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Abstract: Fusarium species are common plant pathogens that cause several important diseases. They
produce a wide range of secondary metabolites, among which mycotoxins and extracellular cell
wall-degrading enzymes (CWDEs) contribute to weakening and invading the host plant successfully.
Two species of Fusarium isolated from peas were monitored for their expression profile of three
cell wall-degrading enzyme coding genes upon culturing with extracts from resistant (Sokolik) and
susceptible (Santana) pea cultivars. The extracts from Santana induced a sudden increase in the gene
expression, whereas Sokolik elicited a reduced expression. The coherent observation was that the
biochemical profile of the host plant plays a major role in regulating the fungal gene expression.
In order to uncover the fungal characteristics in planta, both pea cultivars were infected with two
strains each of F. proliferatum and F. oxysporum on the 30th day of growth. The enzyme activity assays
from both roots and rhizosphere indicated that more enzymes were used for degrading the cell wall
of the resistant host compared to the susceptible host. The most commonly produced enzymes were
cellulase, β-glucosidase, xylanase, pectinase and lipase, where the pathogen selectively degraded the
components of both the primary and secondary cell walls. The levels of beauvericin accumulated in
the infected roots of both cultivars were also monitored. There was a difference between the levels of
beauvericin accumulated in both the cultivars, where the susceptible cultivar had more beauvericin
than the resistant one, showing that the plants susceptible to the pathogen were also susceptible to
the toxin accumulation.

Keywords: CWDEs; mycotoxins; Fusarium; lytic enzyme gene expression; plant–pathogen interaction

1. Introduction

Fusarium wilt is one of the most devastating diseases worldwide. Susceptible plant
species range to several hundred, including economically important food crops such as
tomatoes, sweet potatoes, legumes, melons and bananas [1]. Species such as F. oxysporum
f. sp. pisi, F. oxysporum var. redolens, F. poae, F. solani and F. avenaceum are considered
minor pathogens of peas [2,3]. Being a soil-inhabiting fungus, Fusarium can survive for
more than 10 years, as its spores are thick-walled and very hard. Upon encountering a
susceptible plant, it penetrates the roots and grows inside the vascular system, causing
wilt by interfering with water movement [4]. The pea plants infected with F. oxysporum
have a characteristic reddish orange color on the vascular and lower parts of the stem,
with rare damage to the cortex. The symptoms also include yellow, brittle and rolled-up
leaves, which is the characteristic feature of wilt [2]. However, F. proliferatum is capable
of surviving without visible disease symptoms in the seed materials, contaminating it
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with fumonisins (FBs) [5]—a family of polyketide derivatives that are structurally simi-
lar to sphinganine compounds. FBs disrupt sphingolipid metabolism, causing different
toxicological effects in humans, animals and plants [6,7]. It was found that pea extracts
could reduce the biosynthesis of group B fumonisins and could limit the fungal biomass
in F. proliferatum [8]. Our previous report showed that the extracts from the resistant pea
variety Sokolik accumulate less/no fumonisin B1 and B2 in F. proliferatum strain PEA1 when
compared to the susceptible variety Santana [9]. Additionally, the Sokolik extract could
also considerably reduce the biomass of both F. proliferatum and F. oxysporum.

Another major characteristic of the Fusarium species is the production of various cell
wall-degrading enzymes (CWDEs). The majority of the CWDEs are glycosyl hydrolases
responsible for the degradation of plant cell wall polysaccharides [10]. These enzymes are
encoded in the pathogen genomes as multigene families [11]. The lytic enzymes produced
by plant–pathogenic fungi enable them to penetrate the plant cell wall and infect the host
tissue. The key CWDEs produced are cellulases, pectinases, proteases and lipases, which
contribute to the degradation of waxy cuticle and cell walls. With the help of those enzymes,
the pathogen depolymerizes almost all components of plant cell walls, including cellulose,
xylan, pectin, polygalacturonic acids and membrane proteins [12–17]. It was evident from
our recent studies that both F. proliferatum and F. oxysporum have an increased activity of
β-glucosidase, pectate lyase and xylanase when supplemented with the extracts of Santana
and Sokolik. In order to understand the increased disease resistance mechanism of Sokolik,
plant infection studies are necessary. It not only helps us to understand the plant part but
also allows us to shed light on the different strategies adapted by the pathogens to establish
themselves inside the host.

2. Results
2.1. Fungal Gene Expression Studies

The plant cell walls differ in detailed chemical composition and structural organization.
However, their basic architecture constitutes cellulose microfibers of immense tensile
strength inserted in a water-saturated matrix of various structural glycoproteins and
polysaccharides, which explains why the fungal pathogen synthesizes a wide range of
plant cell wall-degrading enzymes during its interaction with the host.

β-glucosidases are considered the rate-limiting enzyme because of their responsibility
to carry out the first step of lignocellulose hydrolysis, where cellobiose and short cellodex-
trins are converted into glucose. Therefore, β-glucosidase is essential for the complete
hydrolysis of cellulose into glucose; it is also considered as an important component of the
cellulose enzyme complex [18]. In our study, the expression of the β-Glucosidase-encoding
gene was significantly enhanced in F. proliferatum PEA1 cultures immediately after the addi-
tion of both Sokolik and Santana extracts (Figure 1). Although being the susceptible variety,
Santana could elicit an increased gene expression compared to Sokolik, irrespective of the
pathogen species. The expression of bgl1 was found to be reduced on the following days.

