
RESEARCH ARTICLE

Hybrid Automata Library: A flexible platform

for hybrid modeling with real-time

visualization

Rafael R. BravoID
1*, Etienne Baratchart1, Jeffrey WestID

1, Ryan O. SchenckID
1,2, Anna

K. MillerID
1, Jill GallaherID

1, Chandler D. GatenbeeID
1, David BasantaID

1, Mark Robertson-

Tessi1, Alexander R. A. AndersonID
1*

1 Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America,

2 Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom

* rafael.bravo@moffitt.org (RRB); alexander.anderson@moffitt.org (ARAA)

Abstract

The Hybrid Automata Library (HAL) is a Java Library developed for use in mathematical

oncology modeling. It is made of simple, efficient, generic components that can be used to

model complex spatial systems. HAL’s components can broadly be classified into: on- and

off-lattice agent containers, finite difference diffusion fields, a GUI building system, and addi-

tional tools and utilities for computation and data collection. These components are

designed to operate independently and are standardized to make them easy to interface

with one another. As a demonstration of how modeling can be simplified using our approach,

we have included a complete example of a hybrid model (a spatial model with interacting

agent-based and PDE components). HAL is a useful asset for researchers who wish to build

performant 1D, 2D and 3D hybrid models in Java, while not starting entirely from scratch. It

is available on GitHub at https://github.com/MathOnco/HAL under the MIT License. HAL

requires the Java JDK version 1.8 or later to compile and run the source code.

Author summary

In this paper we introduce the Hybrid Automata Library (HAL) with the purpose of sim-

plifying the implementation and sharing of hybrid models for use in mathematical oncol-

ogy. Hybrid modeling is used in oncology to create spatial models of tissue, typically by

modeling cells using agent-based techniques, and by modeling diffusible chemicals using

partial differential equations (PDEs). HAL’s key components are designed to run agent-

based models, PDEs, and visualization. The components are standardized and are

completely decoupled, so models can be built with any combination of them. We first

explore the philosophy behind HAL, then summarize the components. Lastly we demon-

strate how the components work together with an example of a hybrid model, and a walk-

through of the code used to construct it. HAL is open-source and will produce identical

results on any machine that supports Java 8 and above, making it highly portable. We rec-

ommend HAL to modelers interested in spatial dynamics, even those outside of

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bravo RR, Baratchart E, West J, Schenck

RO, Miller AK, Gallaher J, et al. (2020) Hybrid

Automata Library: A flexible platform for hybrid

modeling with real-time visualization. PLoS

Comput Biol 16(3): e1007635. https://doi.org/

10.1371/journal.pcbi.1007635

Editor: Roeland M.H. Merks, Universiteit Leiden,

NETHERLANDS

Received: January 23, 2019

Accepted: January 6, 2020

Published: March 10, 2020

Copyright: © 2020 Bravo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data found in the

Results section can be generated by running the

competitive release example model found in the

Examples folder of HAL. See the manual for

instructions on how to install HAL and run the

example.

Funding: This work was possible through the

generous support of National Institutes of Health

funding, (A.R.A.A) and (M.R.T) acknowledge

National Cancer Institute U54CA193489, https://

www.cancer.gov/. (A.R.A.A) and (R.B)

http://orcid.org/0000-0002-0065-4341
http://orcid.org/0000-0001-9579-4664
http://orcid.org/0000-0002-0294-0106
http://orcid.org/0000-0002-3099-1648
http://orcid.org/0000-0001-9831-6676
http://orcid.org/0000-0002-9730-5964
http://orcid.org/0000-0002-8527-0776
http://orcid.org/0000-0002-2536-4383
https://github.com/MathOnco/HAL
https://doi.org/10.1371/journal.pcbi.1007635
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007635&domain=pdf&date_stamp=2020-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007635&domain=pdf&date_stamp=2020-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007635&domain=pdf&date_stamp=2020-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007635&domain=pdf&date_stamp=2020-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007635&domain=pdf&date_stamp=2020-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007635&domain=pdf&date_stamp=2020-03-30
https://doi.org/10.1371/journal.pcbi.1007635
https://doi.org/10.1371/journal.pcbi.1007635
http://creativecommons.org/licenses/by/4.0/
https://www.cancer.gov/
https://www.cancer.gov/

mathematical oncology, as the components are general enough to facilitate a variety of

model types. A community page that provides a download link and online documentation

can be found at https://halloworld.org.

This is a PLOS Computational Biology Software paper.

Introduction

The Hybrid Automata Library (HAL) was created to assist the growing mathematical oncology

community with a common framework to facilitate building and visualizing hybrid models.

Hybrid models in oncology usually represent cells (both of the tumor and of the surrounding

tissue) using agent-based modeling (ABMs) and the concentrations of relevant chemicals

(drugs, resources and signaling molecules) as continuous partial differential equations (PDEs).

These models can simulate local interactions between cells with complex internal dynamics

and decision-making processes while also allowing cells to interact with the PDE concentra-

tion fields in their local environment.

Hybrid models have been widely adopted within the Mathematical Oncology community

to model many aspects of cancer [1–8]. A unique strength of the hybrid modeling approach is

that it allows for a mechanistic understanding of the ecological feedback between the cancer

cells and their tissue environment. Cancer cell agents can be modeled as a part of a larger tissue

structure and interact with the systems that normally maintain homeostasis [9–15]. Drugs

may be subsequently introduced to add additional selective pressure to the model, and to

observe the long-term effects on the evolving tumor [16]. A better understanding of these

selection dynamics can be used to help develop more effective drug sequences to prevent can-

cer from resisting therapy and to develop evolutionary therapies to control cancers that cannot

be cured with maximum tolerated dose [17–19]. Further realism can be incorporated by ini-

tializing spatial models with clinical or histological data [20, 21].

Whilst a number of agent-based modeling frameworks have been used for tissue modeling,

HAL distinguishes itself primarily through its flexibility. Instead of a fixed modeling environ-

ment, HAL provides a lightweight set of generic tools to help modelers build their own work-

flows without needing to reinvent commonly used functions.

Many frameworks facilitate model building under specific assumptions. Cells can be

approximated as spheres or ellipsoids, with Newtonian adhesion-repulsion dynamics used to

efficiently simulate large populations. PhysiCell [22], CellSys [23], BioCellion [24], Timothy

[25], Yalla [26], and Episim [27] make this assumption. Another assumption called Cellular

Potts represents cells as composites of lattice positions, which can migrate over time in

response to energy minimization functions. This allows for cell deformation but is typically

more computationally expensive. CompuCell3D [28], Morpheus [29], and the Tissue Simula-

tion Toolkit [30] make this assumption. HAL does not include the same depth in the domains

specific to these frameworks, but uses a broader design to provide the capacity for a variety of

approaches.

Some frameworks that also take a broad approach are Chaste [31], NetLogo [32], Repast

[33] and MASON [34]. Chaste uses a modular system for model building, in which modular

rules are composed to define behavior, and behaviors that are not currently represented can be

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 2 / 28

acknowledge National Cancer Institute

UH2CA203781 https://www.cancer.gov/. (D.B), (E.

B), and (A.K.M) acknowledge National Cancer

Institute U01CA202958-01 https://www.cancer.

gov/. The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: No authors have competing

interests.

Undefined namespace prefix
https://doi.org/10.1371/journal.pcbi.1007635
https://www.cancer.gov/
https://www.cancer.gov/
https://www.cancer.gov/

added as new modules. This modular approach allows for very rapid prototyping, and

increases the reproducibility of results. NetLogo provides an accessible integrated model devel-

opment and interaction environment, and a custom scripting language to simplify coding,

making it a great choice for new modelers/coders. Repast and MASON both feature composa-

ble spatial containers and built-in visualization/interaction tools, but differ in how they handle

agent scheduling. Repast uses a hierarchical nesting approach to group agents into sets that

will all execute actions, while in MASON optionally repeating agent step functions are added

individually per agent. A comparative list of useful features and common built-in assumptions

pertinent to tissue modeling are summarized in Table 1.

HAL shares many characteristics with these frameworks, but differentiates itself with a min-

imal, decentralized design made up of independent building blocks that are thematically simi-

lar. There is no centralized controller or scheduler, so the modeler designs the logical flow and

the scheduling of interactions between model components. This removes common presuppo-

sitions or requirements made by schedulers in other frameworks (e.g. when/how models

should be visualized, when their step logic should run, when model resources should be cre-

ated or destroyed, etc.) and leaves these decisions up to the modeler. This cuts down on any

unnecessary use of resources by the modeling system, and increases modeling flexibility. These

considerations have led to a lightweight framework that is easy to use, highly flexible, and

effective within the scope of hybrid modeling, agent-based modeling, and the solving of reac-

tion-diffusion PDEs using finite differences. HAL was designed with mathematical oncology

in mind, but is general enough to facilitate modeling systems from many domains (e.g. ecology

[37], development, population dynamics, and network theory). While some familiarity with

the Java programming language is recommended for new users of HAL, we imagine that its

simplicity and explicit nature could make it a useful educational platform.

Table 1. Comparison of HAL with other agent-based modeling frameworks commonly used in tissue modeling as of December 2019. Features are marked according

to whether there exists a built-in user accessible implementation.

