows, respectively. The full sequence of the
contig is provided in Text S1 in the supplemental material.
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Stability of evenness and richness of CRISPR spacer sequences in the skin
microbiome. By reconstructing CRISPR arrays using metagenomic data, we detected
putative CRISPR repeats commonly found in the skin microbiome. To test whether
repeats detected in the reconstructed CRISPR arrays are also detected via PCR-based
methods, we designed three pairs of primers that flank the spacer and target the
repeats of S. equinus, S. thermophilus, and M. luteus, as they were frequently found dur-
ing metagenomic reconstruction and are members of major genera on human skin
(Fig. 1C). CRISPR spacers were amplified with these primer pairs and sequenced using
MiSeq. Primers targeting the repeats were used rather than primers flanking the entire
CRISPR locus to amplify a broader range of CRISPR arrays (36). Note that the spacer
amplicon is a mixture of spacers derived from multiple species, since the same repeats
are shared by several species. Thus, this approach cannot precisely determine which
species is the origin of each spacer. Cutaneous skin swabs were collected from five
individuals in their 20s to 40s and from the skin sites Hp, antecubital fossa (Ac), and ret-
roauricular crease (Ra), representing dry, moist, and sebaceous sites, respectively. The
swab collections were conducted twice at a 2- to 3-month interval. DNA extracted
from these swabs were used as a template for library construction; amplicon sequenc-
ing was performed using an Illumina MiSeq sequencer. The spacer reads were then
trimmed to remove primer sequences; sequencing statistics before and after primer
trimming are summarized in Data Set S1, sheet 5. The average lengths of the spacer
reads after primer trimming were 29.9, 29.7, and 35.3 bp for S. equinus, S. thermophilus,
and M. luteus, respectively, which were comparable to the typical spacer length and
the spacer length observed in CRISPRCasFinder analysis (Data Set S1, sheet 3). These
trimmed reads were then used as input for downstream analysis. After quality control
implemented in QIIME 2 (45), we detected a total of 476,185 spacers and 664 unique
spacers for S. equinus, 460,309 spacers and 759 unique spacers for S. thermophilus, and
286,968 spacers and 204 unique spacers for M. luteus from 25 samples.

A rarefaction curve based on the observed amplicon sequence variants (ASVs)
reached a saturation plateau at a sequencing depth of 4,000, indicating that the spacer
diversities of all samples were well represented at a relatively low sequencing depth
(Fig. 2A to C). Saturation of the rarefaction curve suggested low PCR error in the MiSeq
results; therefore, an ASV table was used to evaluate spacer diversity rather than opera-
tional taxonomic unit (OTU) clustering (46). Samples were rarefied to 4,829 reads for
normalization, and those with lower numbers of reads were discarded from down-
stream analyses. Richness and evenness of the spacer diversity in each sample were
evaluated by calculating the Shannon diversity index. The medians of Shannon diver-
sity indices, after rarefaction and removal of low-depth samples, were 5.27 (interquar-
tile range [IQR], 4.32 to 5.81), 6.22 (IQR, 5.29 to 6.50), and 4.39 (IQR, 3.23 to 5.27) for S.
equinus, S. thermophilus, and M. luteus, respectively. We also used Hill numbers, which
reflect richness and evenness if plotted as a function of the parameter q, to estimate
the diversity profile of each CRISPR array (47). The Hill number plot indicated that S.
thermophilus had the highest spacer richness and evenness (see Fig. S3). There were
no significant differences in Shannon indices of the S. thermophilus and M. luteus
spacers when we grouped samples by gender, age, or site characteristics. In contrast,
significant differences in Shannon indices of the S. equinus spacers were observed
when samples were grouped by gender (Fig. 2D to F). These results indicate that the
evenness and richness of spacer sequences in the skin microbiome are not affected by
the environment from which the bacteria were collected.

We then characterized the distribution of each spacer sequencers among the indi-
viduals to determine whether each spacer was specific to each individual or sample
type. In accordance with a previous report (36), we found that the S. equinus or S. ther-
mophilus spacer sequences were shared within individuals even for samples collected
from different skin sites or at sampling time point (Fig. 3A and B), suggesting that
these two CRISPRs are suitable for personal identification purposes. In contrast, the
most abundant M. luteus spacers were shared between individuals, regardless of sam-
ple type (Fig. 3C). Although microbial communities harboring the CRISPR arrays
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sequenced in this study were obtained from the same environment, a high degree of
interindividual CRISPR spacer dissimilarities were observed in S. equinus and S. thermo-
philus but not in M. luteus. These results suggest that the frequency of formational
change in CRISPR arrays, including spacer acquisition or loss, differs among CRISPRs
even in the same environment.