Hemicelluloses and pectins compose the two major classes of plant cell wall matrix
polysaccharides synthesized in the Golgi apparatus. They are transported and secreted
to the cell surface in small vesicles. Hemicelluloses are heteropolymers with side chains
and are composed of pentoses (xylans), with units of mannose and glucose (mannans or
glucomannans) or galactose (galactans) present alternatively [19]. Pathogens selectively
degrade the hemicellulose with the help of xylanases, mannanases, arabinases and galac-
tanases [20]. The expression of the xylanase gene in Santana extract-added cultures of PEA1
increased for days 1 and 3 and later reduced gradually (Figure 2). The cultures with the
Sokolik extract showed increased xylanase gene expression on the last day of cultivation,
similar to the pectate lyase gene. The characteristic sudden increase in the gene transcripts
were not observed in the case of F. oxysporum strain 1757OX. Rather, the xylanase gene
expression was found to be elevated from day 3 after the supplementation with extracts.
A highly similar pattern of all the lytic genes’ expression was noticed in 1757OX for the
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entire culture period, indicating that all the pathways regulating the cell wall-degrading
enzymes in F. oxysporum are activated with a similar pattern.

Methyl esterified and non-esterified pectins are mainly found in the intersections of
mother–lateral roots in plants like leeks [21]. The pectin degradation is a complex process
where pectin methyl-esterases and pectin lyases attack esterified pectins, whereas pectate
lyases and polygalacturonases hydrolyze de-esterified pectins [22]. The expression of the
pectate lyase gene in PEA1 was similar to that of the xylanase gene (Figure 3). There was a
slight increase in expression in Santana extract-added cultures, which gradually reduced
over time, whereas 7 days after the extract addition, Sokolik could induce an increased
expression of pl1 transcripts. All the observed three lytic genes in F. oxysporum 1757OX had
a peculiar hike at 3 days after the extract addition.

Figure 1. β−Glucosidase gene expression of F. proliferatum (PEA1) and F. oxysporum (1757 OX) from
day 1 to day 7 after the addition of the Sokolik and Santana extracts. Error bars represent the standard
error. * Statistically significant (p < 0.05).
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Figure 2. Xylanase gene expression of F. proliferatum (PEA1) and F. oxysporum (1757 OX) from day
1 to day 7 after the addition of the Sokolik and Santana extracts. Error bars represent the standard
error. * Statistically significant (p < 0.05).
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Figure 3. Pectate lyase gene expression of F. proliferatum (PEA1) and F. oxysporum (1757 OX) from day
1 to day 7 after the addition of the Sokolik and Santana extracts. Error bars represent the standard
error. * Statistically significant (p < 0.05).

2.2. Plant Infection Studies

A very low degree of disease symptoms was observed in the infected plants. However,
all the infected plants from both cultivars showed reduced growth and a decreased number
of lateral roots and leaves (Figure 4). Santana was found to have a higher growth retardation
upon infection with PEA1, 34OX and 1757OX, whereas all the infected Sokolik plants had
similar growth reductions. The infected and control plants cannot fully show or explain
why the infected plants have reduced growths but give indirect proof of the pathogen
influence on the plants, along with demonstrating how the susceptible and resistant
cultivars react to the infection with the same strains.
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Figure 4. Comparison of the growth of pea plants upon infection (13th day).

2.2.1. Cell Wall-Degrading Enzyme Assays

β-glucosidase assays showed that Santana infected with PEA1 and 34OX expressed the
highest enzyme activity compared to the other two strains, especially on day 9 and day 7,
respectively (Figure 5). The maximum activity of 14.8 U/min was detected in Santana upon
infection with 34OX on day 7. The highest β-glucosidase activity in Sokolik was observed
in 34OX-infected plants on day 7, similar to that of Santana. No significant elevation in the
enzyme activity was observed in the soil samples. The plant cellulose degradation involves
enzymes such as endo-β-1,4-glucanases, exo-β-1,4-glucanases and β-Glucosidases [23].
The endo-β-1,4-glucanases activity in the Sokolik roots infected with PEA1, PEA2 and
1757OX was found to be significantly higher than the controls, specifically on days 1 and 7.
No statistically significant differences were observed for Santana plants, along with the
results from the soil (p > 0.05). Likewise, no significant elevation in the activity was
observed for exo-β-1,4-glucanases in both pea roots and rhizospheres, indicating that
β-glucosidase is the major cell wall-degrading enzyme produced by Fusarium species used
in this study. The graphical representations of the protease, polygalacturonase, chitinase,
endo β-1,4 glucanase and exo-β-1,4-glucanase enzyme activity results are presented as
Supplementary Materials (Tables S1–S5 and Figures S1–S5).

The assays for chitinase showed that the Sokolik plants infected with 1757OX were able
to express much higher enzyme activity starting from day 1 to day 5, where a maximum
activity of 24.8 U/min was observed on day 5. Santana infected with PEA1 and 34OX
also showed increased activity compared to the control on day 3. Similar results were
also observed in the soil, indicating that plants activate their defense pathways selectively
based on the type of pathogen strain.