Feature HAL Cha Rep Mas Net Phy Cel Bio Tim Yal Epi Com Mor TST

On-Lattice ABMs ✔ ✔ ✔ ✔ ✔ ✔
Off-Lattice Point ABMs ✔ ✔ ✔ ✔ ✔

Off-Lattice Spherical ABMs ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Voronoi Tesselation ABMs ✔ ✔

Cellular Potts ABMs ✔ ✔ ✔ ✔
Multinomial Population ABMs [35] ✔

Diffusion PDEs ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Advection PDEs ✔ ✔ ✔ ✔ ✔

SBML Compatible [36] ✔ ✔ ✔ ✔
Real-Time Visualization ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Single-Model Parallelization ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Windows Compatible ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Mac Compatible ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Linux Compatible ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

User-Facing Programming Language� J C R J N C C C C U I P M C

Framework Abbreviations: HAL:Hybrid Automata Library, Cha:Chaste, Rep:Repast, Mas:Mason, Net:Netlogo, Phy:Physicell, Cel:CellSys, Bio:Biocellion, Tim:Timothy,

Yal:Yalla, Epi:Episim, Com:CompuCell3D, Mor:Morpheus, TST:Tissue Simulation Toolkit

� User-Facing Programming Languages: J: Java, C: C/C++, R: Relogo/Java/Groovy, N: NetLogo Programming Language, U: CUDA/C++, I: Graphical Interface, P:

Python/XML, M: Morpheus model description language

https://doi.org/10.1371/journal.pcbi.1007635.t001

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 3 / 28

https://doi.org/10.1371/journal.pcbi.1007635.t001
https://doi.org/10.1371/journal.pcbi.1007635

The main components of HAL consist of n-dimensional (0D,1D,2D,3D) grids that hold

Agents, 1D,2D, and 3D finite difference PDE fields, 2D and 3D visualization tools, and meth-

ods for sampling distributions and data recording. In this paper we will discuss the philosophy

behind these components, then look at their design and capabilities in more detail. See the

manual for a complete reference on how to use these components [38].

Design and implementation

Design philosophy

In the next section, we discuss some of the design decisions that have driven the architecture

of HAL.

Decentralization and extensibility. HAL’s components can each function independently,

making HAL fundamentally decentralized. This permits any number of components to be

used in a single model, with the use of spatial queries to combine components, as seen in Fig 1.

Decentralization also allows modelers to choose only the components of HAL that are of inter-

est for their project. These components can be easily mixed and matched with other software,

such as using the AgentGrids with a different PDE solver, or using the GUI and Visualization

components with a different modeling system. Modelers can also structure the modeling com-

ponents in ways that are best suited to their workflow, for example by reusing the same model

resources across multiple runs for more efficient parameter sweeping, or visualizing many

models with a single visualization to compare dynamics across them, or inversely to use multi-

ple visualizations to observe several aspects of a running model simultaneously. Decentraliza-

tion also makes adding new components more manageable and easier to test without adding

bulk or modifications to the existing platform.

Given the incremental nature of many scientific endeavors, we also wanted to allow models

and components to be extended and modified. Java’s extension architecture provides an excel-

lent environment for layered development. As an example of the extensibility of HAL, the

built-in Spherical Agent types (SphericalAgent2D, SphericalAgent3D) extend the Point Agent

Fig 1. HAL’s decentralized design helps build complex models out of simple components. The highlighted on-

lattice agent in the topmost grid searches for local overlaps with several other grids and PDEs. These overlaps can be

used in a model to generate spatial interactions.

https://doi.org/10.1371/journal.pcbi.1007635.g001

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 4 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g001
https://doi.org/10.1371/journal.pcbi.1007635

types (AgentPT2D, AgentPT3D). By default, Point Agents have no radius and will not collide

with each other. This behavior can be useful for modeling phenomena such as the Brownian

motion of small particles, as visualized in Fig 2a. Spherical Agents extend Point Agents by add-

ing an additional radius variable and velocity component variables. These properties combined

with added functions for summing force vectors in response to overlap allow for a Newtonian

adhesion-repulsion spherical model of spatial agents. This behavior can be useful for modeling

tissue formation, as visualized in Fig 2b. A more complete description of the extension archi-

tecture of the Agent and Grid types is included in Fig D in S1 Text.

It is also possible to extend completed models using the same approach. For example, grids

and agents from published models can be used as a scaffold on which to do additional studies.

This allows for followup studies to focus on implementing whatever additional assumptions

and functionality they need, while leaving intact the base model code with all of its published

assumptions.

Language choice. In designing HAL we have tried to balance an adherence to perfor-

mance, memory management, simplicity, stability, and extensibility. The Java language itself

balances these considerations very well, making it a suitable basis for HAL. Commonly used

low-level languages such as C, C++, and FORTRAN will typically run at similar speeds or

faster than Java. However, these languages do not have the same safety guarantees as they per-

mit out-of-bounds memory accesses and memory leaks. Higher level languages, such as

Python, while more flexible and syntactically intuitive than Java, are typically significantly

slower. The fact that Java is entirely cross-platform is also ideal. Many other languages, includ-

ing the others mentioned above, don’t run on a virtual machine and require maintaining mul-

tiple versions of libraries for cross-platform compatibility, and may not perform identically

across platforms. Java is also one of the most commonly used and taught programming lan-

guages today, which helps facilitate the adoption of HAL by new users. Models can also be

built with HAL using any languages that can interop with Java: such as Scala, Groovy, Kotlin

and Clojure.

Simplicity and stability. An important design principle was to make HAL simple to use

without sacrificing performance. Simplicity makes HAL easy to learn and forces the

Fig 2. Off-lattice agent examples. Each example contains 1000 agents. (A)Example of 2D Point Agents modeling

Brownian motion. The Point Agents move freely and cannot collide. (B) Example of 2D Spherical Agents modeling a

growing cell colony. The agents will push apart from each other to a uniform density. Agent radii are shown as gray

circles around their centers. Examples Displayed using the OpenGL2DWindow object.

https://doi.org/10.1371/journal.pcbi.1007635.g002

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 5 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g002
https://doi.org/10.1371/journal.pcbi.1007635

components to be more generic, meaning that the same components can be applied to a

greater variety of modeling problems. There is also a consistency to each framework compo-

nent, such that learning to use some components is often sufficient to grasp the others, and

using them in combination is intuitive.

Another key design principle is stability, which is achieved in three ways:

Encapsulation. By providing safe interaction functions and preventing direct interaction with

component internals. For example, modelers are not permitted to directly

modify the position properties of agents. Instead, they must call the provided

movement functions that also update the grid position of the agents for future

spatial queries.

Defensive Programming. By including checks in functions for invalid inputs. The program

halts and throws an error message immediately when one of these problematic

inputs occurs, such as inputting a diffusion rate constant that is unstable, or

moving two unstackable agents to the same position. This allows the modeler

to see the problem as it arises, rather than seeing its effects later down the line.

While this may entail a small performance impact, it ensures that modelers are

rarely confused by the behavior of components, and prevents their

malfunction.

Testing. By testing HAL’s components. HAL’s algorithms are tested in a series of small test

programs. These tests help ensure confidence in the algorithm implementa-

tions. Unit tests verify three main areas: PDE algorithm accuracy, ABM aggre-

gate behavior, and mathematical utilities. We also verified L1, L2, and L1

convergence in time and space for the PDEGrid functions, and diffusion mod-

eled using the PopulationGrid(see Fig E—AZ in S1 Text).

Speed and memory management. Much of the performance capability of HAL comes

directly from its decentralized design. Having no built-in scheduler/underlying structure

means that there is comparatively little work that the program does that the modeler is

unaware of. This combined with the modular components and utilities allows modelers the

flexibility to incorporate only the functionality that they need.

HAL also prioritizes performance in its algorithmic implementation. HAL includes efficient

PDE solving algorithms, such as the ADI (alternating direction implicit) method, and uses effi-

cient distribution sampling algorithms (see the Unit Tests section of S1 Text). The integrated

visualization tools are also highly efficient, using Swing BufferedImages for lattice-based visu-

alization, and LWJGL OpenGL for 2D and 3D polygon graphics. Whenever possible, primi-

tives and arrays are used to store data rather than classes, which takes advantage of Java’s

optimization for these simpler data types. Java is also an inherently fast language, which helps

efficiently execute agent behavioral logic.

There is a memory footprint consideration with most of HAL’s assets. A common criticism

of Java applications is that they tend to use a lot of memory and are slowed down by Java’s

“garbage collector” which deletes objects that are no longer being used. To sidestep these

memory issues, most of the objects generated internally by HAL are recycled rather than dis-

carded. This reuse also has a performance benefit: if a function using the same object is called

many times sequentially, the object will be faster to access in the computer’s memory because

it was already cached from the earlier calls.

A key example of this reuse: when agents die and are removed from the model during a

simulation run, the removed agents are kept internally and will be returned again for

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 6 / 28

https://doi.org/10.1371/journal.pcbi.1007635

re-initialization when a new agent is requested. Agent recycling ensures that the number of

agents that the model creates over a complete model run is capped to the maximum popula-

tion that exists in the model at one time.

We profiled the performance scaling of our On-Lattice and Spherical Agent Types, as well

as our ADI agorithm, and they all scale approximately linearly up to around 10 million agents

and diffusible lattice points, after which memory constraints become prohibitive. (see Fig A—

C in S1 Text).

Component overview

We now move from the abstract discussion of the unifying principles behind HAL to a look at

its core components in more detail. Although it may seem that learning how to use these com-

ponents would be a difficult task given their number and variety, all components were

designed with a consistent API (Application Programming Interface), which makes changing

between agent/grid types and learning their methods much easier.

AgentGrids. AgentGrids are used as spatial containers for agents. They come in 1D, 2D,

3D, and non-spatial types. An example usage of a 3D AgentGrid is shown in Fig 3. These

objects hold populations of agents that exist either bound to a lattice, or are free to move con-

tinuously. Internally, AgentGrids are composed of two data-structures: an agent list for agent

iteration, and an agent lattice for spatial queries (even off-lattice agents are stored on a lattice

for quick access). The agent list can be shuffled at every iteration to randomize iteration order,

and the list holds onto removed agents to facilitate object recycling.

Fig 3. An example of a 3D on-lattice hybrid model of tumor cells spreading through tissue (located in Examples/

5Example3D). The light red vertical lines represent vessels, and the blue dots represent tumor cells. The cell color goes

from pink to blue depending on how much oxygen is locally available. The oxygen availability is also indicated via a

heatmap on the floor of the display. With a cell radius of 10 μm, the domain has dimensions 1.6 × 1.6 × 0.4 mm.

Displayed using the OpenGL3DWindow object.

https://doi.org/10.1371/journal.pcbi.1007635.g003

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 7 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g003
https://doi.org/10.1371/journal.pcbi.1007635

Agents. There are 10 base types of agent, introduced in Table 2. The SQ and PT suffixes

refer to whether the agents are imagined to exist as lattice bound squares/voxels, or as non-vol-

umetric points in space.