CRISPR reconstruction from spacer amplicons. While we targeted short reads
that contain a single spacer in a read, we also obtained longer reads that contain two
spacers in a read. Using these reads, we assembled the CRISPR locus from amplicons,
as was done by Robles-Sikisaka et al. (38). Among the 136 assembled arrays, 35 arrays
were found to share at least one spacer with another array; groups of arrays sharing
spacers are shown in Fig. S4. Among them, the S. equinus CRISPR group 1 contains two
identical CRISPRs from the same individual at different time points, suggesting a con-
served CRISPR array on the skin. Furthermore, we observed that the CRISPR arrays
shared identical spacers from the same individual at different sites on the skin at the
same time point (e.g., S. equinus group 2, S. thermophilus group 6, and M. luteus group
1), from the same individual at the same site on the skin at different time points (e.g.,
S. equinus group 3, S. thermophilus group 4, and M. luteus group 2), or even from differ-
ent individuals (e.g., S. equinus group 1, S. thermophilus group 1, and M. luteus group
1), suggesting both conservation and diversity of these CRISPRs. However, we could
not determine whether these partial matches are derived from the acquisition/loss of
spacers or assembling errors, especially when the spacers of the array ends did not

FIG 2 Alpha diversity of CRISPR spacer sequences in the skin microbiome. (A to C) Rarefaction curves
based on the ASVs of spacer sequences were calculated using the q2-diversity plug-in in QIIME 2
with 100 iterations and a maximum sequence depth of 10,000. S. equinus CRISPR (A), S. thermophilus
CRISPR (B), and M. luteus CRISPR (C) spacers. (D to F) The Shannon diversity index of each sample was
calculated using the q2-diversity plug-in in QIIME 2. The Shannon indices of each sample group were
compared using the Kruskal-Wallis test (*, P , 0.05). Comparisons were in terms of age range (D),
gender (E), and site characteristics (F).
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FIG 3 The pattern of CRISPR spacer and that of microbiome measured by 16S RNA in the skin microbiome. (A to C) Heat maps of the CRISPR
spacers in the skin microbiome. Each row represents a unique spacer sequence ASV, and the columns represent samples from five individuals.
Each row was clustered by the Wards method implemented in the Seaborn package. Each column was standardized by the Z-score. The ASVs
that were observed equal or more than 100 times in total were used to generate the heat maps. S. equinus (A), S. thermophilus (B), and M.
luteus (C) spacers. (D) Skin microbiome profile measured by 16S rRNA V1-3 sequencing. The compositions of the top 11 genera are shown. (A
to D) Boxes below the graphs indicate sampled individual, site, and time point. (E) Numbers of unique spacer sequences and classification of
the sequences were compared by CRISPRs. See also Data Set S1, sheets 6 to 8, for the detailed BLAST search results.
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match. Nevertheless, we observed the internal loss of spacers in some groups (S. equi-
nus groups 1 and 6 and S. thermophilus group 7), suggesting that amplicon sequencing
can be used to trace the phylogenetical relationship of CRISPR arrays in the
environment.

Assessment of skin bacterial community by 16S rRNA sequencing. We also
assessed the structure of the skin microbiome using 16S rRNA V1-3 amplicon sequenc-
ing with a MiSeq sequencer. We obtained 1,530,894 ASVs from 25 samples after read
filtering (mean, 61,235.76 reads/sample; IQR, 33,802 to 90,173 reads/sample). A total of
2,358 unique reads with a median length of 476 bp (IQR, 432 to 487 bp) after primer
trimming were obtained. Rarefaction analysis indicated that the number of observed
species did not plateau at 5,000 reads, suggesting that 16S rRNA analysis requires a
greater sequencing depth than spacer sequencing (Fig. 2A to C; see also Fig. S5). This
relatively high number of required reads for 16 rRNA sequencing is consistent with a
previous report that analyzed the V4-5 region (48). As shown in Fig. 3D, the most com-
mon genus in the skin microbial community was Cutibacterium, which is represented
by C. acnes, the most abundant species on human skin (2, 3). Although Moraxella was
specifically and stably observed in individual P02, other abundant genera were
observed in all individuals (e.g., Cutibacterium, Staphylococcus, and Corynebacterium) or
specifically but not stably observed in an individual (e.g., Acinetobacter in individual
P03). Thus, compared with CRISPR spacer diversity, the composition of abundant gen-
era in the skin microbiome is likely insufficient for personal discrimination.

Putative protospacers of the spacers reads. Spacers of a CRISPR loci are acquired
from previously encountered foreign genetic elements by host bacteria (16). To iden-
tify possible protospacers, which are the origins of spacers, spacer reads were sub-
jected to BLAST searches (Data Set S1, sheets 6 to 8; Fig. 3E). For streptococcal CRISPRs
(S. equinus and S. thermophilus), 27.7% of spacer sequences were previously found in
viruses, the sources of new spacers. In contrast, only one virus sequence was identified
from M. luteus spacers. Some sequences were those of host bacteria: 15.1% for strepto-
coccal spacers and 31.0% for M. luteus. These host-derived spacers may target plasmids
or CRISPR loci or are self-targeting (49). Interestingly, 34 sequences (16.7% of total
unique spacers) of M. luteus spacers derived from the “host” were sequences of single
strains of M. luteus (GenBank CP025616.2). Spacers of the strain were regularly ordered
with consistent repeats in the same direction, indicating that they were located on a
single CRISPR locus. In total, 56.8% of the spacers were previously unknown sequences.
This high percentage of unassigned reads was expected, as most phages have no ho-
mologous sequence in public databases (50). Altogether, the sequences identified by
our spacer sequencing are likely derived from actual environmental CRISPRs, support-
ing the validity of our proposed method.