All the infected Santana plants showed a higher activity of xylanase during the last
days of growth (Figure 6). Although a slight increase in the activity was observed in
Sokolik, especially on day 3, the values dropped on the subsequent days. There was a
gradual increase in the xylanase activity in Santana in the control during the observed
days. However, the soil samples with strains PEA2, 34OX and 1757OX infected in Sokolik
showed a higher activity of xylanase on day 9.

There was a gradual increase in the pectate lyase activity in the controls of Sokolik and
Santana over the observed days (Figure 7). However, the significant difference observed
was on day one in Sokolik with the PEA1 infection, where a sudden increase in the activity
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was obtained. Comparably, it applies for Santana infected with PEA1 on day 3, signifying
that PEA1 synthesizes more pectate lyase for plant cell wall pectin degradation, since the
activity was not found in the control plants on the initial days. Nevertheless, the elevated
activity in the soil of all the infected Sokolik plants indicated that pectate lyase is one of the
most important cell wall-degrading enzymes produced by Fusarium species. The activity of
pectate lyase was the highest in Sokolik compared to Santana, suggesting that the activity
of the enzyme produced also depends on the disease resistance capacity of the host plant.
A comparatively higher activity of polygalacturonase enzyme was observed in the root
rhizosphere of Sokolik plants infected with all the strains except for PEA2. The activity in
roots were highly variable and, hence, statistically insignificant (p > 0.05).

The lipase activity in the Sokolik roots were found to be higher compared to the control
(Figure 8). The activity was especially higher on days 1, 3 and 5 and reduced drastically
on the following days. The activity was comparatively higher than the control in all the
infected Santana plants, similar to that of Sokolik. A significant increase in the activity was
only observed in the rhizosphere of the resistant cultivar infected with 1757OX on day 7.

Figure 5. β−glucosidase activity (micrograms of P-nitrophenol produced per minute (U/min)) obtained from the roots
and soil of Sokolik and Santana infected with PEA1, PEA2, 34OX and 1757OX and the control (calculated from triplicate
treatments). Error bar represents the standard error. * Statistically significant (p < 0.05).
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Figure 6. Xylanase activity (micromoles of xylose produced per minute (U/min)) obtained from the roots and soil of Sokolik
and Santana infected with PEA1, PEA2, 34OX and 1757OX and the control (calculated from triplicate treatments). Error bar
represents the standard error. * Statistically significant (p < 0.05).

Figure 7. Pectate lyase activity (micromoles of galacturonic acid produced per minute (U/min)) obtained from the roots
and soil of Sokolik and Santana infected with PEA1, PEA2, 34OX and 1757OX and the control (calculated from triplicate
treatments). Error bar represents the standard error. * Statistically significant (p < 0.05).



Int. J. Mol. Sci. 2021, 22, 9888 9 of 19

Figure 8. Lipase activity (micrograms of p-nitrophenol produced per minute (U/min)) obtained from the roots and soil of
Sokolik and Santana infected with PEA1, PEA2, 34OX and 1757OX and the control (calculated from triplicate treatments).
Error bar represents the standard error. * Statistically significant (p < 0.05).

The protease activity in the roots was found to be higher in both cultivars infected with
the 34OX strain on day 7. Although the activities were higher compared to the control on
all days, the differences were not statistically significant (p > 0.05). In the roots, the highest
activities were observed in Sokolik plants infected with both the F. oxysporum strains and
selectively on Santana infected with the 34OX strain during the first three observations.

Exceptionally high cellulase activity was observed in Sokolik and Santana plants
infected with PEA2, 34OX and 1757OX (Figure 9). The former had the highest activity
during the initial stage, while the latter did on days 7 and 9. This trend has been observed
for other enzymes too, where Sokolik elicited a higher increase in the enzyme activities
than Santana. The highest activities of cellulase of 4U/min and 4.76 U/min were observed
in Sokolik infected with F. oxysporum, indicating the severe pathogenicity of the strains on
days 3 and 5, respectively. The cellulose activity in the soil was the highest in Sokolik+PEA2,
where an activity of 5.47 U/min was reached on day 1.

The overall results from the lytic enzyme assays from the infected plants showed
the preferential hydrolysis of the host plant cell wall by Fusarium species (Table 1). We
observed different combinations of enzymes produced by the pathogen while interacting
with resistant and susceptible host genotypes. Based on visible symptoms and results from
the enzyme assays, it was clear that F. oxysporum is more pathogenic than F. proliferatum
in peas. While interacting with resistant cultivars, the PEA1, 34OX and 1757OX strains
produced an increased number of enzymes, which degrade almost all components of the
cell wall, such as hemicellulose, pectins, cellulose and membrane lipids.
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Figure 9. Cellulase activity obtained from the roots and soil of Sokolik and Santana infected with PEA1, PEA2, 34OX
and 1757OX and the control calculated from triplicate treatments. Error bar represents the standard error. * Statistically
significant (p < 0.05).

Table 1. Major enzymes produced by F, proliferatum (PEA1 and PEA2) and F. oxysporum (34OX and 1757OX) upon interaction
with resistant (Sokolik) and susceptible (Santana) pea cultivars.