Agent objects are always bound to a grid. In their base class form, agents keep track of their

position on the grid and their age. Newly created agents are not included in the same iteration

loop in which they are created, to prevent infinite loops of “runaway proliferation.” The base

agent classes can be extended to include additional state properties and methods as needed.

PDEGrids. The PDE Grids consist of either a 1D, 2D, or 3D lattice of concentrations.

PDE grids contain functions that will solve reaction-diffusion equations. PDE function opera-

tions are accumulated on a separate lattice so they can be applied all at once in a simultaneous

update. Currently implemented PDE solution methods include:

• Forward difference in time and 2nd order central difference in space diffusion

• ADI Diffusion [39]

• 1st order upwind finite difference advection for incompressible flows [40]

• 1st order finite volume upwind advection for compressible flows

• Modification of values at single lattice positions to facilitate reaction with agents or other

sources/sinks.

Most of these methods are flexible, allowing for spatially heterogeneous diffusion rates and

advection velocities as well as different boundary conditions such as periodic, Dirichlet, and

zero-flux Neumann.

PopulationGrids. When dealing with large numbers of cells, especially at the tissue scale,

it is often useful to model the spatial-temporal cellular dynamics as densities using PDEs [41–

43]. This approach is effective in modeling dynamics at the population level, however it does

not directly represent individuals nor rare stochastic events. To bridge between PDE modeling

and agent-based stochasticity, we introduce the PopulationGrid. The PopulationGrid is similar

to the AgentGrid, but stores homogeneous populations at each lattice position rather than

storing individual agents. The Binomial and Multinomial functions are used to update the

populations in response to probabilistic events [35]. These events may consist of migration,

proliferation, death, or changes in agent state (eg. mutation). The benefit of this type of grid is

that it can efficiently handle arbitrarily large populations at each lattice position (up to the

Table 2. The 10 base agent types in HAL. The differences between them are displayed in each column. Stackable refers to whether multiple agents can exist on the same

lattice position. The complete type heirarchy used in HAL is described in Fig D in S1 Text.

Name Spatial Dimension Lattice Bound Stackable

Agent0D 0 N/A N/A

AgentSQ1D 1 yes yes

AgentSQ1Dunstackable 1 yes no

AgentPT1D 1 no yes

AgentSQ2D 2 yes yes

AgentSQ2Dunstackable 2 yes no

AgentPT2D 2 no yes

AgentSQ3D 3 yes yes

AgentSQ3Dunstackable 3 yes no

AgentPT3D 3 no yes

https://doi.org/10.1371/journal.pcbi.1007635.t002

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 8 / 28

https://doi.org/10.1371/journal.pcbi.1007635.t002
https://doi.org/10.1371/journal.pcbi.1007635

maximum size of a Java Long� 9 × 1018). The downside is that all of the agents at one lattice

position in a given PopulationGrid are considered identical. Changes in agent state can be

implemented by shifting populations between multiple PopulationGrids or between lattice

positions. Fig 4 demonstrates how this approach may be used to model stochastic occurrences

of very unlikely events over large populations, such as specific driver mutations occurring in a

growing tumor.

Graphical User Interface (GUI). The GUI building system consists of the following

components:

• UIWindow: a window that displays GUI sub-components which are added in columns. the

UIWindow will automatically scale to the appropriate size to fit all sub-components. The fol-

lowing five sub-components can be added:

• UIGrid: a grid of pixels whose values are set individually. These are typically used to plot

agent positions and diffusible concentrations, and can be easily output in GIF or PNG

formats.

• UIPlot: an extension of the UIGrid, the UIPlot is used to create real-time plots. The UIPlot

will automatically resize to fit points that fall out of its bounds.

• UILabel: a label that presents modifiable text.

• UIButton: a button that executes a function when clicked

• UIInputFields: various fields that accept bounded input of Integers, Doubles, Strings, Boo-

leans, File Creation/Selection, and Combo boxes

• Window2DOpenGL/Window3DOpenGL: visualization windows that use OpenGL to effi-

ciently render polygon graphics.

• GridWindow: A shortcut to generate a UIWindow with a single UIGrid component embed-

ded. This simple component is used in the results section example.

• GifMaker: An object that can turn UIGrid visualization snapshots into GIFs [44].

Fig 4. An example PopulationGrid model of tumor growth and mutation in 2D (located in Examples/PopulationTumor). At the start 1000

cells are placed in the center of the domain. Cells turn over and migrate over time. Two fitness-increasing mutations are possible, and can occur

with probability 2 × 10−6 per cell division. The colors white, red, green, and blue indicate density of cells with no mutations, one mutation, the

other mutation, and both mutations respectively. Each lattice position in the domain has a carrying capacity of 100,000 cells. If we assume that

cells are growing in cubic volumes, then each position represents an overall area of 1 mm3 for a total domain size of 150 × 150 × 1 mm.

Displayed using the GridWindow object.

https://doi.org/10.1371/journal.pcbi.1007635.g004

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 9 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g004
https://doi.org/10.1371/journal.pcbi.1007635

An example GUI that uses the UIWindow with embedded UIButtons, InputFields, UILa-

bels, and a UIGrid is shown in Fig 5.

Utilities. The Util and Rand classes are used with almost every project. The Util class con-

sists of a collection of standalone functions that solve common problems such as: Generating

colors for use with the visualization tools, array manipulation, generating coordinate neigh-

borhoods (e.g. Von Neumann, Moore, Hex, Triangular), spatial mathematical operations,

multicore parallelization (typically used to run many models in parallel for parameter sweeps),

functions to save and load model states, etc. The Rand class is used for generating random

numbers and for sampling distributions (e.g. Gaussian, Poisson, Binomial, Multinomial—cre-

ated using code adapted from the Colt and NumPy open source libraries [46, 47]) See the man-

ual for more information [38].

Tools. A set of miscellaneous tool objects are included to help with specific modeling

tasks, these include:

• A FileIO object that is used to read input files and output results. The object supports charac-

ter and binary formats, and contains shortcuts for reading and writing delimiter separated

values.

• A GenomeTracker object that internally stores phylogeny information in a searchable tree

structure, and can be used to model branching processes.

Fig 5. An example UIWindow GUI. When the “Run” UIButton (bottom left) is clicked, the UIGrid component

(right) displays a running model that is parameterized with the given UIInputField settings (left). In this example

model based on [45], the red cells are stem cells, and the blue cells are differentiated cells. Differentiated cells have a

limited number of divisions and therefore can only spread a limited distance from the stem cells. UILabels (top) show

the current timestep and population size. With a cell radius of 10 μm, the domain has dimensions 4 × 4 mm.

https://doi.org/10.1371/journal.pcbi.1007635.g005

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 10 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g005
https://doi.org/10.1371/journal.pcbi.1007635

• An ODESolver object that can solve ODEs numerically using Euler, Runge-Kutta 4, and

Runge-Kutta-Fehlberg 4,5 integration.

• A Multi-Well Experiment object that uses multi-threading to run and display many models

simultaneously. The modeler simply creates an array of initialized models, defines an update

and draw step, and can then feed many models into the Multi-Well experiment object and

observe divergences in dynamics. This allows modelers to intuitively seed different models or

replicates of the same conditions and observe differences in their behavior over time, see Fig 6.

• An InteractiveModel object that embeds models in a graphical user interface from which the

modeler can schedule modifications to parameters, such as treatment application, and inter-

act with their model in real time. Modelers may also rewind execution to adjust settings,

helping them to more quickly understand their model dynamics, and identify useful drug

combinations and schedules. The InteractiveModel GUI uses a UIPlot object for the time-

line, as well as several UIGrids and UIButtons for other interactive components. This tool

was used as part of the development of the Cancer Crusade game [48] to test the effects of

therapy on a model by Robertson-Tessi et al. [17], see Fig 7.

Fig 6. Example of a 10x10 Multi-Well experiment where evolutionary competition of two phenotypes (red,green)

shows divergent results with different random seeds. Models are separated with red lines. With a cell radius of

10 μm, each well has a domain size of 2 × 2 mm.

https://doi.org/10.1371/journal.pcbi.1007635.g006

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 11 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g006
https://doi.org/10.1371/journal.pcbi.1007635

Results: Competitive release model

To demonstrate how the aforementioned principles and components of HAL are applied, we

consider a simple but complete example of hybrid modeling. We implement the model of

Fig 7. An example of the InteractiveModel object, which allows the modeler to experiment with treatment

strategies using a model by Robertson-Tessi et al. [17]. (A) A spatial visualization of the current model state. (B) A

control panel of UIButtons allows the user to quickly restart the model, pause execution, clear all treatments, and undo

previous changes. Hotkeys for these controls are in brackets. (C) A Speed Control option allows the user to easily

adjust the execution speed of the model to range from evaluating as fast as possible to taking a second between

timesteps, allowing for careful observation of model dynamics. (D) A timeline that will plot timestep information so

that the user may observe aggregate changes over time in response to treatment. The user may also click anywhere in

the timeline to backtrack to a previous time point and replay the model from there. The timeline will also automatically

backtrack to recalculate any necessary frames when a treatment schedule change is made. (E) A set of sliders that allow

the user to select different treatment intensities for each drug. (F) Each horizontal bar parallels the simulation timeline

and displays the schedule of a different treatment. Modelers can click on regions within these bars to change regions to

a new treatment intensity selected in (E). Modelers may also use the hotkeys presented in (E) to apply the selected

intensities in real time as the model runs.

https://doi.org/10.1371/journal.pcbi.1007635.g007

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 12 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g007
https://doi.org/10.1371/journal.pcbi.1007635

pulsed therapy based on a recent publication by Gallaher et al. [19]. We also showcase the flexi-

bility that the modular component approach brings by displaying three different parameteriza-

tions of the same model side by side.