Individual-specific spacer patterns. The Bray-Curtis dissimilarity index (BC) for
CRISPR spacers, which represents ecological similarities of the spacer community
between samples, was calculated and compared with that of 16S rRNA V1-3 sequences;
BC equals 1 if the two communities do not share any spacers, while BC equals 0 if the
two communities are identical. Principal-coordinate analysis (PCoA) of BC of S. equinus
and S. thermophilus spacers showed strong clustering of the samples from the same
individuals, indicating that the diversity of these spacers was more reflective of the
host than of sample type (Fig. 4A to F). In contrast, the PCoA plots of BC for neither M.
luteus spacers nor 16S rRNA showed any specific clustering (Fig. 4G to L). Notably, S.
equinus and S. thermophilus spacers were significantly more individual specific than
site specific (Fig. 5A and B). No significant differences were observed in M. luteus
spacers when the dissimilarities were compared among or between individuals
(Fig. 5C), indicating the differences in interindividual dissimilarities of spacers among
these CRISPRs. For S. equinus and S. thermophilus, none of the BCs calculated from a
pair of interindividual samples was ,0.8, indicating that these high interindividual dis-
similarities may sufficiently discriminate two individuals. This high dissimilarity in inter-
individual samples was not observed for 16S rRNA sequencing (Fig. 5D), suggesting
that interindividual dissimilarity of microbiomes measured by 16S rRNA sequencing
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FIG 4 Principal-coordinate analysis of the spacers and 16S rRNA. PCoA plots of the S. equinus (A to C), S. thermophilus (D to F), and M. luteus
(G to I) spacer sequences as well as the 16S rRNA V1-3 sequences (J to L). The Bray-Curtis dissimilarity index was used as a metric for PCoA.
Each data point is colored according to the individual (A, D, G, and J), skin site (B, E, H, and K), or time point (C, F, I, and L).
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does not have sufficient discriminating power for forensic cases. Collectively, these
results indicate that S. equinus and S. thermophilus spacer diversity in the skin micro-
biome is highly personalized compared to the microbiome diversity measured by 16S
rRNA V1-3 sequencing; thus, this individuality can be used as a discriminating marker.

Personal identification by a set of predictive spacers. To test whether a set of dis-
criminant spacers can aid identification of the personal microbiome, we utilized sup-
port vector machine based on recursive feature elimination (SVM-RFE; see Materials
and Methods for details), a machine learning technique used in bioinformatics research
to predict sample type with a small number of features (51, 52). Using SVM-RFE, we

FIG 5 CRISPR spacers are individual specific rather than site-specific. (A to D) Violin plots of the Bray-
Curtis dissimilarity indices within (intra) or between (inter) individuals/host site of S. equinus (A), S.
thermophilus (B), M. luteus (C), and 16S rRNA V1-3 (D). The Bray-Curtis dissimilarity indices were
compared using the Mann-Whitney U test.
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successfully selected 20 predictive features for each CRISPR and 16S rRNA (Fig. 6). For
S. equinus CRISPR, 20 spacers achieved 95.2% accuracy for personal identification,
which was the highest performance in our data sets. Although 20 spacers from S. ther-
mophilus achieved 85.0% accuracy, the accuracy rates obtained using selected features
of M. luteus or 16S rRNA were 47.1% and 52.6%, respectively. The relative abundance
heat maps of the 20 spacers showed that the presence of spacers in streptococcal
CRISPRs had a distinct and specific pattern for each individual (Fig. 6B and C), whereas
M. luteus spacers did not (Fig. 6D). These individual specific spacers likely contributed
to the higher accuracy. Therefore, the spacer pattern of even a single CRISPR array,
such as S. equinus CRISPR, may sufficiently discriminate personal microbiome signa-
tures for future personal identification.

DISCUSSION

CRISPR typing has been used to discriminate bacterial species at the strain level
(21–25, 27). Here, we proposed metagenomic CRISPR typing as a new personal micro-
biome typing method, instead of conventional 16S rRNA V1-2/V4 sequencing (1, 6, 53).
Regardless of previous studies that utilized amplicon sequencing for evaluation of
spacer diversity in oral, skin, or lake environments (20, 32, 36–38), the high interindivid-
ual diversity of spacer sequences on human skin is still largely unknown, given that the
specific CRISPR arrays in skin environments commonly shared among individuals have
not been clarified. In this study, we identified putative CRISPRs shared between the
skin microbiomes of different individuals by reconstructing CRISPR arrays using pub-
licly available metagenome data sets (Fig. 1). We further examined the distribution of
spacers in the skin microbiome by amplicon sequencing and found that CRISPR diver-
sity was highly person specific regardless of skin site, unlike the skin microbiome struc-
ture assessed by 16S rRNA V1-3 sequencing (Fig. 3 to 5).