Cell Wall-Degrading
Enzymes

F. proliferatum PEA1 F. proliferatum PEA2 F. oxysporum 34OX F. oxysporum 1757OX
Sokolik Santana Sokolik Santana Sokolik Santana Sokolik Santana

Xylanase
√ √ √ √

Protease
√ √

Lipase
√ √ √ √ √ √

Polygalacturonase
√ √ √

Pectin Lyase
√ √ √

Chitinase
√

Endo β-1, 4 glucanase
√ √ √

Exo-β-1,4-glucanase
β-glucosidase

√ √ √ √

Cellulase
√ √ √ √ √ √

2.2.2. Mycotoxins Quantification

Only beauvericin was found in the mycotoxin analysis. Fumonisins were not detected
in any of the plant samples. A substantial difference in the amount of beauvericin was
observed between the two pea cultivars (Figure 10). The susceptible cultivar Santana
was found to accumulate more beauvericin than the resistant cultivar. The maximum
concentration of beauvericin detected in the cultivar Santana inoculated with PEA1 was
18.8 ng/g on day 9. Santana infected with PEA2 did not accumulate any toxin, the same as
Sokolik, especially on the last day of observation. In contrast, no beauvericin was detected
in Sokolik upon F. oxysporum infection. The production of beauvericin by strain PEA1 was
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the opposite to that observed in strain PEA2, where more beauvericin was detected in
Santana plants and no/extremely low concentration was observed in Sokolik. The overall
observation was that Sokolik accumulates very low amounts of beauvericin compared to
the susceptible cultivar Santana.

Figure 10. Concentration of beauvericin (ng/g) in Sokolik and Santana roots upon infection with PEA1, PEA2, 34OX and
1757OX calculated from triplicate treatments. Error bar represents the standard error. * Statistically significant (p < 0.05).

3. Discussion

Cell wall-degrading enzymes are one among several mechanisms that plant–pathogenic
fungi use to invade and decompose organic matters [24]. The study of different hydrolase
enzymes in the plant rhizosphere indicates the soil fertility and plant productivity. The
various enzyme activities in the rhizosphere can be of plant intracellular origin, released
as a part of tissue degradation by various microbial communities and can be the part of
microbes associated with the plant root. Although the contribution of plants in this aspect
is less, it must be underlined that the current assay methods do not allow the discrimination
of the enzyme’s origin [25]. Only a comparative study of enzymatic activities of plant roots
and the rhizosphere could answer this complex question to an extent.

The biosynthesis of various toxins and cell wall-degrading enzymes highly depends
on the culture media composition, where they can be altered by supplementing various
plant cell wall components or secondary metabolites. Studies suggest that antioxidant
inhibitors supplemented to the culture media could suppress the accumulation of var-
ious pathogenicity factors and lytic enzymes, making it unfavorable for F. proliferatum
pathogenicity [26]. Similarly, it is already established that there is some kind of relationship
between the amount and type of cell wall-degrading enzymes produced by pathogens and
the cell wall composition of their corresponding hosts.

Although the current study does not demonstrate a direct role of any studied enzyme,
it provides the basis for such research. Our previous [9] and current studies prove that the
selected strains behave differently when added to the extracts of susceptible and resistant
host phenotypes. The extracts from susceptible cultivars induce sudden increases in the
lytic gene expression in the pathogen, whereas resistant cultivars elicit slow and reduced
expressions. The monitored genes such as encoding β-glucosidase, pectate lyase and
xylanase, have a reduced expression upon supplementing with the resistant pea extract,
indicating that there is some kind of Fusarium antagonistic activity exhibited by the plant
through its secondary metabolites or inhibitory proteins. Although studies suggest that
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the genes coding xylanase and pectate lyase enzyme are functionally redundant and the
pathogen virulence or the infection machinery is independent of those genes [27,28], it is
still challenging to find out how susceptible and resistant plants cope with the invasion and
how their metabolites modify this ability. It has been reported that, in order to counteract
and to resist the hydrolytic enzyme attack, plants deploy CWDE inhibitor proteins such
as polygalacturonase-inhibiting proteins (PGIPs), pectin methylesterase inhibitor (PMEI),
pectin lyase inhibitor protein (PNLIP), xylanase inhibitor protein (XIP) and xyloglucan en-
doglucanase inhibitor protein (XEGIP) [29]. Together with the proteins, pea plants produce
several antifungal secondary metabolites, such as pisatin and lectins, which have been
found to inhibit the growth of pathogens such as Aspergillus sp. and Fusarium sp. [8,30]. In
planta studies have indicated that the pathogen produces an increased number of enzymes
during infection in resistant cultivars and less in susceptible ones. F. oxysporum, being the
causal agent for Fusarium wilt in peas worldwide, produced more enzymes compared to
the F. proliferatum strains. The enzymes produced aid in the degradation of cellulose (cellu-
lase and β-glucosidase), hemicellulose (xylanase), pectin (pectinase) and membrane lipids
(lipase). During infection, species such as F. phaseoli, F. graminearum, F. proliferatum and
F. solani generally exhibit an increased activity of β-glucosidase [31]. During infection with
necrotrophic pathogens, plants also produce β-glucosidases, which have many functions,
such as intermediates of cell wall lignification [32], phytohormone activation [33] and deto-
nators of plant chemical defenses [34]. Although pectinolytic enzymes are not necessary
for disease development, they were found to have some roles in the pathogenicity of the
organism [35]. The pectate lyase activity was increased in both cultivars in the controls and
infected plants. Especially, there was increased activity on the initial day, indicating that
there is a relation between pectinolytic enzymes and Fusarium infection. The plant pectate
lyases are associated with a diverse array of organs and cellular processes, including pollen
development, flowering, leaves, stem and root expansion [36]. They are important parts of
enzyme complexes controlling cell wall remodeling during various plant cellular processes.
Pectate lyase methyl transferase and pectate lyase activity were reported to be higher upon
treatment with auxin in Arabidopsis roots, indicating that the changes in the structure and
composition of the pectin fraction are linked to the expansion of the plant cell [37]. An
exceptional increase in the activity of the lipase enzyme was observed in the Sokolik plants
upon infection. Lipases hydrolyze the carboxyl ester bonds in tri acyl glycerol, releasing
fatty acid and glycerol [38]. Mainly, the members of the microbial community and plants
produce these enzymes as a part of their metabolism. The fungal lipases degrade the fatty
acids in the plasma membrane, leading to the leakage of cytoplasmic constituents and,
thereby, cell death. Numerous lipases have also been identified and characterized in plants
as a part of ethylene/hormone signaling involved in systemic resistance pathways, cuticle
biosynthesis, the deacetylation of xylan and various secondary metabolisms [39].