Competitive release introduction

The model in [19] describes two competing tumor-cell phenotypes: a rapidly dividing, drug-

sensitive phenotype and a slower dividing, drug-resistant phenotype. There is also a diffusible

drug that enters the system through the domain boundaries and is consumed by the tumor

cells over time.

Every timestep (“tick”) each cell has a probability of death and a probability of division. The

division probability depends on phenotype (resistant cells divide less frequently) and the avail-

ability of space (cells will divide only if there is an open space in the nearest eight grid square

neighborhood or Moore neighborhood). Sensitive cells have a death rate that increases when

the cells are exposed to drug, while resistant cells have a constant death rate. With a cell radius

of 10 μm, the domain size is 100 by 100 cells, or 4 mm2. The model runs for 10000 time steps,

where each time step represents 2 hours, approximately 2.3 years.

The modular design of HAL allows us to test 3 different treatment conditions, each with an

identical starting tumor (no drug, constant drug, and pulsed drug). An interesting outcome of

the experiment is that pulsed therapy is better at managing the tumor than constant therapy.

Under pulsed therapy the sensitive population is kept in check, while still competing spatially

with the resistant phenotype and preventing its expansion. The rest of the section describes in

detail how this abstract model is generated.

Fig 8 provides a high level look at the structure of the code. Bold font indicates where a sec-

tion of the coding example is called. Table 3 provides a quick reference for the built-in HAL

functions used in this example. Any functions that are used by the example but do not exist in

the table are defined within the example itself and explained in detail below the code. Those

fluent in Java may be able to understand the example just by reading the code and using

Table 3. Built-in HAL functions and classes are highlighted in bold in the following source

code to make identifying HAL’s components easier.

Main function

We first examine the ‘main’ function for a bird’s-eye view of how the program is structured.

Source code elements highlighted in red are built-in HAL functions and objects, and can be

referenced in Table 3.
1 public static void main(String[] args) {
2 //setting up starting constants and data collection
3 int x = 100, y = 100, visScale = 5, tumorRad = 10, msPause = 5;
4 double resistantProb = 0.5;
5 GridWindow win = new GridWindow(“Competitive Release”, x � 3, y,
visScale);
6 FileIO popsOut = new FileIO(“populations.csv”, “w”);
7 //setting up models
8 ExampleModel[] models = new ExampleModel[3];
9 for (int i = 0; i < models.length; i++) {
10 models[i] = new ExampleModel(x, y, new Rand(0));
11 models[i].InitTumor(tumorRad, resistantProb);
12 }
13 models[0].DRUG_DURATION = 0;//no drug
14 models[1].DRUG_DURATION = 200;//constant drug
15 //Main run loop
16 for (int tick = 0; tick < 10000; tick++) {

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 13 / 28

https://doi.org/10.1371/journal.pcbi.1007635

17 win.TickPause(msPause);
18 for (int i = 0; i < models.length; i++) {
19 models[i].ModelStep(tick);
20 models[i].DrawModel(win, i);
21 }
22 //data recording
23 popsOut.Write(models[0].Pop() + “,” + models[1].Pop() + “,” +

models[2].Pop() + “\n”);
24 if(tick%(int)(10/models[0].TIMESTEP) == 0) {
25 win.ToPNG(“ModelsDay” + (int)(tick � models[0].TIMESTEP) +

“.png”);

Fig 8. (A) Example program flow diagram. Bold font indicates where coding example sections are first called. (B)

CellStep function flow diagram.

https://doi.org/10.1371/journal.pcbi.1007635.g008

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 14 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g008
https://doi.org/10.1371/journal.pcbi.1007635

26 }
27 }
28 //closing data collection
29 popsOut.Close();
30 win.Close();
31 }

Lines 3-4. Defines all of the constants that will be needed to setup the model and display.

5. Creates a GridWindow of RGB pixels for visualization and for generating timestep

PNG images. x�3, y define the dimensions of the pixel grid. the x variable is multiplied

Table 3. HAL functions used in the example. Each function is a method of a particular object, meaning that when the function is called it may use properties that pertain

to the object that it is called from.

Function Object Action

NewAgentSQ(INDEX) AgentGrid2D Returns a new agent, placed at the center of the square at the provided position INDEX.

ShuffleAgents(RNG) AgentGrid2D Usually called after every timestep to shuffle the order of agent iteration.

GetTick() AgentGrid2D Returns the current grid timestep.

ItoX(INDEX), ItoY(INDEX) AgentGrid2D Converts from a grid position INDEX into the x and y components that point to the same grid position.

MapHood(NEIGHBORHOOD,X,Y) AgentGrid2D Finds all position indices in the provided neighborhood, centered around X,Y that don’t fall out of bounds of the

AgentGrid2D. Writes these indices into the NEIGHBORHOOD argument, and returns the number that were

found.

MapEmptyHood

(NEIGHBORHOOD)

AgentSQ2D Finds all position indices in the provided neighborhood, centered around the agent, that do not have an agent

occupying them. Writes these indices into the NEIGHBORHOOD argument, and returns the number that were

found.

G AgentSQ2D Gets the grid that the agent occupies.

Isq() AgentSQ2D Gets the position index of the grid square that the agent occupies.

Dispose() AgentSQ2D Removes the agent from the grid and from iteration.

Get(INDEX) PDEGrid2D Returns the concentration of the PDE field at the given index.

Mul(INDEX, VALUE) PDEGrid2D Multiplies the concentration at the given INDEX by VALUE and adds the result to the current concentration

when Update() is called

DiffusionADI(RATE) PDEGrid2D Applies diffusion using the ADI method with the rate constant provided. A reflective boundary is assumed. The

result is applied when Update() is called.

DiffusionADI(RATE,

BOUNDARY_COND)

PDEGrid2D Applies diffusion using the ADI method with the RATE constant provided. The BOUNDARY_COND value

diffuses from the grid borders. The result is applied when Update() is called.

Update() PDEGrid2D Applies all state changes simultaneously to the PDEGrid

SetPix(INDEX, COLOR) GridWindow Sets the color of a pixel.

TickPause(MILLISECONDS) GridWindow Pauses the program between calls to TickPause. The function automatically subtracts the time between calls

from MILLISECONDS to ensure a consistent timestep rate for visualization.

ToPNG(FILENAME) GridWindow Writes out the current state of the UIWindow to a PNG image file.

Close() GridWindow Closes the GridWindow.

ProbScale(PROB, DURATION) Util Scales the probability that an event will occur in 1 unit of time to the probability that the event will occur at least

once in the DURATION.

RGB(RED, GREEN, BLUE) Util Returns an integer with the requested color in RGB format. This value can be used for visualization.

HeatMapRGB(VALUE) Util Maps the VALUE argument (assumed to be between 0 and 1) to a color in the heat colormap.

CircleHood(INCLUDE_ORIGIN,

RADIUS)

Util Returns a set of coordinate pairs that define the neighborhood of all squares whose centers are within the

RADIUS distance of the center (0, 0) origin square. The INCLUDE_ORIGIN argument specifies whether to

include the origin in this set of coordinates.

MooreHood(INCLUDE_ORIGIN) Util Returns a set of coordinate pairs that define a Moore neighborhood around the (0, 0) origin square. The

INCLUDE_ORIGIN Boolean specifies whether we intend to include the origin in this set of coordinates.

Write(STRING) FileIO Writes the STRING to the output file.

Close() FileIO Closes the output file.

Double() Rand Generates a random double value in the range [0 − 1)

https://doi.org/10.1371/journal.pcbi.1007635.t003

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 15 / 28

https://doi.org/10.1371/journal.pcbi.1007635.t003
https://doi.org/10.1371/journal.pcbi.1007635

by 3 so that 3 models can be visualized side by side in the same window. The last argu-

ment is a scaling factor that specifies that each pixel on the grid will be viewed as a 5x5

square of pixels on the screen.

6. Creates a file output object that will write to a file called populations.csv.

8. Creates an array with 3 entries that will be populated with models.

9-12. Fills the model list with models that are initialized identically, with identical random

number generators. Each model will hold and update its own cells and diffusible drug.

See the Grid Definition and Constructor section and the InitTumor Function section

for more details.

13-14. Setting the DRUG_DURATION constant creates the only difference in the 3 models

being compared. In models[0] no drug will be administered. In models[1] drug

administration will be constant (DRUG_DURATION is set equal to DRUG_CYCLE).

In models[2] drug will be administered periodically (the default value of DRUG_-

DURATION is 40). See the ExampleModel Constructor and Properties section for the

default model initialization.

16. Executes the main loop for 10000 timesteps.

17. Requires every iteration of the loop to take a minimum number of milliseconds. This

slows down the execution and display of the model and makes it easier for the viewer

to follow.

18. Loops over all models to update them.

19. Advances the state of the agents and diffusibles in each model by one timestep. See the

Model Step Function for more details.

20. Draws the current state of each model to the window. See the Draw Model Function

for more details.

23. Writes the population sizes of each model every timestep to allow the models to be

compared.

24-25. Every 10 days, writes the state of the model as captured by the GridWindow to a PNG

file.

29-30. After the main for loop has finished, the FileIO object and the visualization window

are closed, and the program ends.

ExampleModel constructor and properties

This section explains how the grid is defined and instantiated.
1 public class ExampleModel extends AgentGrid2D<ExampleCell> {
2 //model constants
3 public final static int RESISTANT = RGB (0, 1, 0), SENSITIVE = RGB

(0, 0, 1);
4 public double TIMESTEP = 2.0/24;//2 hours per timestep
5 public double SPACE_STEP = 20;//um
6 public double DIV_PROB_SEN = ProbScale (0.5, TIMESTEP);
7 public double DIV_PROB_RES = ProbScale (0.2, TIMESTEP);
8 public double DEATH_PROB = ProbScale (0.02, TIMESTEP);
9 public double DRUG_DEATH = ProbScale (0.8, TIMESTEP);

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 16 / 28

https://doi.org/10.1371/journal.pcbi.1007635

10 public double DRUG_START = 20/TIMESTEP;
11 public double DRUG_PERIOD = 15/TIMESTEP;
12 public double DRUG_DURATION = 2/TIMESTEP;
13 public double DRUG_UPTAKE = −0.03 �TIMESTEP;
14 public double DRUG_DIFF_RATE = 0.02�60�60�24�(TIMESTEP/

(SPACE_STEP�SPACE_STEP));
15 public double DRUG_BOUNDARY_VAL = 1.0;
16 //internal model objects
17 public PDEGrid2D drug;
18 public Rand rng;
19 public int [] divHood = MooreHood (false);
20
21 public ExampleModel (int xDim, int yDim, Rand rng) {
22 super (xDim, yDim, ExampleCell.class);
23 this.rng = rng;
24 drug = new PDEGrid2D(xDim, yDim);
25 }

1. The ExampleModel class, which is user defined and specific to this example, is built by

extending the generic AgentGrid2D class. The extended grid class requires an agent

type parameter, which specifies the type of agent that will live on the grid. To meet this

requirement, the <ExampleCell> type parameter is added to the declaration.