We initially identified the consensus repeats of CRISPR arrays conserved among indi-
viduals by metagenomic reconstruction of CRISPR arrays. The repeats of CRISPRs derived
from S. equinus, N. polysaccharea, S. thermophilus, Veillonella parvula, Aggregatibacter aph-
rophilus, and S. wolfei were observed in 14 of 15 individuals (Fig. 1B), suggesting that
CRISPR arrays with those repeats are widely spread among the human population. This ob-
servation is partially in agreement with a study by Robles-Sikisaka et al. (38), in which
spacer diversity of Streptococcus-derived CRISPRs in the human skin microbiome was inves-
tigated by amplifying the spacer regions with primers targeting the repeat derived from S.
equinus.

Interestingly, CRISPR arrays derived from C. acnes, which is the most abundant
microorganism in the skin microbiota (2, 3), were rarely detected in the present study.
This discrepancy may be attributed to the scarcity of CRISPR arrays in populations of C.
acnes, as only one lineage of C. acnes among the three major groups harbors CRISPR
arrays, and those in the organism harbor a limited number of spacers (1 to 9 spacers, with a
mean of 3.31) (54–56). Fitz-Gibbon et al. reported that only two of the top 10 most abundant
C. acnes ribotypes are associated with CRISPR-Cas and that the CRISPR-encoding ribotypes
are not major in.80% of individuals (55), supporting the limited observation of the C. acne
CRISPRs. In contrast, the repeats detected in our metagenomic CRISPR reconstruction were
derived from minor genera in the skin metagenomic data, such as Chryseobacterium and
Aggregatibacter, which comprised ,0.10222% of reads in the metagenomic data set pro-
duced by Oh et al. (2). The present study is the first to evaluate the ecology of CRISPRs in
the skin microbiome, identifying previously unknown CRISPRs and evaluating CRISPR abun-
dance in the human-associated microbiome, providing insight into the nature of the skin
microbiome.

Spacer sequences in the human skin microbiome were then amplicon sequenced
to identify the CRISPRs that are shared by multiple individuals and those that are
highly individual specific. Although the number of participants was limited, we suc-
cessfully amplified the spacers from all five individuals, supporting the notion that pu-
tative CRISPRs in the metagenomic data sets were conserved among individuals. As
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FIG 6 Identification of the predictive spacer sequences for personal identification. (A) Comparison of accuracy results using S. equinus, S. thermophilus, and
M. luteus CRISPRs and 16S rRNA data. The accuracy results were obtained using 20 features selected by SVM-RFE. After feature selection, SVM with leave-
one-out cross-validation was performed to classify the samples from the individuals. Baseline accuracy is indicated by gray dashed line. Heat maps of the
relative abundance of the 20 selected features for S. equinus (B), S. thermophilus (C), and M. luteus (D). Data points with absent features are grayed out. The
annotation of each spacer sequence was based on the BLAST search described in Data Set S1, sheets 6 to 8.
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hypothesized, the diversities of the S. equinus and S. thermophilus spacers were highly
distinct, whereas major spacers of the M. luteus CRISPR were shared between individu-
als (Fig. 3 and 6), indicating that S. equinus and S. thermophilus are good candidates for
future personal identification markers. Unexpectedly, even major spacers were shared
between samples collected at different time points from the same individual, suggest-
ing that spacer diversity was stable over 2 months (Fig. 3 and 6). Yang et al. demon-
strated that 16S rRNA V1-2 sequencing is not sufficient to discriminate personal micro-
biomes (15). Our results also support that skin microbiome composition measured by
16S RNA sequencing is insufficient for personal discrimination (Fig. 5 and 6). In contrast
to bacterial communities, membership of bacteriophage communities was mostly indi-
vidual specific (20). The membership of CRISPR spacers also reflects this individual
specificity of bacteriophages, which likely contributes to high interindividual dissimilar-
ity. This speculation was supported by the observation of phage-derived sequences in
the predictive spacers of streptococcal CRISPRs (Fig. 6B and C). Thus, polymorphisms of
CRISPR spacers, rather than conventional 16S rRNA, may be useful for discriminating
between suspects in criminal investigations.