The aggressiveness of Fusarium directly depends on the mycotoxin that they produce
during host interactions [40] that function as effectors or virulence factors controlling plant
pathogenesis. The difference in the levels of beauvericin in the resistant (Sokolik) and
susceptible pea cultivars (Santana) indicates that the resistant genotype accumulates very
low amounts of toxins compared to the susceptible one. F. oxysporum, being the causal
agent of wilt in peas, was found to produce more beauvericin. In addition, the results
suggest that the plants susceptible to Fusarium are also susceptible to toxin accumulation,
leading to host-selective infection and disease symptoms. Similar results were obtained
for Alternaria host-selective toxins, such as AK toxins I and II in pear cultivars, where the
concentration and toxicity were higher in the susceptible cultivar compared to the resistant
cultivar [41]. Beauvericin causes plasma membrane destruction through ionophoric activity,
where the ion permeability of the biological membranes is altered, leading to cell death.

The pea varieties resistant to Fusarium wilt exhibit several defense mechanisms, where
the main discriminating factor is the root endodermis [42]. Recent studies have shown that
established defensive mechanisms in pea roots efficiently block the pathogen progression
before vascular stele [43], and the enzymes involved in cell wall degradation vary in
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different pathogen races. The regions of the outer root system, including the epidermis
and exodermis, an important contributor to the defense, are highly related to the disease
severity and are the major determinants of resistance. Additionally, the main defense
mechanisms identified were cell wall thickening of the endodermis through lignification
by means of phytoalexin accumulation. This acts as a physical barrier preventing the entry
of hyphae inside the roots [43]. Understanding the role of CWDEs and mycotoxins in
plant–pathogen interactions is very important for the effective management of diseases, as
these factors may act as host defense elicitors.

4. Materials and Methods
4.1. Fungal Gene Expression Studies
4.1.1. Fungal Strains and Growth Conditions

The fungal strains were selected based on the results from the enzymatic activities car-
ried out previously [9]. One strain each of F. proliferatum (PEA2) and F. oxysporum (1757OX)
were used for the fungal gene expression studies. All the strains used for the current study
were isolated from infected pea plants (Pisum sativum L.) during a previous study and iden-
tified based on both morphological and molecular identification techniques. Morphological
parameters such as the structures of hyphae, phialides and conidia and a molecular analysis
using TEF-1α and ITS1-ITS2-specific primers were used for identification [44]. The strains
were selected based on the previously carried out mycotoxin production studies [9]. The
PDA-grown 7-day-old cultures were added to 48 mL of the fumonisin-inducing media for
the mycotoxin analysis [45]. The medium contained: malt extract 0.5 g/L, yeast extract
1 g/L, mycological peptone 1 g/L, KH2PO4 1 g/L, MgSO4·7H2O 0.3 g/L, KCl 0.3 g/L,
ZnSO4·7H2O 0.05 g/L, CuSO4·5H2O 0.01 g/L and D-fructose 20 g/L. On the 5th day of
incubation, 2 mL each of the extracts from the Sokolik and Santana cultivars were supple-
mented to the cultures. A control was also kept without the addition of extracts. All the
treatments were carried out in triplicate. The culture media were collected in 10-mL aliquots
on the 6th, 8th, 10th, 12th and 14th days of incubation, and the mycelia were collected and
stored at −80 ◦C and used later for RNA isolation.

4.1.2. Plant Extract Preparation

Plant extracts were prepared according to the previously standardized protocols [46].
The leaves were collected from fully grown pea plants (Sokolik and Santana). The overnight
frozen (−80 ◦C) samples were homogenized using a blender, and the pulp obtained
was centrifuged at 12,000× g for 15 min. The supernatants were filtered using 0.45-µm
membrane filters and stored at −20 ◦C until further use.

