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Abstract

Previous studies have demonstrated that the early retinotopic cortex (ERC, i.e., V1/V2/V3) is highly associated with the lateral
occipital complex (LOC) during visual perception. However, it remains largely unclear how to evaluate their associations in
quantitative way. The present study tried to apply a multivariate pattern analysis (MVPA) to quantify the neural activity in
ERC and its association with that of the LOC when participants saw visual images. To this end, we assessed whether low-
level visual features (Gabor features) could predict the neural activity in the ERC and LOC according to a voxel-based
encoding model (VBEM), and then quantified the association of the neural activity between these regions by using an
analogical VBEM. We found that the Gabor features remarkably predicted the activity of the ERC (e.g., the predicted
accuracy was 52.5% for a participant) instead of that of the LOC (4.2%). Moreover, the MVPA approach can also be used to
establish corresponding relationships between the activity patterns in the LOC and those in the ERC (64.2%). In particular,
we found that the integration of the Gabor features and LOC visual information could dramatically improve the ‘prediction’
of ERC activity (88.3%). Overall, the present study provides new evidences for the possibility of quantifying the association
of the neural activity between the regions of ERC and LOC. This approach will help to provide further insights into the neural
substrates of the visual processing.
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Introduction

The early retinotopic cortex (ERC) constitutes of the primary

visual cortex (V1) and extrastriate visual cortical areas (e.g., V2,

V3) and is responsible for processing visual information. The

neural activity in the ERC is observed to be highly associated with

the lateral occipital complex (LOC) during visual perception [1–3]

and these regions jointly comprises a hierarchical axis for

representation of visual properties in the ventral visual pathway

[4]. However, few studies have directly evaluated the association of

the neural activity across these regions in quantitative way during

visual processing.

The neural activity of the ERC complexly interacted with that

of the LOC during visual processing. Previous studies demon-

strated that the visual cortex contributed differently to the object

neural representation [5,6]. Particularly, the neural activity in the

ERC veridically represents the low-level properties of the visual

image, and then the neural representation as an input is further

translated to the high-level cortical regions (e.g., LOC) to acquire

its meanings. Through manipulating the properties of the outside

stimuli in experiments, many studies demonstrated that the

neural activity in the ERC was responsible for the local

properties of the outside stimuli but that in the LOC for the

perceived stimuli [7–10]. However, recent findings suggest that

the ERC is not a static spatiotemporal filter for local features;

rather, it reflects the interpretations and meanings of the

processed stimuli [11]. By directly manipulating the high-level

interpretation of the stimulus, several studies have provided

additional evidences for understanding the neural interaction of

the ERC and LOC in object representation and suggested that

the neural activity in the ERC reflects the retinal image as well

as the perceived stimuli features during the visual processing

[1,12,13]. However, we noted that this knowledge was primarily

derived from the performance of neural activity in these regions

based on different experiment designs. It is consequently warrant

to directly measuring the relationship of the neural activities of

these regions during the visual processing.

Recently, the voxel-based encoding model (VBEM), a method

of multivariate pattern analysis (MVPA), has been proposed [14–

17] to quantitatively explore whether some specific features (e.g.,

visual/semantic features) are represented in the activity of an

individual voxel (for review, see [16]). For the first time, Kay

et al. [14] trained a VBEM to identify the relationships between

the Gabor features (including three low-level visual dimensions,

i.e., spatial position, spatial frequency, and orientation) of visual

stimuli and each voxel’s activity in the ERC. As such, they built
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linear mappings between the visual stimuli and related ERC

activities [14]. Similarly, Mitchell et al. observed mapping

between brain activity and semantic patterns of concrete nouns

(i.e., frequency of text co-occurrence with appointed verbs) by

using a VBEM [15]. These findings imply that a VBEM can be

used to precisely identify the neural representations in brain

activities in visual cortex and therefore provides an opportunity

to quantify the association between neural activities in the ERC

and LOC.

In the current study, we applied a VBEM method to evaluate

the neural representation of the ERC by the low-level properties of

the visual object, and an analogical approach (i.e., analogical

voxel-based encoding method, AVBEM) for the first time to depict

the quantitative association of the neural activities between the

ERC and LOC when participants were shown images of natural

settings. First, we examined whether a VBEM could capture the

linear mappings between Gabor feature patterns and neural

activity in the ERC. Then, we tested whether linear mappings also

exist between neural activity in the LOC and that in the ERC by

using an AVBEM. Finally, we evaluated the combination of

VBEM and AVBEM by integrating Gabor features of stimuli and

LOC visual information to ‘predict’ brain activity in the ERC.