3. Defines RESISTANT and SENSITIVE constants, which are created by the Util RGB

function. These constants serve as both colors for drawing and as labels for the differ-

ent cell types.

4-5. All grids in HAL assume unit spatial dimensions, and operations such as diffusion

assume unit timesteps. This means that all rate/probability constants should be scaled

such that when applied, they operate at a consistent resolution chosen for the grids.

6-9. Probabilistic constants are scaled from their original probabilities (per day) into prob-

abilities per 2 hours, such that the expected value per day is the same.

10-12. Defines treatment application constants. These values can be reassigned after

model creation to test different treatment schedules. In the main function, the

DRUG_DURATION variable is modified for the Constant-Drug, and Pulsed Ther-

apy experiment cases.

13-15. Defines the PDE constants, the DRUG_DIFF_RATE is scaled from um2/second to

um2/day, and is then scaled by the timestep and space-step.

17. Declares that the model will contain a PDEGrid2D, which will hold the drug concen-

trations. The PDEGrid2D can only be initialized when the x and y dimensions of the

model are known, which is why we do not create the PDEGrid2D object until the con-

structor function is called.

18. Declares that the Grid will contain a Random number generator (the Rand object),

but takes it in as a constructor argument to allow the modeler to seed the generator if

desired for consistent output.

19. Creates a neighborhood using the MooreHood function. The MooreHood function

generates a set of coordinates that define the Moore Neighborhood (the 8 closest coor-

dinates to a central origin), centered around (0, 0). The false argument declares that

we do not want to include the origin in the neighborhood, just the 8 coordinates

around that position. The neighborhood is stored in the format [0102, . . ., 0n, x1, y1, x2,

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 17 / 28

https://doi.org/10.1371/journal.pcbi.1007635

y2, . . ., xn, yn]. The leading zeros are written to when MapHood is called, and will store

the position indices that the neighborhood maps to. See the CellStep function for

more information, and the InitTumor Function Line 3 for another example of the use

of neighborhoods

21. Defines the model constructor, which takes as arguments the x and y dimensions of

the model and a random number generator (a Rand object).

22. Calls the AgentGrid2D constructor with super, passing it the x and y dimensions of

the model, and the ExampleCell Class. This Class is used by the Grid to generate a new

cell when the NewAgentSQ function is called.

23-24. The Rand argument is assigned and the drug PDEGrid2D is defined with matching

dimensions.

InitTumor function

The next segment of code is a function from the ExampleModel class that defines how the

tumor is first seeded after the ExampleModel is created.
1 public void InitTumor(double radius, double resistantProb) {
2 //get a list of indices that fill a circle at the center of the

grid
3 int[] tumorNeighborhood = CircleHood(true, radius);
4 int hoodSize = MapHood(tumorNeighborhood, xDim / 2, yDim / 2);
5 for (int i = 0; i < hoodSize; i++) {
6 if (rng.Double () < resistantProb) {
7 NewAgentSQ(tumorNeighborhood[i]).type = RESISTANT;
8 } else {
9 NewAgentSQ(tumorNeighborhood[i]).type = SENSITIVE;
10 }
11 }
12 }

1. The arguments passed to the InitTumor function are the approximate radius of the cir-

cular tumor being created and the probability that each created cell will be of the resis-

tant phenotype.

3. Sets the tumorNeighborhood array using the CircleHood function, which stores

coordinates in the form [01, 02, . . ., 0n, x1, y1, x2, y2, . . .xn, yn]. The x,y coordinate

pairs define a neighborhood of all squares whose centers are within the radius dis-

tance of the center (0, 0) origin square. The leading 0s are used by the MapHood

function to store the mapped indices. The Boolean argument specifies that the origin

will be included in this set of squares, thus making a completely filled circle of

squares.

4. Uses the MapHood function to map the neighborhood defined above to be centered

around xDim/2,yDim/2 (the dimensions of the AgentGrid). The results of the map-

ping are written as position indices to the beginning of the tumorNeighborhood array.

MapHood returns the number of valid indices found, and this will be the size of the

starting population.

5. Loops from 0 to hoodSize, allowing access to each mapped position index in the

tumorNeighborhood.

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 18 / 28

https://doi.org/10.1371/journal.pcbi.1007635

6. Samples a random number in the range [0 − 1) and compares to the resistantProb

argument to set whether the cell should have the resistant phenotype or the sensitive

phenotype.

7-9. Uses the NewAgentSQ function to place a new cell at each tumorNeighborhood posi-

tion. In the same line we also specify that the phenotype should be either resistant or

sensitive, depending on the result of the rng.Double() call.

ModelStep function

This section looks at the model’s step function which is executed once per timestep by each

Model.
1 public void ModelStep(int tick) {
2 ShuffleAgents(rng);
3 for (ExampleCell cell: this) {
4 cell.CellStep();
5 }
6 double periodTick = (tick − DRUG_START) % DRUG_PERIOD;
7 if (periodTick > 0 && periodTick < DRUG_DURATION) {
8 //drug will enter through boundaries
9 drug.DiffusionADI(DRUG_DIFF_RATE, DRUG_BOUNDARY_VAL);
10 } else {
11 //drug will not enter through boundaries
12 drug.DiffusionADI(DRUG_DIFF_RATE);
13 }
14 drug.Update();
15 }

2. The ShuffleAgents function randomizes the order of iteration so that the agents are

always looped through in random order.

3-4. Iterates over every cell on the grid, and calls the CellStep function on every cell.

6-7. The periodTick variable stores at what point in the drug delivery cycle the tick is, and

the If statement checks whether the tick is in the right part of the drug cycle to apply

drug, (See the Grid Definition and Constructor section for the values of the constants

involved, the DRUG_DURATION variable is set differently for each model in the

Main Function)

9. If it is time to add drug to the model, the DiffusionADI function is called. Diffusio-

nADI uses the ADI method which is more stable than 2D Euler and allows us to take

larger steps. The additional argument to the DiffusionADI function specifies the

boundary condition value DRUG_BOUNDARY_VAL. This causes the drug to diffuse

into the PDEGrid2D from the boundary. Here we assume that drug is only delivered

from the boundaries of the domain

12. Without the second argument the DiffusionADI function assumes a zero-flux

boundary, meaning that drug concentration cannot escape or enter through the

sides of the model. Therefore the only way for the drug concentration to decrease

is via uptake by the Cells. See the CellStep function section, line 6, for more

information.

14. Update is called to apply the reaction and diffusion changes to the PDEGrid.

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 19 / 28

https://doi.org/10.1371/journal.pcbi.1007635

CellStep function and cell properties

We next look at how the ExampleCell Agent is defined and at the CellStep function that runs

once per Cell per timestep. The G property that is referenced many times in this section is a

built-in agent property that gives access to the ExampleGrid object that the cell lives on.
1 class ExampleCell extends AgentSQ2Dunstackable<ExampleModel> {
2 public int type;
3
4 public void CellStep() {
5 //uptake of Drug
6 G.drug.Mul(Isq(), G.DRUG_UPTAKE);
7 double deathProb, divProb;
8 //Chance of Death, depends on resistance and drug concentration
9 if (this.type == RESISTANT) {
10 deathProb = G.DEATH_PROB;
11 } else {
12 deathProb = G.DEATH_PROB + G.drug.Get(Isq()) � G.DRUG_DEATH;
13 }
14 if (G.rng.Double() < deathProb) {
15 Dispose();
16 return;
17 }
18 //Chance of Division, depends on resistance
19 if (this.type == RESISTANT) {
20 divProb = G.DIV_PROB_RES;
21 } else {
22 divProb = G.DIV_PROB_SEN;
23 }
24 if (G.rng.Double() < divProb) {
25 int options = MapEmptyHood(G.divHood);
26 if (options > 0) {
27 G.NewAgentSQ(G.divHood[G.rng.Int(options)]).type = this.

type;
28 }
29 }
30 }
31 }

1. The ExampleCell class is built by extending the generic AgentSQ2Dunstackable class.

The extended Agent class requires the ExampleModel class as a type argument, which

is the type of Grid that the Agent will live on. To meet this requirement, we add the

<ExampleModel> type parameter to the extension.

2. Defines a cell property called “type”. Each Cell holds a value for this field. If the value

is RESISTANT, the Cell is of the resistant phenotype, if the value is SENSITIVE, the

cell is of the sensitive phenotype. The RESISTANT and SENSITIVE values are defined

in the ExampleGrid as constants (See the ExampleModel Constructor and Properties,

line 3).

6. The G property is used to access the ExampleGrid object that the Cell lives on. G is

used often with agent functions as the AgentGrid is expected to contain any informa-

tion that is not local to the individual agent. Here it is used to get the drug PDE-

Grid2D. The drug concentration at the index that the Cell is currently occupying (Isq

()) is then multiplied by the drug uptake constant, thus modeling local drug uptake by

the Cell.

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 20 / 28

https://doi.org/10.1371/journal.pcbi.1007635

7. Defines deathProb and divProb variables, these will be assigned different values

depending on whether the ExampleCell is RESISTANT or SENSITIVE.