Two CRISPR arrays identified, S. equinus and S. thermophilus, were derived from
Streptococcus species, which are also known as the S. thermophilus CRISPR-Cas9 system
in CRISPR1 and CRISPR3 loci, respectively. The CRISPR loci of S. thermophilus have been
intensively studied in both evolutionary and genome editing perspectives (43). The
CRISPR arrays of S. thermophilus are classified into four CRISPRs: CRISPR1 (S. equinus),
CRISPR2, CRISPR3 (S. thermophilus), and CRISPR4. Paez-Espino et al. revealed that
spacer acquisition ability differs between them, as CRISPR1 integrated new spacers at a
high frequencies, while CRISPR2 and CRISPR4 acquired no spacers in 232 days (57). In
contrast to Streptococcus CRISPRs, which integrate a new spacer frequently, the spacer
integration of M. luteus CRISPR has not been investigated, but the cas genes of M.
luteus strain SGAir0127 were classified into the type I CRISPR-Cas system by
CRISPRCasFinder. Although M. luteus is also a major member of the skin microbiome
(2), the only available M. luteus CRISPR array in the NCBI database was that of strain
SGAir0127, a strain isolated from indoor air samples (58). Though the nature of M.
luteus CRISPR is unknown, we speculated that it lost its spacer acquisition ability during
its evolution.

In this study, we focused on the diversity of spacers on a community level and did
not comprehensively evaluate the temporal changes of single CRISPR arrays. The
spacer acquisition ability of the streptococcal CRISPR-Cas system, which may contrib-
ute to the high interindividual spacer dissimilarity observed here, should be further
assessed using other technologies, such as CRISPR locus PCR with the primer pair flank-
ing an entire CRISPR region (26, 28–30). Nonetheless, we successfully reconstructed
partial or entire CRISPR arrays from amplicon reads (see Fig. S4 in the supplemental
material), suggesting that amplicon sequencing may be utilized to phylogenetically an-
alyze CRISPR loci of interest, while technical optimizations, such as utilizing size selec-
tion during library construction and/or other sequence chemistries such as the paired-
end sequencing of 600 cycles, will improve the shortcomings of our methodology on
the CRISPR locus reconstruction analysis.

Although the resolution of CRISPR typing is sufficiently high for strain discrimina-
tion, other typing methods such as multilocus sequence typing, variable number tan-
dem repeats typing (VNTR-typing) or 16S ribotyping can also be used to discriminate
specific bacterial strains (55, 59–61). Recent studies also utilized such high-resolution
typing methods in metagenomic contexts to characterize the compositions of specific
species or bacterial communities (15, 62, 63). High interpersonal diversity of spacer
sequences measured in this study demonstrate its potential for application in future
forensic cases; however, it should be compared with other typing methods, such as C.
acnes ribotyping. Importantly, the diversities of CRISPR arrays were similar between dif-
ferent skin sites from the same individual (Fig. 3, 4, and 6), suggesting that CRISPR
spacers are shared among the skin sites. This spatial stability of CRISPR typing may be
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an advantage against C. acnes ribotyping, in which only palm samples were analyzed
(15).

Though our results suggest that spacer diversity is highly personalized and useful
as a new marker for personal identification, some aspects regarding the real-life applic-
ability of this approach require further analysis. For example, we did not use our
approach to test the microbiome on the surface of an object, such as a phone, a key-
board, or shoes, touched by a person of interest (suspect/victim) (1, 6, 15, 64). Another
limitation of our study is the small sample size. Although we demonstrated that
spacer diversity was sufficiently individual specific, the application in forensic cases
requires population-wide validation to assess their validity and reliability. In addi-
tion, the performance in terms of personal identification was evaluated only for
comparing the CRISPR-based and 16S rRNA-based approaches. Therefore, the score
obtained in our study does not predict the performance of CRISPR typing on perso-
nal identification in a population, although we obtained 95.2% accuracy using S.
equinus as a marker. By confirming the accuracy of CRISPR-based personal identifi-
cation using mock forensic samples and conducting population-wide surveys in
future studies, CRISPR-based microbiome analysis can be applied in actual forensic
cases.

Although further developmental validation is required, the highly personalized di-
versity of CRISPR spacers in the human skin microbiome is an attractive tool for perso-
nal identification. Though the viral community is more personalized than the bacterial
community (19, 20, 38), the lack of a common marker for characterizing the virome
complicates its use for personal identification. In this study, the spacer sequences of
CRISPRs were utilized as a proxy for the virome. This approach may also be utilized to
better understand the ecology of the skin microbiome and explore the complex rela-
tionship between the human skin microbiome and diseases such as atopic dermatitis
(65). The present study suggests that the diversity of the CRISPR spacer sequences in
the skin microbiome can be used as a new marker for personal identification.

MATERIALS ANDMETHODS
Sample collection. Five individuals were asked to participate in this study, and swab samples were

collected for spacer sequencing. The participants provided information regarding their gender, age
range, systemic antibiotics usage in the past 6 months, steroid usage in the past 6 months, skincare
product usage in the past 24 h, and handwashing in the past 2 h. Data Set S1, sheet 9, in the supplemen-
tal material summarizes the detailed information of samples. Skin surfaces (approximately 5 by 5 cm)
were swabbed with cotton-tipped swabs soaked in water. The Hp, Ac, and Ra, representing dry, moist,
and sebaceous sites, respectively, were selected for swabbing (2). For the initial sampling (time point 1),
only an Hp sample was obtained, except for one individual (P05). Two to 3 months later (time point 2),
three skin sites (Hp, Ac, and Ra) were sampled for all individuals. After swabbing, the cotton tips were
separated and placed in 2-ml tubes. A premoistened swab tip placed directly in the 2-ml tube was used
for a blank for DNA extraction (EC). Samples were stored at 220°C before DNA extraction. All procedures
involving human participants were approved by the Institutional Ethics Committee of the National
Research Institute of Police Science.