4.1.3. Gene Expression Studies

The authors carried out assays for 10 enzymes in the first set of study [9]. The three
genes opted for the differential expression study were selected based on their corresponding
increased enzymatic activity levels obtained by the author’s previous experiments.

The total RNA was extracted and purified from around 50 mg of mycelium collected
at the 6th, 8th, 10th, 12th and 14th days of incubation using the RNeasy plant mini kit
(Qiagen, Hilden, Germany), followed by treatment with DNase I (RNase-free) (EURx,
Gdansk, Poland). The total RNA concentration was quantified using a NanoDrop ND-1000
(Thermo Fisher Scientific, Waltham, MA, USA), and 100-ng RNA from each sample was
loaded on a 1% agarose gel (50V/35 min) to check its integrity. Then, 1 µg of total RNA was
reverse-transcribed into cDNA using a High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA). The incubation steps were as follows: 25 ◦C
for 10 min, followed by 37 ◦C for 120 min and 85 ◦C for 5 min. All the reactions were carried
out in a Bio-Rad C1000 thermal cycler. The synthesized cDNA was used as a template for
RT-qPCR (SsoAdvanced Universal SYBR Green Supermix, Bio-Rad, Hercules, CA, USA),
and the copy number of unambiguous transcripts for all the genes were normalized to the
expression ratio by transcripts of β-tubulin. Each assay included three biological and two
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technical replicates of each sample, along with a negative control. The primers used in the
study are given in Table 2.

Table 2. List of primers used in the study.

PEA1 1757 OX

β-Glucosidase (bgl1 gene) BG1f-CTATCCCTCGCTGCAAGAAC
BG1r-GTGGGCAACAAGAAGGTTGT

BGf-CCCAAGCAACTCCGAGGTTT
BGr-TGCTGGAGCCGACGAAAATG

Pectate lyase (pl1 gene) PL1f-CTAGCCTCTGTTTGCCAAGG
PL1r-TCAGCATGAGAAACGGTGAG

PL4f-GGTGAGCAAGTTTCTCTCGACT
PL4r-CACTGGTCTGCTTGAGGGTG

Xylanase (xyl4 (F. proliferatum)
and xyl2 gene (F. oxysporum))

XYL4f-CCATCAACTATGGCGGTTCT
XYL4fr-GTAGACGGTGCCCTTGTGTT

XYL2f-CAGGTCGTCAACTTTGCTCA
XYL2r-TTAACCCACTGAGGGAGCTG

β-tubulin
Fpbtf-ACATCCAGACAGCCCTTTGTG
Fpbtr-AGTTTCCGATGAAGGTCGAAGA
[47]

Fobtf-TTCTGCTGTCATGTCCGGTGT
Fobtr-TCAGAGGAGCAAAGCCAACCA
[48]

The target sequences were amplified in a 10-µL reaction containing 5 µL of SsoAd-
vanced universal SYBR Green supermix, 500 nM of each primer and 1 µL of cDNA template
(dilution 1:10). The PCR cycling conditions were as follows: initial denaturation at 95 ◦C
for 30 s, denaturation at 95 ◦C 40 cycles for 15 s and annealing at 60 ◦C for 30 s.

4.2. Plant Cultivation

Seeds from both cultivars Sokolik and Santana were surface-sterilized using 15% (v/v)
bleach in sterile distilled water for 30 s and then washed in sterile distilled water thrice
to remove the bleach completely. Then, the seeds were kept on sterile wet tissue inside a
Petri dish and stored in a dark chamber for three days to enhance the germination. Once
the seeds were germinated, the plates were transferred to a well-lit place and kept for four
more days. On day 7, the seedlings were planted on sterilized soil and were cultivated in a
growth chamber at 23 ◦C with a 16-h photoperiod. The plants were watered as required and
were fertilized with a micro–macro nutrient solution consisting of Ca(NO3)2 (4.18 g L−1),
KNO3 (1.03 g L−1), KH2PO4 (0.35 g L−1), K2SO4 (0.43 g L−1), Mg(NO3)2 (0.51 g L−1),
MgSO4 (0.63 g L−1) and Fe chelate (0.5 g L−1) once after 15 days of planting.

4.3. Plant Infection Studies

The plant infection studies were carried out using two strains of F. proliferatum (PEA1
and PEA2) and two strains of F. oxysporum (34OX and 1757OX). The strains were also
checked for their virulence by infecting pea seedlings for the current study prior to
the plant infection studies (data not shown). The spore suspensions of PEA 1, PEA 2,
34OX and 1757OX were made by flooding the corresponding single-spore isolate cul-
tures on PDA plates with sterile distilled water. The number of conidia was counted
microscopically (Nikon Optiphot-2, Tokyo, Japan) using a hemocytometer and adjusted to
1 × 105 conidia mL−1 by dilution with sterile distilled water. From the conidia suspension,
5ml was added directly to the root rhizosphere to infect each plant that reached 30 days
of growth. Each treatment consisted of three plants, and the control plants were kept
separated from the infected ones. After the infection, the samples (soil and roots) were
collected intermittently after 7 days.