9-12. If the cell is resistant, the deathProb variable is set to the DEATH_PROB value alone,

if the cell is sensitive, an additional term is added to account for the probability of the

cell dying from drug exposure, using the concentration of drug at the cell’s position

(Isq())

14-16. Samples a random number in the range [0 − 1) and compares to deathProb to deter-

mine whether the cell will die. If so, the built-in agent Dispose() function is called,

which removes the agent from the grid, and then return is called so that the dead cell

will not divide.

19-22. Sets the divProb variable to either DIV_PROB_RES for resistant cells, or

DIV_PROB_SEN for sensitive cells.

24. Samples a random number in the range [0 − 1) and compares to divProb to determine

whether the cell will divide.

25. If the cell divides, the MapEmptyHood function is used, which checks the positions in

the divHood (the Moore neighborhood as defined in the ExampleModel Constructor

and Properties section, line 11) around the Cell, and writes the position indices that do

not contain any agents into the divHood. MapEmptyHood returns the number of

valid empty positions found.

26-27. If there are one or more valid division options, a new daughter cell is created using the

NewAgentSQ function and its starting location is chosen by randomly sampling the

divHood array to pull out one if its valid locations. The other daughter is assumed to

occupy the same location as the mother cell. Finally with the.type = this.type state-

ment, the phenotype of the newly placed daughter cell is inherited from the mother

cell.

DrawModel function

We next look at the DrawModel Function, which is used to display a summary of the model

state on a GridWindow object. In this program, DrawModel is called once for each model per

timestep; see the main function section for more information.
1 public void DrawModel(GridWindow vis, int iModel) {
2 for (int x = 0; x < xDim; x++) {
3 for (int y = 0; y < yDim; y++) {
4 ExampleCell drawMe = GetAgent(x, y);
5 if (drawMe != null) {
6 vis.SetPix(x + iModel � xDim, y, drawMe.type);
7 } else {
8 vis.SetPix(x + iModel � xDim, y, HeatMapRGB(drug.Get(x, y)));
9 }
10 }
11 }
12 }

2-3. Loops over every lattice position of the grid being drawn, xDim and yDim refer to the

dimensions of the model.

4. Uses the GetAgent function to get the Cell that is at the x,y position.

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 21 / 28

https://doi.org/10.1371/journal.pcbi.1007635

5-6. If a cell exists at the requested position, the corresponding pixel on the GridWindow is

set to the cell’s phenotype color. To draw the models side by side, the pixel being

drawn is displaced to the right by the model index.

7-8. If there is no cell to draw, then the pixel color is set based on the drug concentration at

the same index, using the built-in heat colormap.

Imports

The final code snippet looks at the imports that are needed. Any modern Java IDE should gen-

erate import statements automatically.
1 package Examples._6CompetitiveRelease;
2 import HAL.GridsAndAgents.AgentGrid2D;
3 import HAL.GridsAndAgents.PDEGrid2D;
4 import HAL.Gui.GridWindow;
5 import HAL.GridsAndAgents.AgentSQ2Dunstackable;
6 import HAL.Tools.FileIO;
7 import HAL.Rand;
8 import static Examples._6CompetitiveRelease.ExampleModel.�;
9 import static HAL.Util.�;

1. The package statement specifies where the file exists in the larger project structure

2-7. Imports all of the classes that we will need for the program.

8. Imports the static fields of the model so that we can use the type names defined there

in the Agent class.

9. Imports the static functions of the Util file, which adds all of the Util functions to the

current namespace, so we can natively call them. Statically importing Util is recom-

mended for every project.

Model results

Fig 10 displays the model visualization at Day 0, Day 20, Day 200, Day 500, and Day 650

recorded from the GridWindow ToPNG function. Fig 9 displays the population sizes as

recorded by the FileIO Write function at the end of every timestep.

This example illustrates the power of HAL’s approach to model building. Writing relatively

little complex code, we setup a three model experiment with nontrivial dynamics along with

methods to collect data and visualize the models. We now briefly review the model results.

As can be seen in Fig 10, at Day 0 and Day 20 (right before drug application starts), all 3

models are identical. At Day 200 the differences in treatment application show different effects:

when no drug is applied, the rapidly dividing sensitive cells quickly fill the domain, while

when drug is applied constantly, the resistant cells start to overtake the sensitive population.

Pulsed drug kills some sensitive cells, but leaves enough alive to prevent growth of the resistant

cells. At Day 500, the resistant cells have begun to emerge from the center of the pulsed drug

model. At Day 650, all domains are filled.

As can be seen in Fig 9, the pulsed therapy is the most effective at preventing tumor growth

long-term, however the resistant cells ultimately succeed in breaking out of the tumor center

and out-competing the sensitive cells on the fringes of the tumor. It may be possible to contain

a population of sensitive and resistant cells for longer by using a different pulsing schedule or

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 22 / 28

https://doi.org/10.1371/journal.pcbi.1007635

by modifying the treatment schedule in response to the tumor growth (adaptive therapy). As

the presented model is primarily an example, we do not explore how to improve treatment fur-

ther. For a more detailed exploration of the potential of adaptive therapy for prolonging com-

petitive release, see [19].

Availability and future directions

How to download and contribute

HAL is publicly available on GitHub, at https://github.com/MathOnco/HAL. A manual is

included that walks the user through installation and serves as a coding reference. For those

interested in using HAL, downloading and setting up the project is a good first start. From

there running and examining the included examples is recommended, as they do a good job of

summarizing HAL’s capabilities. Modelers can contribute tools that they develop by making

pull requests to the repository.

Future directions

Cross model validation. Having many different paradigms to choose from adds several

complications to modeling: It can take significant effort to build a model from scratch under

one paradigm, and then significant additional effort to migrate the model to a different para-

digm. By adding more modeling approaches with a consistent interface, HAL will lower the

model migration barrier and allow modelers to test the merits of many paradigms in their

investigation, and to validate their results by seeing whether they hold true across paradigms

[49]. Note that our goal is not to recreate all of the functionality of the pre-existing frameworks

Fig 9. FileIO population output. This plot summarizes the changes in tumor burden over time for each model. This

plot was constructed using data accumulated in the program output populations.csv file. Displayed using the Java

XChart package.

https://doi.org/10.1371/journal.pcbi.1007635.g009

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 23 / 28

https://github.com/MathOnco/HAL
https://doi.org/10.1371/journal.pcbi.1007635.g009
https://doi.org/10.1371/journal.pcbi.1007635

that support these paradigms, it is to provide their core algorithms in an accessible and consis-

tent format so that users can easily choose from and compare them.

To take HAL’s modeling flexibility further we hope to incorporate additional modeling par-

adigms that are commonly used in agent-based modeling of cells. A potential addition is a

Fig 10. Selected model visualizations. Blue cells are drug sensitive, Green cells are drug resistant, background

heatmap colors show drug concentration. The model domain size is 100 by 100 cells, or 4 mm2

https://doi.org/10.1371/journal.pcbi.1007635.g010

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 24 / 28

https://doi.org/10.1371/journal.pcbi.1007635.g010
https://doi.org/10.1371/journal.pcbi.1007635

Voronoi Agent type, which would use Voronoi tessellation [50] to find the cell’s nearest neigh-

bors and determine cell volume. We are also considering including modeling paradigms that

construct cells out of smaller subunits, such as Deformable Ellipsoid Cell Modeling [51], as

this would allow us to model the mechanics of tissue formation and cell migration in more

detail.

Bridging spatial scales. We also hope to explore the possibility of adjusting spatial scales

for both our PDEs and Agents. For PDEs, this is a readily understood problem, and we intend

to add scalable PDEGrids to HAL soon. However, for agent-based modeling the process of

changing scales while preserving dynamics is not so well defined, though we imagine that it

may be possible under certain assumptions. This would be useful for helping us bridge the

divide between cell level and tissue/organ/tumor level dynamics, as the number of cells

involved at these scales are orders of magnitude greater than what desktop machines can trac-

tably model. The PopulationGrid modeling system is an example of this.

Assumption modules. A common modeling task is exploring how combinations of dif-

ferent assumptions influence model behavior. The included ModuleSetManager object helps

design models specifically with this in mind. The design entails providing code “hooks” so that

code can be added to influence specific agent decisions and model events, (e.g. whether an

agent will reproduce). Modelers can then write assumption modules that will influence these

events (e.g. by altering the probability of reproduction based on an environmental factor that

would otherwise be ignored).

This approach allows modelers to combine and remove assumption modules without hav-

ing to worry about breaking the model. This facilitates easy exploration of the space of assump-

tions until ones suitable for understanding biological phenomena are found. We are very

excited about the potential of this approach for collaborative projects and for building increas-

ingly complex models by encapsulating the complexity into manageable parts, and hope to

improve on the tools for this paradigm as we explore its potential.

Advanced scheduling. Taking inspiration from Repast, SWARM, and MASON, another

expected extension is the inclusion of optional schedulers to facilitate more complex methods

of iterating through agents than simply looping over each grid. This is not intended to replace

the simple grid iteration approach, but instead should augment it with optional complex meth-

ods. An AgentList object is currently included to begin to address this. It allows modelers to

make selective lists of agents for more flexible iteration.

Building a community. HAL has already seen adoption within the labs at the Integrated

Mathematical Oncology department of Moffitt Cancer Center and beyond. We certainly hope

that more outside users will be interested in its potential. As the user-base for HAL grows, we

plan to extend the base of resources around the platform. The current set of resources that

exist for new users to get started are the manual [38], a website with an online version of the

manual [52] and a playlist of YouTube videos [53]. We intend to increase HAL’s online pres-

ence by including a website with a code repository to make sharing models and tools easier.

Conclusion

Cancer is a complex and heterogeneous disease whose mathematical study is still being devel-

oped. To make better progress in this endeavor, it is helpful to have a set of highly generic tools

that encapsulate the key components of spatial modeling so that researchers can produce effi-

cient models quickly without being constrained in their approach, nor in the complexity of the

systems that they can produce. HAL is our attempt to achieve this.