Metagenomic data sets. Metagenomic data sets from the skin of the palm were downloaded from
the European Nucleotide Archive in fastq format. The samples used in this study have been registered
under BioProject PRJNA46333. Data collection methods were performed in accordance with the method
previously reported by Oh et al. (2). Samples containing multiple runs were merged before assembly.

Identification of CRISPR arrays using metagenomic data sets and isolation of CRISPRs
conserved across multiple individuals. The scheme for CRISPR reconstruction from the metagenomic
reads and isolation has been summarized in Fig. S6. Reads were filtered using Trimmomatic 0.39 to
remove low-quality reads (66), bases with low-quality scores (Q, 20) were trimmed from both ends,
and short reads (,50bp) were removed. As the file was too large to assemble, 8� 107 reads (22%) were
subsampled from the largest data set (SRX743731) using seqtk (https://github.com/lh3/seqtk). De novo
assembly of the metagenome was performed using MEGAHIT v1.1.4 (39). The data sets were assembled
with default parameters, except that the k-mer sizes were fixed as –k-list 29,39,59,79,99. Output contigs
were analyzed using the PILER-CR v1.06 with default parameters to detect the CRISPR arrays (40). Each
repeat in a CRISPR array detected by the PILER-CR was converted to a single read. All reads were then
duplicated, and one of the read pairs was reverse complemented, as the orientation of repeat sequence
was unclear.

Repeat reads were then analyzed using QIIME 2 v2019.7 (45). First, dereplication and de novo OTU
clustering at 90% were performed using the q2-vsearch plug-in (67). The repeat reads were detected in
fewer than two individuals, and the duplicated reverse complement reads were discarded. The
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representative CRISPR repeats of each OTU were annotated by BLAST using default settings (68). The
subject with the highest max score was defined as the host species. Since CRISPRs are mobile genetic
elements, multiple species were often found to share the same repeat (69); in such cases, one represen-
tative species was recorded. Eventually, heat maps of the repeat reads on the OTU table were con-
structed using the heatmap visualizer of the q2-feature-table plug-in (70). The type and orientation of
CRISPRs were determined by a search for the same repeats in CRISPRCasdb (44).

We also utilized CRISPRCasFinder to identify cas genes associated with the CRISPR locus found in
metagenomic contents (42). The contigs assembled by MEGAHIT were used as initial inputs. We initially
extracted the contigs that contained CRISPRs with evidence level 4 and were .1,000 bp in length using
CRISPRCasFinder with default settings. The evidence level was determined by CRISPRCasFinder.
Subsequently, the extracted contigs were subjected to CRISPRCasFinder again to determine if the con-
tigs contained cas genes and to subtype the identified cas genes based on the nomenclature proposed
by Makarova et al. (41) using CRISPRCasFinder with the -cas parameter. Three representative contigs
containing S. equinus CRISPR arrays were compared with the genomes of Streptococcus strains (Data Set
S1, sheet 10) using CRISPR Visualizer (71).

Measurement of DRs in the metagenomic data set by BLAST search. The number of reads con-
taining each repeat in a data set was measured using BLAST. The sequences of repeats were used as
queries, and the skin metagenome data sets in the Sequence Read Archive (SRA) of NCBI were used as
subjects. The data sets used as subjects were identical to those used in the CRISPR reconstruction,
except for samples from nares or cheek. Two samples (SRX740760 and SRX740761) from nares or cheek,
representing a moist or oily site, respectively, of the same individual (HV07) were also included to evalu-
ate repeat variation at different skin sites from an individual. Default parameters were used for the
short-read search except that the maximum number of target sequences was set as 5,000. Reads with
.90% identity and .90% query cover were included in the downstream analysis. A hierarchically clus-
tered gradient heat map of repeat frequency was plotted using the clustermap method in the Seaborn
package 0.9.0 (https://seaborn.pydata.org/generated/seaborn.clustermap.html) in Python 3.6.8.

DNA extraction. Genomic DNA was extracted from swabs using the DNeasy PowerSoil kit (Qiagen,
Aarhus, Denmark) with some minor modifications (1, 72). Briefly, frozen cotton tips were transferred
to the bead tube provided with the DNeasy PowerSoil kit, followed by incubation at 70°C for
15min after the addition of the C1 solution. Tubes were then horizontally shaken at 3,200 rpm for
2min on a bead beater-type homogenizer mT-12 (TAITEC, Saitama, Japan). Remaining steps were
performed according to the manufacturer’s instructions. Genomic DNA was eluted in 100ml of the
C6 solution.