4.3.1. Enzyme Activity Assays

The soil samples collected were mixed with bicarbonate buffer (50 mM, pH 7) at a
1-g/mL concentration and were blended for 1 min [49]. The resulting slurry was cen-
trifuged at 12,000× g for 15 min at 4 ◦C to collect the supernatant. Similarly, 1 g of the root
samples ground with bicarbonate buffer (50 mM, pH 7) was also centrifuged at 12,000× g
for 15 min at 4 ◦C. The supernatants obtained were stored at −20 ◦C until further use.
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β-Glucosidase

4-nitrophenyl-β-D-glucopyranoside (PNPG) was used as a substrate for theβ-glucosidase
assay [50]. The reaction mixture containing 50 µL of crude enzyme and 100 µL of 2-mM PNPG
was incubated for 30 min at 50 ◦C. Sodium carbonate of 0.1 M (100 µL) was added to the
reaction mix after the incubation, and the absorbance was measured at 405 nm using a Synergy
HTX Multi-Mode reader (Biotek, Vermont, VT, USA).. The reactions were carried out using
biological triplicates with technical replicates. Different concentrations of 4-nitrophenol (PNP)
were used to create a standard curve. The enzyme activity was expressed as the micromoles of
PNP produced per minute (U/min) under the given assay conditions.

Chitinase

The colloidal chitin required for the assay was prepared by adding 1g of chitin powder
from shrimp (Sigma Aldrich) to 12 mL of HCl and stirring overnight at 4 ◦C [51]. The
mixture was then added to 400 mL of ice-cold 95% ethanol with continuous stirring. The
resulting mixture was incubated at 25 ◦C overnight. Later, the mixture was centrifuged at
5000× g for 20 min at 4 ◦C, and the precipitate was collected and washed several times with
sterile distilled water until the pH reached 7. The prepared colloidal chitin was refrigerated
until the enzyme assay.

The chitinase activity was assayed by measuring the reducing sugars [52]. The assay
was carried out by mixing 0.5 mL of both 1% colloidal chitin and the crude enzyme. After
1 h of incubation at 50 ◦C, 3 mL of DNS were added to the mixture to terminate the reaction.
The mixture was boiled for 15 min and was centrifuged at 5000× g for 5 min to remove
the insoluble chitin. From the supernatant, 200 µL were taken and added to the 96-well
flat-bottomed plate, and the absorbance was measured at 540 nm using the Synergy HTX
Multi-Mode reader. All the reactions were carried out in triplicate. A standard curve of
N-acetyl-D-glucosamine was used to quantify the amount of the product released. The
enzyme activity was expressed as micromoles of N-acetyl-D-glucosamine released per
minute (U/min) under the given assay conditions.

Xylanase

Xylose was used as the reference standard for the xylanase assay. The reaction mixture
containing 25 µL of 1% (w/v) suspension of xylan from oat spelts in 0.05-M sodium citrate
buffer (pH 5.0) and 25 µL of a crude enzyme sample was incubated at 50 ◦C for 10 min.
All the reactions were carried out in triplicate. The DNS method was used to measure
the released sugars by adding 150 µL of DNS to stop the reaction and heating in a boiling
water bath for 15 min [52]. Later, the absorbance at 540 nm was taken using a Synergy HTX
Multi-Mode reader. The enzyme activity was expressed as micromoles of xylose released
per minute (U/min) under the given assay conditions.

Pectate Lyase

Pectate lyase activity was measured according to our previously standardized proto-
col [9]. The reaction mixture contained 25 µL of the crude enzyme sample, 25 µL of 0.5%
citrus pectin, 50 µL of Tris HCl Buffer (0.05 M, pH 8.0) and 50 µL of 1-M calcium chloride.
The mix was incubated at 30 ◦C for 1 h in 96-well flat-bottomed plates. The absorbance
was measured at 548 nm using the Synergy HTX Multi-Mode reader. All the reactions were
carried out in triplicate. The enzyme activity was defined as the micromoles of galacturonic
acid produced per min (U/min) under the given assay conditions.

Polygalacturonase

Polygalacturonase activity was assayed by measuring the released reducing sugars
after the reaction using the dinitrosalicylic acid (DNS) method [52]. The reaction mix
contained 50 µL of 0.1% polygalacturonic acid prepared in 0.05-M sodium acetate buffer
(pH 5.0), 25 µL of buffer and 25 µL of culture filtrate and was incubated at 40 ◦C for
1 h in a water bath. All the reactions were carried out in triplicate. The absorbance was
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measured at 540 nm using the Synergy HTX Multi-Mode reader. A standard curve was
prepared using different concentrations of galacturonic acid. One unit of enzyme activity
was expressed as micromoles of galacturonic acid produced per minute (U/min) under the
given assay conditions.

Lipase

The lipase activity was measured using P-nitro phenyl palmitate (pNPP) as the sub-
strate and p-nitrophenol as a standard reference [53]. Twenty-five microliters of crude
enzyme solution were added to 50 µL of prewarmed phosphate buffer (0.05 M, pH 8.0)
containing 0.2% (w/v) sodium deoxycholate and 0.1% (w/v) gum Arabic. The resulting
mixture was incubated for 10 min at 30 ◦C. After the incubation, the pNPP solution was
added to the mix to reach a final concentration of 0.30 mM, and the mixture was again
incubated at 30 ◦C for 3 min. All reactions were carried out in triplicate. Absorbance of
the mixture was measured at a wavelength of 405 nm using the Synergy HTX Multi-Mode
reader. The enzyme activity is expressed as micromoles of p-nitrophenol produced per
minute under the given assay conditions.