HAL was made easily extensible so that researchers can build models and more specific

tools on top of HAL’s generic base. The hope is that by this process HAL will grow into a

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 25 / 28

https://doi.org/10.1371/journal.pcbi.1007635

powerful tool set that will help standardize and coordinate hybrid modeling in mathematical

oncology.

We recommend HAL to anyone building spatial models for oncology, as the tools pre-

sented are primarily geared toward this end. However, given the amount of overlap and cross

talk between the approaches used in different modeling applications, we hope that modelers

outside of mathematical oncology will also take interest and contribute, to our mutual benefit.

Supporting information

S1 Text. Supplementary materials.

(PDF)

Author Contributions

Conceptualization: Rafael R. Bravo, Alexander R. A. Anderson.

Funding acquisition: Mark Robertson-Tessi, Alexander R. A. Anderson.

Methodology: Rafael R. Bravo, Etienne Baratchart, Anna K. Miller, Jill Gallaher, Chandler D.

Gatenbee, Alexander R. A. Anderson.

Software: Rafael R. Bravo, Etienne Baratchart, Chandler D. Gatenbee.

Supervision: Alexander R. A. Anderson.

Validation: Rafael R. Bravo, Etienne Baratchart, Ryan O. Schenck, Anna K. Miller.

Visualization: Rafael R. Bravo, Jeffrey West, Ryan O. Schenck, David Basanta.

Writing – original draft: Rafael R. Bravo, Mark Robertson-Tessi, Alexander R. A. Anderson.

Writing – review & editing: Rafael R. Bravo, Etienne Baratchart, Jeffrey West, Anna K. Miller,

Jill Gallaher, Mark Robertson-Tessi, Alexander R. A. Anderson.

References
1. Anderson AR. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion.

Mathematical medicine and biology: a journal of the IMA. 2005; 22(2):163–186. https://doi.org/10.1093/

imammb/dqi005 PMID: 15781426

2. Rejniak KA, Anderson AR. Hybrid models of tumor growth. Wiley Interdisciplinary Reviews: Systems

Biology and Medicine. 2011; 3(1):115–125. https://doi.org/10.1002/wsbm.102 PMID: 21064037

3. Anderson AR, Chaplain M. Continuous and discrete mathematical models of tumor-induced angiogene-

sis. Bulletin of mathematical biology. 1998; 60(5):857–899. https://doi.org/10.1006/bulm.1998.0042

PMID: 9739618

4. Gerlee P, Anderson AR. An evolutionary hybrid cellular automaton model of solid tumour growth. Jour-

nal of theoretical biology. 2007; 246(4):583–603. https://doi.org/10.1016/j.jtbi.2007.01.027 PMID:

17374383

5. Norton KA, Gong C, Jamalian S, Popel AS. Multiscale agent-based and hybrid modeling of the tumor

immune microenvironment. Processes. 2019; 7(1):37. https://doi.org/10.3390/pr7010037 PMID:

30701168

6. Dormann S, Deutsch A. Modeling of self-organized avascular tumor growth with a hybrid cellular autom-

aton. In silico biology. 2002; 2(3):393–406. PMID: 12542422

7. Kim Y, Stolarska MA, Othmer HG. A hybrid model for tumor spheroid growth in vitro I: theoretical devel-

opment and early results. Mathematical Models and Methods in Applied Sciences. 2007; 17

(supp01):1773–1798. https://doi.org/10.1142/S0218202507002479

8. Sanga S, Frieboes HB, Zheng X, Gatenby R, Bearer EL, Cristini V. Predictive oncology: a review of mul-

tidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. Neuroimage.

2007; 37:S120–S134. https://doi.org/10.1016/j.neuroimage.2007.05.043 PMID: 17629503

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 26 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007635.s001
https://doi.org/10.1093/imammb/dqi005
https://doi.org/10.1093/imammb/dqi005
http://www.ncbi.nlm.nih.gov/pubmed/15781426
https://doi.org/10.1002/wsbm.102
http://www.ncbi.nlm.nih.gov/pubmed/21064037
https://doi.org/10.1006/bulm.1998.0042
http://www.ncbi.nlm.nih.gov/pubmed/9739618
https://doi.org/10.1016/j.jtbi.2007.01.027
http://www.ncbi.nlm.nih.gov/pubmed/17374383
https://doi.org/10.3390/pr7010037
http://www.ncbi.nlm.nih.gov/pubmed/30701168
http://www.ncbi.nlm.nih.gov/pubmed/12542422
https://doi.org/10.1142/S0218202507002479
https://doi.org/10.1016/j.neuroimage.2007.05.043
http://www.ncbi.nlm.nih.gov/pubmed/17629503
https://doi.org/10.1371/journal.pcbi.1007635

9. Basanta D, Anderson A. Homeostasis Back and Forth: An Ecoevolutionary Perspective of Cancer. Cold

Spring Harbor perspectives in medicine. 2017; 7(9). https://doi.org/10.1101/cshperspect.a028332

PMID: 28289244

10. Basanta D, Strand DW, Lukner RB, Franco OE, Cliffel DE, Ayala GE, et al. The Role of Transforming

Growth Factor-β–Mediated Tumor-Stroma Interactions in Prostate Cancer Progression: An Integrative

Approach. Cancer research. 2009; 69(17):7111–7120. https://doi.org/10.1158/0008-5472.CAN-08-

3957 PMID: 19706777

11. Kim E, Rebecca V, Fedorenko IV, Messina JL, Mathew R, Maria-Engler SS, et al. Senescent fibroblasts

in melanoma initiation and progression: an integrated theoretical, experimental, and clinical approach.

Cancer research. 2013;. https://doi.org/10.1158/0008-5472.CAN-13-1720

12. Anderson AR, Weaver AM, Cummings PT, Quaranta V. Tumor morphology and phenotypic evolution

driven by selective pressure from the microenvironment. Cell. 2006; 127(5):905–915. https://doi.org/10.

1016/j.cell.2006.09.042 PMID: 17129778

13. Araujo A, Cook LM, Lynch CC, Basanta D. An integrated computational model of the bone microenvi-

ronment in bone-metastatic prostate cancer. Cancer research. 2014; 74(9):2391–2401. https://doi.org/

10.1158/0008-5472.CAN-13-2652 PMID: 24788098

14. Scianna M, Bell C, Preziosi L. A review of mathematical models for the formation of vascular networks.

Journal of theoretical biology. 2013; 333:174–209. https://doi.org/10.1016/j.jtbi.2013.04.037 PMID:

23684907

15. Metzcar J, Wang Y, Heiland R, Macklin P. A review of cell-based computational modeling in cancer biol-

ogy. JCO clinical cancer informatics. 2019; 2:1–13. https://doi.org/10.1200/CCI.18.00069

16. Chamseddine IM, Rejniak KA. Hybrid modeling frameworks of tumor development and treatment. Wiley

Interdisciplinary Reviews: Systems Biology and Medicine. 2019; p. e1461. https://doi.org/10.1002/

wsbm.1461 PMID: 31313504

17. Robertson-Tessi M, Gillies RJ, Gatenby RA, Anderson AR. Impact of metabolic heterogeneity on tumor

growth, invasion, and treatment outcomes. Cancer research. 2015; 75(8):1567–1579. https://doi.org/

10.1158/0008-5472.CAN-14-1428 PMID: 25878146

18. Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evolutionary dynamics into treatment of

metastatic castrate-resistant prostate cancer. Nature communications. 2017; 8(1):1816. https://doi.org/

10.1038/s41467-017-01968-5 PMID: 29180633

19. Gallaher JA, Enriquez-Navas PM, Luddy KA, Gatenby RA, Anderson AR. Adaptive vs continuous can-

cer therapy: Exploiting space and trade-offs in drug scheduling. bioRxiv. 2017;.

20. Karolak A, Rejniak KA. Micropharmacology: an in silico approach for assessing drug efficacy within a

tumor tissue. Bulletin of mathematical biology. 2018; p. 1–19.

21. Alfonso J, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson K, et al. The biology and

mathematical modelling of glioma invasion: a review. Journal of the Royal Society Interface. 2017; 14

(136):20170490. https://doi.org/10.1098/rsif.2017.0490

22. Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P. PhysiCell: an open source

physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol. 2018; 14(2):e1005991.

https://doi.org/10.1371/journal.pcbi.1005991 PMID: 29474446

23. Hoehme S, Drasdo D. A cell-based simulation software for multi-cellular systems. Bioinformatics. 2010;

26(20):2641–2642. https://doi.org/10.1093/bioinformatics/btq437 PMID: 20709692

24. Kang S, Kahan S, McDermott J, Flann N, Shmulevich I. Biocellion: accelerating computer simulation of

multicellular biological system models. Bioinformatics. 2014; 30(21):3101–3108. https://doi.org/10.

1093/bioinformatics/btu498 PMID: 25064572

25. Cytowski M, Szymańska Z, Umiński P, Andrejczuk G, Raszkowski K. Implementation of an agent-

based parallel tissue modelling framework for the Intel MIC architecture. Scientific Programming. 2017;

2017. https://doi.org/10.1155/2017/8721612

26. Germann P, Marin-Riera M, Sharpe J. ya|| a: GPU-powered Spheroid Models for Mesenchyme and Epi-

thelium. Cell systems. 2019;. https://doi.org/10.1016/j.cels.2019.02.007 PMID: 30904379

27. Sütterlin T, Kolb C, Dickhaus H, Jäger D, Grabe N. Bridging the scales: semantic integration of quantita-

tive SBML in graphical multi-cellular models and simulations with EPISIM and COPASI. Bioinformatics.

2012; 29(2):223–229. https://doi.org/10.1093/bioinformatics/bts659 PMID: 23162085

28. Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA. Multi-scale modeling of tis-

sues using CompuCell3D. Methods in cell biology. 2012; 110:325. https://doi.org/10.1016/B978-0-12-

388403-9.00013-8 PMID: 22482955

29. Starruß J, de Back W, Brusch L, Deutsch A. Morpheus: a user-friendly modeling environment for multi-

scale and multicellular systems biology. Bioinformatics. 2014; 30(9):1331–1332. https://doi.org/10.