Method and Materials

Data Acquisition
The visual experimental fMRI datasets were provided by the

Gallant’s lab in University of California, Berkeley, and publicly

available at the website of Dr. Gallant’s lab (http://crcns.org). The

University of California, Berkeley Committee for the Protection of

Human Subjects approved all the experimental protocol. These

fMRI datasets include the estimated BOLD data and the

experimental stimuli, which were used to identify natural images

from brain activity using an encoding model in two previous

studies [14,18]. The experimental design, stimuli, fMRI param-

eters, and data preprocessing procedure have been described in

these previous studies [14,18]. In brief, functional data were

collected from two participants who were instructed to view

natural images during BOLD-fMRI scanning. For each partici-

pant, the total experiment was divided into five sessions to avoid

fatigue. Each session consisted of five runs for model estimation

and two runs for model validation. Each run for model estimation

lasted 11 minutes and consisted of 70 distinct natural images

presented twice each, whereas each run used for model validation

lasted 12 minutes and consisted of 12 distinct natural images

presented 13 times each [14]. In each trial within each run, a

stimulus (grayscale natural images) was flashed at 200-ms intervals

(On-Off-On-Off-On) for 1 s, followed by 3 s of gray background.

In total, 1750 training images were collected for model estimation

for each participant, and 120 testing images were obtained for

model validation. All MRI data were scanned at the Brain

Imaging Center at UC Berkeley using a 4 T INOVA MRI

scanner (Varian, Inc.) with a quadrature transmit/receive surface

coil (Midwest RF, LLC). The BOLD-fMRI data were acquired in

18 coronal slices that covered the occipital cortex with a gradient-

echo EPI pulse sequence (TR = 1 s, TE = 28 ms, flip angle = 20u,
matrix size = 64664, FOV = 1286128 mm2, and slice thickness/

gap = 2.25/0.25 mm).

Analysis Framework
Fig. 1 illustrates the data analysis framework of the current

study. First, we selected two regions of interest (ROIs), ERC and

LOC, according to a previous study [14]. Then, we extracted the

fMRI activity patterns of each natural image in the ERC and

LOC for each participant. In the model training stage, we adopted

both VBEM and AVBEM to describe the relationships between

neural activity in the ERC and the visual features of the stimulus,

and activity pattern in the LOC, respectively. In total, we used

three types of approaches: the stimulus VBEM (Gabor feature

pattern), LOC AVBEM (LOC pattern), and combination of

VBEM and AVBEM (LOC pattern and Gabor feature pattern).

Finally, we applied the testing images to validate the trained

VBEM, AVBEM, and their combinations. A step-by-step

description of the detailed procedure is as follows:

Data preprocessing
Preprocessing of Natural Images. We preprocessed natu-

ral image similar to the approaches used in previous studies

[14,18]. First, all natural images were filtered by a set of Gabor

wavelet. In detail, the Gabor wavelet was defined as a spatially

localized filter with a specific orientation and spatial frequency.

The Gabor wavelets occurred at six spatial frequencies: 1, 2, 4, 8,

16, and 32 cycles/FOV (FOV = 20u covering a downsampled

resolution of 1286128 pixels in this analysis). At each spatial

frequency of n cycles/FOV, wavelets were located on an n6n grid

that tiled the full FOV. At each grid position, wavelets occurred at

eight orientations: 0u, 22.5u, 45u, 67.5u, 90u, 112.5u, 135u, and

157.5u. A luminance-only wavelet, which covered the entire

natural image, was also included. We thus produced all of the

Gabor wavelets (total number = (1+22+42+82+162+322) 68+
1 = 10921). All of the calculations were performed in Matlab.

Then, we performed a nonlinear transformation on each filtered

natural image by using the log of the magnitude, as the log

function could improve the prediction accuracy with a compres-

sive nonlinearity [18]. Finally, we obtained a feature vector

(1092161) for each natural image and used it as the input channel

(details are shown below) for the stimulus encoding model.

Extraction of the Brain Activity Pattern. Based on the

BOLD-fMRI signals, we extracted the fMRI activity patterns of

the ERC and LOC for 1750 training and 120 testing natural

images separately. The fMRI signal patterns in ERC were used as

the output channels (details are shown below) for the three

encoding ‘models’ (i.e., VBEM, AVBEM, and the combination of

VBEM and AVBEM), and the LOC patterns were used as the

input channel (details are shown below) for the LOC AVBEM.