Cellulase (Filter Paper Assay)

The filter paper assay was carried out using the Whatman® #1 filter paper cut into
1
4 -inch diameter circles using a paper punch in 96-well flat-bottomed plates [54]. Of the
diluted sample, 80 µL in 50-mM citrate buffer was added to the substrate and incubated at
50 ◦C for one hour. After the incubation, 80 µL of DNS reagent was added, and the mixture
was boiled for 10 min, cooled in ice and the absorbance was measured at 546 nm. All the
reactions were carried out in triplicate. One unit of FPase was defined as the micromoles of
glucose released per minute (U/min).

Endo beta-1, 4 glucanase (CMCase)

The endo-β-1,4-glucanase activity was determined by the 3,5-dinitrosalicylic acid
(DNS) method [43]. The reaction mixture containing 25 µL of crude enzyme and 0.5%
(w/v) carboxy methyl cellulose in 75 µL of acetate buffer (0.05 M, pH 5.0) was incubated
at 60 ◦C for 10 min. The reaction was terminated by adding 25 µL of DNS and boiling for
10 min. The mixture was cooled down to room temperature using ice. All the reactions
were carried out in triplicate. Later, the absorbance was measured at 540 nm using the
Synergy HTX Multi-Mode reader. One unit of endo-β-1,4-glucanase activity was defined as
the micromoles of glucose released per minute (U/min) under the given assay conditions.

Exo-β-1,4-glucanase (avicelase)

The reaction was carried out by adding 50 µL of crude enzyme solution to 1% Avicel
solution prepared in 50-mM sodium citrate buffer (pH 5.0). The resulting solution was
incubated at 50 ◦C for 30 min. Then, 50 µL of DNS was added to the mixture, boiled for
5 min and cooled in ice for 5 min. The resulting mixture was centrifuged at 5000× g for
5 min to remove any unreacted substrates. The absorbance was measured at 540 nm using
the Synergy HTX Multi-Mode reader. All the reactions were carried out in triplicate. The
enzyme activity was expressed as micromoles of glucose released per minute (U/min)
under the given assay conditions.

Protease

Azocasein was used as the substrate for the protease assay [55]. The dye-labeled
peptides and amino acids released after the reaction with the were measured after the assay.
From the sample, 25 µL was added to the equal volume of 0.1% azocasein prepared in 0.2-M
Tris-HCL buffer (pH 7.4). The solution was incubated at 75 ◦C for 1 h, and the reaction
was terminated by adding 100µL of 5% trichloroacetic acid (TCA) to the enzyme–substrate
mixture. The mixture was centrifuged at 2000× g for 10 min at room temperature to remove
the coagulated protein. The supernatant obtained was then added to an equal volume of
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0.5-N NaOH solution, and the absorbance was measured at 440 nm using the Synergy HTX
Multi-Mode reader. The blank was obtained by mixing the TCA to the substrate prior to
the enzyme addition. All the reactions were carried out in triplicates. The activity of the
enzyme was expressed as the absorbance at 440 nm.

4.4. Mycotoxins Analysis

Certified analytical standards of mycotoxins (fumonisins B1-3 and beauvericin), other
reagents, water and organic solvents of high purify for the chromatographic analysis were
purchased from Sigma-Aldrich (Steinheim, Germany). A small amount (0.20 g) of each
plant root was extracted using 1.0 mL of methanol:water (3:1, v/v) by shaking on an orbital
shaker (24 h) and by sonication for 20 min. After centrifugation (Eppendorf, Hamburg,
Germany) at 15,000× g for 10 min, the extracts were filtered through a 0.22-µm membrane
(Chromafil PET 20/15/MS, Macherey-Nagel, Germany) and transferred to chromatog-
raphy vials. The mycotoxin concentration was analyzed for each variant of the plant
material using an UPLC™ system (Acquity, Waters, Milford, MA, USA) connected with a
photodiode array detector (PDA) and a triple-quadrupole mass spectrometer (TQD; Waters
Micromass, Manchester, UK) according to the methods described in detail earlier [56,57].
The samples were collected from biological triplicates, and qualitative and quantitative
analyses of the mycotoxins were performed in three analytical replicates.

4.5. Statistical Analysis

The statistical analyses were made with the Origin Pro 2020 program (OriginLab
Corporation, Massachusetts, MA, USA). The data obtained from lytic enzyme production
from the plant infection experiments were analyzed with a one-way ANOVA with three
replicates. Dunnett’s test was used to determine the significant differences between the
treatments and the control, with p < 0.05.
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44. Wilman, K.; Stępień, Ł.; Fabiańska, I.; Kachlicki, P. Plant-Pathogenic Fungi in Seeds of Different Pea Cultivars in Poland. Arh. Hig.
Rada Toksikol. 2014, 65, 329–338. [CrossRef]

45. López-Errasquín, E.; Vázquez, C.; Jiménez, M.; González-Jaén, M.T. Real-Time RT-PCR Assay to Quantify the Expression of Fum1
and Fum19 Genes from the Fumonisin-Producing Fusarium verticillioides. J. Microbiol. Methods 2007, 68, 312–317. [CrossRef]
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