Amplification and sequencing of spacers. To amplify the spacer regions of the putative CRISPRs,
three pairs of primers were designed based on the specificity of the CRISPR repeat, namely, S. equinus, S.
thermophilus, and M. luteus (Data Set S1, sheet 11). These primer pairs are specific to the 39 region of each
CRISPR repeat so that the primer pair flanks a spacer. The length of primers was determined to meet
the melting temperature requirement on the Illumina 16S Metagenomic Sequencing Library Preparation
protocol (https://www.illumina.com/content/dam/illumina-support/documents/documentation/chemistry
_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf). PCR was performed in
a 50-ml reaction volume using the KOD FX (Toyobo, Osaka, Japan). Each reaction mixture consisted
of 1� PCR buffer for KOD, 0.4mM deoxynucleoside triphosphate (dNTPs), 0.3 mM each primer, 1.0 U
of KOD FX, and 2ml of the DNA template. EC and a nontemplate control (NTC) for PCR were included
as negative controls. The following conditions were used for amplification: 2min at 94°C, 35 cycles
of denaturation at 95°C for 30 s, annealing at 60°C for 30 s, and extension at 72°C for 30 s, followed
by final extension at 72°C for 5min. Next, 25ml of the products was purified using 1.8� volume of
the Agencourt AMPure XP kit (Beckman Coulter, Brea, CA) twice and washed using freshly prepared
80% ethanol. DNA was eluted in 52.5ml of 10mM Tris (pH 8.5) and 0.1% Tween 20 elution buffer. If
low-molecular-weight bands were observed using agarose gel electrophoresis, additional purifica-
tion was performed using 1.8� volume of the Agencourt AMPure XP kit. Purified DNA was indexed
using the Nextera XT DNA index kit (Illumina, San Diego, CA) and KOD FX in a reaction volume of
50ml. Each reaction mixture consisted of 1� PCR Buffer for KOD, 0.4 mM dNTPs, 4.5ml of each index
primer, 1.0 U of KOD FX, and 5ml of the purified DNA as the template. The index PCR product was
purified using 1.8� volume of the Agencourt AMPure XP kit and eluted in 27.5ml of 10mM Tris (pH
8.5) and 0.1% Tween 20 elution buffer. The indexed libraries were quantified using GenNext NGS
library quantification kit (Toyobo) and then diluted to 4 nM with an elution buffer. If the library con-
centration was less than 4 nM, the library was pooled with other libraries without dilution.
Denaturing and final dilution were performed according to the manufacturer’s instructions. Each
run included .15% of the PhiX control v3 (Illumina) to improve sequencing quality. Paired-end
sequencing of 300 cycles (2� 151) was performed on a MiSeq platform (Illumina) with the MiSeq v2
chemistry, according to the manufacturer’s instructions.

Amplification and sequencing of 16S rRNA. Sequence libraries of the 16S rRNA were prepared
according to the Illumina 16S metagenomic sequencing library preparation protocol with some modifi-
cations. The primer pair targeting the V1-V3 region (73, 74) was used in this study (Data Set S1, sheet
11). PCR was performed in a 25-ml reaction volume using the KAPA HiFi HotStart ReadyMix kit (KAPA
Biosystems, MA). Each reaction consisted of 1� KAPA HiFi HotStart ReadyMix, 0.3 mM each primer, and
2ml of the DNA template. The following conditions were used for amplification: 5min at 95°C, 25 cycles
of denaturation at 95°C for 30 s, annealing at 62.3°C for 30 s, and extension at 72°C for 30 s, followed by
final extension at 72°C for 5min. Then, 25ml of the products was purified using 0.8� volume of the
Agencourt AMPure XP kit and washed using freshly prepared 80% ethanol. DNA was eluted in 52.5ml of
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10mM Tris-HCl (pH 8.5) and 0.1% Tween 20 elution buffer. Purified DNA was indexed using the Nextera
XT DNA index kit (Illumina) and the KAPA HiFi HotStart ReadyMix kit in a reaction volume of 50ml. Each
reaction mixture consisted of 1� KAPA HiFi HotStart ReadyMix, 5ml of each index primer, and 5ml of the
purified DNA as the template. The index PCR product was purified using 1.1� volume of the Agencourt
AMPure XP kit and eluted in 27.5ml of 10mM Tris (pH 8.5) and 0.1% Tween 20 elution buffer. The
indexed libraries were quantified by the GenNext NGS library quantification kit and diluted to 4 nM with
elution buffer. If the library concentration was less than 4 nM, the library was pooled with other libraries
without dilution. Denaturing and final dilution were performed according to the manufacturer’s instruc-
tions. Each run included .15% of the PhiX control v3 to improve sequencing quality. Paired-end
sequencing of 600 cycles (2� 301) was performed on a MiSeq platform (Illumina) with MiSeq v3 chemis-
try, according to the manufacturer’s instructions.