Stimulus VBEM
The construction of the stimulus encoding model included two

stages: one was the model estimation to establish the relationships

between the Gabor features of the training natural images and the

corresponding fMRI activity patterns in the ERC; and the other

was the model validation to assess the performance of the trained

model using the tested natural images to predict the activity

patterns in the ERC.

Model Estimation. As shown in Fig. 2a, we established the

stimulus encoding model in a multiple voxel-based manner [14] to

analyze the fMRI signal of each voxel in ERC. We let p be the

number of training natural images and q be the number of training

images or input channels. For a voxel in the ERC, we assumed

that its response can be expressed by using a general linear model

(GLM),

y~Xhzczn ð1Þ

where y is the set of output channels (i.e., the responses of all

voxels in ERC) with the dimension of (p61), X is the set of input

channels (p6q), h is the kernel (q61), c is the constant (p61), and n
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is the noise (p61). In the calculations, we used the functions in the

STRFlab toolbox (Version 1.45, http://strflab.berkeley.edu/) to

automatically estimate the model parameters. In detail, we

adopted a single voxel stimulus encoding model or eq.(1), set the

input channels to the Gabor features used in training with natural

images (1750610921), and obtained output channels representing

the fMRI signal of a voxel in ERC (175061). Model parameters

were estimated using a gradient descent with an early stopping

approach [14,19], in which the magnitude of model parameter

estimates were shrunk to prevent over-fitting and 20% of the

responses were randomly selected to comprise the stopping set. A

bootstrap sampling approach was used for iterative analysis.

The above procedures were repeated across all voxels in the

ERC. Finally, we obtained a multiple-voxel model as the stimulus

encoding model. Thus, we were able to predict the brain fMRI

activity pattern in the ERC while the participants viewed natural

images.

Model Validation. To validate the model performance, we

applied the 120 testing natural images that were not contained in

the model estimation stage to build the activity pattern in the ERC

(Fig. 2b). For each of the 120 testing images, the fMRI responses

to the image in the ERC were defined as the ‘observed activity

pattern’. Thus, we had a total of 120 observed activity patterns for

model validation. The Gabor features of each testing image were

entered into the stimulus encoding model to calculate the

‘predicted activity pattern’ of the image according to eq. (1). In

this manner, we obtained 120 predicted activity patterns in the

ERC. Then, we calculated the Pearson9s correlation coefficient

between each pair of the two sets of patterns and obtained a 120-

by-120 correlation matrix for each participant (Fig. 2c). If the

diagonal element of the correlation matrix was the maximum

value in each column, which means that the correlation between

the predicted activity pattern of an image and the observed activity

pattern of that image corresponds to the best match, we marked it

as a correct prediction. Finally, the predictive performance of the

stimulus encoding model was defined as the ratio of the number of

the correct predictions to the total number of training images

(corrects/120).

LOC AVBEM
The procedures for constructing the LOC-related encoding

method were similar to those used for the stimulus encoding

model, except for the input channels. Based on the indices of

voxels in the downloaded dataset, we determined that the

number of voxels in the LOC was 928 for participant S1 and

358 for participant S2, respectively. By setting the input channels

to represent the activity patterns of all voxels in the LOC

(17506928 for S1 and 17506358 for S2) and the output channel

to represent the fMRI activity patterns of all voxels in the ERC,

we performed a ‘model’ estimation and ‘model’ validation

analyses according to eq.(1).

Combination of VBEM and AVBEM
We further performed linear combination of the stimulus Gabor

feature and the LOC pattern information in term of a

combination of VBEM and AVBEM. For each of the 120 testing

images, we averaged the two predicted activity patterns obtained

from the stimulus VBEM and the LOC AVBEM for the

corresponding voxel and set the result as the predicted activity

pattern of the ERC. The performance of the combined VBEM

and AVBEM was then estimated by using a procedure similar to

that described for the stimulus encoding model.

Validation Analysis
In the present study, we further examined whether low-level

visual features (i.e., Gabor features) could predict neural activity in

the LOC using a stimulus encoding model for each participant.