1093/bioinformatics/btt772 PMID: 24443380

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 27 / 28

https://doi.org/10.1101/cshperspect.a028332
http://www.ncbi.nlm.nih.gov/pubmed/28289244
https://doi.org/10.1158/0008-5472.CAN-08-3957
https://doi.org/10.1158/0008-5472.CAN-08-3957
http://www.ncbi.nlm.nih.gov/pubmed/19706777
https://doi.org/10.1158/0008-5472.CAN-13-1720
https://doi.org/10.1016/j.cell.2006.09.042
https://doi.org/10.1016/j.cell.2006.09.042
http://www.ncbi.nlm.nih.gov/pubmed/17129778
https://doi.org/10.1158/0008-5472.CAN-13-2652
https://doi.org/10.1158/0008-5472.CAN-13-2652
http://www.ncbi.nlm.nih.gov/pubmed/24788098
https://doi.org/10.1016/j.jtbi.2013.04.037
http://www.ncbi.nlm.nih.gov/pubmed/23684907
https://doi.org/10.1200/CCI.18.00069
https://doi.org/10.1002/wsbm.1461
https://doi.org/10.1002/wsbm.1461
http://www.ncbi.nlm.nih.gov/pubmed/31313504
https://doi.org/10.1158/0008-5472.CAN-14-1428
https://doi.org/10.1158/0008-5472.CAN-14-1428
http://www.ncbi.nlm.nih.gov/pubmed/25878146
https://doi.org/10.1038/s41467-017-01968-5
https://doi.org/10.1038/s41467-017-01968-5
http://www.ncbi.nlm.nih.gov/pubmed/29180633
https://doi.org/10.1098/rsif.2017.0490
https://doi.org/10.1371/journal.pcbi.1005991
http://www.ncbi.nlm.nih.gov/pubmed/29474446
https://doi.org/10.1093/bioinformatics/btq437
http://www.ncbi.nlm.nih.gov/pubmed/20709692
https://doi.org/10.1093/bioinformatics/btu498
https://doi.org/10.1093/bioinformatics/btu498
http://www.ncbi.nlm.nih.gov/pubmed/25064572
https://doi.org/10.1155/2017/8721612
https://doi.org/10.1016/j.cels.2019.02.007
http://www.ncbi.nlm.nih.gov/pubmed/30904379
https://doi.org/10.1093/bioinformatics/bts659
http://www.ncbi.nlm.nih.gov/pubmed/23162085
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
http://www.ncbi.nlm.nih.gov/pubmed/22482955
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
http://www.ncbi.nlm.nih.gov/pubmed/24443380
https://doi.org/10.1371/journal.pcbi.1007635

30. Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional extended Potts model.

Physical review letters. 1992; 69(13):2013. https://doi.org/10.1103/PhysRevLett.69.2013 PMID: 10046374

31. Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, et al. Chaste: an open source C

++ library for computational physiology and biology. PLoS computational biology. 2013; 9(3):e1002970.

https://doi.org/10.1371/journal.pcbi.1002970 PMID: 23516352

32. Tisue S, Wilensky U. Netlogo: A simple environment for modeling complexity. In: International confer-

ence on complex systems. vol. 21. Boston, MA; 2004. p. 16–21. Available from: https://ccl.

northwestern.edu/papers/netlogo-iccs2004.pdf.

33. Collier N. Repast: An extensible framework for agent simulation. The University of Chicagos Social Sci-

ence Research. 2003; 36:2003.

34. Luke S, Cioffi-Revilla C, Panait L, Sullivan K. Mason: A new multi-agent simulation toolkit. In: Proceed-

ings of the 2004 swarmfest workshop. vol. 8. Department of Computer Science and Center for Social

Complexity, George Mason University Fairfax, VA; 2004. p. 316–327. Available from: http://cobweb.cs.

uga.edu/~maria/pads/papers/mason-SwarmFest04.pdf.

35. Lampoudi S, Gillespie DT, Petzold LR. The multinomial simulation algorithm for discrete stochastic sim-

ulation of reaction-diffusion systems. The Journal of chemical physics. 2009; 130(9):094104. https://doi.

org/10.1063/1.3074302 PMID: 19275393

36. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, et al. The systems biology markup lan-

guage (SBML): a medium for representation and exchange of biochemical network models. Bioinfor-

matics. 2003; 19(4):524–531. https://doi.org/10.1093/bioinformatics/btg015 PMID: 12611808

37. Anderson A, Sleeman B, Young I, Griffiths B. Nematode movement along a chemical gradient in a struc-

turally heterogeneous environment: 2. Theory. Fundamental and applied nematology. 1997; 20(2):165–

172.

38. Bravo R. HAL Manual; 2018. Available from: https://github.com/MathOnco/HAL/blob/master/manual.pdf.

39. Peaceman DW, Rachford HH Jr. The numerical solution of parabolic and elliptic differential equations.

Journal of the Society for industrial and Applied Mathematics. 1955; 3(1):28–41. https://doi.org/10.

1137/0103003

40. Courant R, Isaacson E, Rees M. On the solution of nonlinear hyperbolic differential equations by finite

differences. Communications on Pure and Applied Mathematics. 1952; 5(3):243–255. https://doi.org/

10.1002/cpa.3160050303

41. Swanson KR, Alvord EC Jr, Murray J. A quantitative model for differential motility of gliomas in grey and

white matter. Cell proliferation. 2000; 33(5):317–329. https://doi.org/10.1046/j.1365-2184.2000.00177.x

PMID: 11063134

42. Ambrosi D, Preziosi L. On the closure of mass balance models for tumor growth. Mathematical Models

and Methods in Applied Sciences. 2002; 12(05):737–754. https://doi.org/10.1142/

S0218202502001878

43. Byrne H, Preziosi L. Modelling solid tumour growth using the theory of mixtures. Mathematical medicine

and biology: a journal of the IMA. 2003; 20(4):341–366. https://doi.org/10.1093/imammb/20.4.341

PMID: 14969384

44. Meister P. gifAnimation processing library; 2015. Available from: https://github.com/extrapixel/gif-

animation.

45. Poleszczuk J, Macklin P, Enderling H. Agent-based modeling of cancer stem cell driven solid tumor

growth. In: Stem Cell Heterogeneity. Springer; 2016. p. 335–346.

46. Oliphant TE. A guide to NumPy. vol. 1. Trelgol Publishing USA; 2006.

47. CERN. Colt; 2004. Available from: http://dst.lbl.gov/ACSSoftware/colt/.

48. Bravo R, Robertson-Tessi M, West J, Anderson AR. Cancer Crusade; 2018. Available from: https://

cancercrusadegame.com.

49. Kursawe J, Baker RE, Fletcher AG. Impact of implementation choices on quantitative predictions of

cell-based computational models. Journal of Computational Physics. 2017; 345:752–767. https://doi.

org/10.1016/j.jcp.2017.05.048

50. Bock M, Tyagi AK, Kreft JU, Alt W. Generalized voronoi tessellation as a model of two-dimensional cell

tissue dynamics. Bulletin of mathematical biology. 2010; 72(7):1696–1731. https://doi.org/10.1007/

s11538-009-9498-3 PMID: 20082148

51. Anderson Alexander R K Chaplain Mark A J. Single-Cell-Based Models in Biology and Medicine. illus-

trated ed. Springer Science & Business Media; 2007.

52. Jeffrey West RB. Hybrid Automata Library; 2018. Available from: https://halloworld.org.

53. Bravo R. HAL Tutorial 1: Setup; 2018. Available from: https://www.youtube.com/watch?v=

yjTmH3qORFQ&t=43s.

PLOS COMPUTATIONAL BIOLOGY Hybrid Automata Library: A flexible platform for hybrid modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007635 March 10, 2020 28 / 28

https://doi.org/10.1103/PhysRevLett.69.2013
http://www.ncbi.nlm.nih.gov/pubmed/10046374
https://doi.org/10.1371/journal.pcbi.1002970
http://www.ncbi.nlm.nih.gov/pubmed/23516352
https://ccl.northwestern.edu/papers/netlogo-iccs2004.pdf
https://ccl.northwestern.edu/papers/netlogo-iccs2004.pdf
http://cobweb.cs.uga.edu/~maria/pads/papers/mason-SwarmFest04.pdf
http://cobweb.cs.uga.edu/~maria/pads/papers/mason-SwarmFest04.pdf
https://doi.org/10.1063/1.3074302
https://doi.org/10.1063/1.3074302
http://www.ncbi.nlm.nih.gov/pubmed/19275393
https://doi.org/10.1093/bioinformatics/btg015
http://www.ncbi.nlm.nih.gov/pubmed/12611808
https://github.com/MathOnco/HAL/blob/master/manual.pdf
https://doi.org/10.1137/0103003
https://doi.org/10.1137/0103003
https://doi.org/10.1002/cpa.3160050303
https://doi.org/10.1002/cpa.3160050303
https://doi.org/10.1046/j.1365-2184.2000.00177.x
http://www.ncbi.nlm.nih.gov/pubmed/11063134
https://doi.org/10.1142/S0218202502001878
https://doi.org/10.1142/S0218202502001878
https://doi.org/10.1093/imammb/20.4.341
http://www.ncbi.nlm.nih.gov/pubmed/14969384
https://github.com/extrapixel/gif-animation
https://github.com/extrapixel/gif-animation
http://dst.lbl.gov/ACSSoftware/colt/
https://cancercrusadegame.com
https://cancercrusadegame.com
https://doi.org/10.1016/j.jcp.2017.05.048
https://doi.org/10.1016/j.jcp.2017.05.048
https://doi.org/10.1007/s11538-009-9498-3
https://doi.org/10.1007/s11538-009-9498-3
http://www.ncbi.nlm.nih.gov/pubmed/20082148
https://halloworld.org
https://www.youtube.com/watch?v=yjTmH3qORFQ&t=43s
https://www.youtube.com/watch?v=yjTmH3qORFQ&t=43s
https://doi.org/10.1371/journal.pcbi.1007635