Data processing for spacer analysis. Initial quality controls were carried out using the CLC
Genomics Workbench 12.0.2 (Qiagen). After low-quality sequences (Q, 20) and primer sequences were
removed, reads shorter than 20 bp or longer than 40 bp were filtered. The remaining spacer sequences
were then analyzed using QIIME 2 v2019.7 (45). Spacer reads were denoised and dereplicated with the
denoise-paired method of the q2-dada2 plug-in (75) with min_fold_parent_over_abundance = 32; the
resulting ASV tables were further analyzed. Rarefaction curves were created with the q2-diversity plug-in
with 100 iterations and 40 steps at a maximum depth of 10,000 reads. Based on rarefaction curve analy-
sis, each sample was rarefied to 4,829 reads for normalization in further analysis, and samples with fewer
than 4,829 spacer ASVs were omitted from the calculation (76). The EC and NTC were removed at this
step; however, EC was included in S. equinus spacer analysis. Shannon indices were calculated in bits
with the q2-diversity plug-in, and Kruskal-Wallis tests were performed to compare Shannon indices
between samples (77). For calculation of the beta-diversity index, the Bray-Curtis dissimilarity index was
calculated by the q2-diversity plug-in and used for PCoA plots. Mann-Whitney U test was calculated
using the “stats.mannwhitneyu” function of the python library “SciPy” (version 1.3.0) to compare the
Bray-Curtis dissimilarity indices. Hill numbers were calculated using the library “vegan” (version 2.5-4) in
R (version 3.4.4) (78).

To compare the CRISPR arrays in the samples, we reconstructed the arrays from spacer amplicons.
The trimming and assembling described below were performed using the CLC Genomics Workbench
12.0.2. First, reads that were longer than 100 bp were extracted after low-quality sequences (Q, 20)
were removed so that reads contained two spacers per read. Then, these reads were de novo assembled
by “Map reads back to contigs” mode with a length fraction of 0.8 and similarity fraction of 0.9. These
assembled contigs were then compared and visualized using CRISPR Visualizer (71).

The spacer sequences were subjected to BLAST analysis with default settings. If the reads had E val-
ues of less than 0.01, they were further classified. If the description included “phage” or “virus,” the query
was classified as “virus.” If the description included name of host genus (“streptococcus” for S. equinus or
S. thermophilus and “micrococcus” for M. luteus), the query was classified as “host.” Remaining queries
with significant hits were classified as “other.”

To identify a subset of predictive spacers and to improve interpretability of the classification, we per-
formed feature selection using support vector machine based on recursive feature elimination (SVM-
RFE). SVM-RFE is a machine-learning technique used to select a subset of features (e.g., genes associated
with a specific disease) which are relevant to sample types from a large set of features, by recursively
ranking the features and eliminating irrelevant features (79). In this study, SVM-RFE was implemented
using the python library “Scikit-learn” (version 0.22.1) (80). For SVMs, the linear kernel was used with
default parameters. Using SVM-RFE, we selected 20 ASVs from the data set, including all samples from
an individual. Then, using the selected 20 features, we predicted the individuals by linear-kernel SVM
using leave-one-out cross-validation to measure predictive accuracy. However, we did not perform
nested cross-validation to optimize the selection of ASVs used in the linear-kernel SVM. This is because it
is difficult to split the data twice for inner and outer cross validation due to the small sample size, which
may cause overfitting of the data.

Data processing for 16S rRNA analysis. Reads were analyzed using QIIME 2 v2019.7 (45). Initially,
16S rRNA reads were denoised and dereplicated with the denoise-paired method of the q2-dada2 plug-
in (75). The parameters of trim_left_f equals 20 and trim_left_r equals 20 were set to trim primer sequen-
ces. The resulting ASV tables and representative reads were further analyzed. Representing reads were
annotated by classify_sklearn methods of the q2-feature-classifier plug-in with the SILVA 16S rRNA database
v132 (80, 81). We observed contaminants derived from Sphingomonadaceae and Pseudomonadaceae, which
are known as common contaminants (82), in both swab samples and NTC due to low biomass. Therefore,
we removed reads annotated as Sphingomonadaceae or Pseudomonadaceae from the tables and representa-
tive reads using filter-table and filter-seqs methods of the q2-taxa plug-in. The genus-level compositions of
the top 11 abundant ASVs were visualized as a bar plot using the q2-taxa plug-in. For the calculation of the
beta-diversity index, the Bray-Curtis dissimilarity index was calculated using the q2-diversity plug-in and then
used for PCoA plots. Mann-Whitney U test was performed using the “stats.mannwhitneyu” function of the
python library “SciPy” (version 1.3.0). Feature selection and individual prediction were performed using SVM-
RFE with linear kernel, as described above.

Data availability. Spacer sequences are available in the SRA database under accession numbers
DRA009650 and DRA010353. Meta 16S rRNA sequences are available in the SRA database under acces-
sion number DRA010342.
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