Results

We found that the MVPA approach could effectively predict

the neural activity in the ERC (Fig. 3a). For the stimulus VBEM,

the accuracy was 52.5% (63/120) for participant S1 and 39.2%

(47/120) for participant S2, respectively. Notably, all of the

predictive accuracies were remarkably higher than the chance

performance of 0.8% (1/120). By contrast, there were no linear

relationships between the Gabor feature patterns and the neural

activity in the LOC. The accuracy of the VBEM for neural

activity prediction in the LOC was only 4.2% for participant S1

and 0% for participant S2, respectively. For the LOC AVBEM,

the accuracy was 64.2% (77/120) for participant S1 and 38.3%

(46/120) for participant S2, respectively, which were also above

the chance probability of 0.8% (1/120). For the combined

VBEM and AVBEM, the accuracy was 88.3% (106/120) for

participant S1 and 62.5% (75/120) for participant S2 (Fig. 3a).

These accuracy values were higher than those of either the

stimulus VBEM or the LOC AVBEM alone (Fig. 3a).

The contributions of the stimulus VBEM and the LOC

AVBEM to neural activity prediction differed in the sub-regions

of ERC (i.e., V1, V2, and V3). For participant S1, Fig. 3b shows

that the prediction accuracy of the stimulus VBEM was 55.0%

for V1, 49.2% for V2, and 23.3% for V3. In contrast, the

accuracy derived from the LOC AVBEM was 31.7% for V1,

55.0% for V2, 74.2% for V3 (Fig. 3b). The dominance of neural

Figure 1. Overview of the data analysis framework.
doi:10.1371/journal.pone.0108557.g001
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activity prediction from visual properties ranged from V1 – V3,

which is inverse to the ‘prediction’ from the LOC. This

observation was validated by the results obtained from partici-

pant S2 (Fig. S1 in Text S1).

Discussion

This study applied a voxel-based encoding method to quantify

the neural activity of the ERC and its relationship with the

neural activity of the LOC for visual processing. The main

findings can be summarized as follows: (i) Gabor features were

predictive of ERC activity when a linear relationship was

constructed, but no such relationship existed between the Gabor

features and LOC activity; (ii) an analogical encoding method

could capture the linear relationship between neural activity in

the LOC and that in the ERC, and (iii) a combination of the

Gabor features and the LOC information could improve neural

activity ‘prediction’ in the ERC.

The primary advance of this study may be that we further

assessed the relationship of ERC activity and the high-level visual

cortex (e.g., the LOC), which was not performed in a previous

study [14]. The previous study demonstrated that the Gabor

feature patterns could linearly describe voxel-based brain activity

changes in the ERC [14], which provided evidence for the

representation of low-level visual features in the ERC. The neural

representation of the ERC will be further translated to the high-

level visual cortex in the ventral visual pathway; the neural activity

of the ERC is consequently associated with that of the LOC.

Meanwhile, it is noteworthy that many studies have shown that

ERC activity reflects high-level stimulus information such as

perceived size [2,20], grouping [2,21,22], brightness [23], and

stimulus reward information [24]. Thus, neural activity in the

ERC is not simply driven by low-level visual features; it is also

affected by high-level visual cortical information [2,3]. The

investigation of the interaction relationship between the neural

activities in the ERC and LOC will advance our understanding of

the neural substrate for visual processing in the ventral visual

pathway. By using a VBEM, once we had succeeded in building

linear relationships between ERC activity and the Gabor features

Figure 2. Schematic of the voxel-based encoding model used in this study. (a) Model estimation. We used training images as input
channels to estimate the encoding model of one voxel with a gradient descent algorithm. (b) Model prediction. The correlation r was calculated
between the observed activity pattern (i.e., the fMRI response to each training image in the early visual cortex) and the predicted activity pattern from
multiple encoding models. The dotted box represents the most closely matched model. (c) Correlation matrix and prediction performance. The color
at the (n, m) element represents the correlation between the observed activity pattern for the mth image and the predicted activity pattern for the
nth image. The maximum correlation in each column is designated by an enlarged circle of the appropriate color, which indicates the image selected
by the prediction algorithm. If the diagonal element was the maximum value in each column, we marked it as a correct prediction. The prediction
performance of the encoding model was defined as the ratio of the number of correct predictions to the total number of training images. For this
participant, the performance was 88.3% (106/120).
doi:10.1371/journal.pone.0108557.g002

Association of LOC and the Early Retinotopic Cortex for Perception

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e108557



of the stimuli, we can construct similar relationships between the

neural activity in the ERC and the high-level visual cortex

information.

These object representations in the high-level visual cortex (e.g.,

the LOC) and in the ERC were distinct but corresponded to each

other. Extant evidence has indicated that the LOC represents

perceived object shape rather than low-level image features

[10,25]. Many studies have shown that shape representations in

the LOC are independent of sensory modalities [26–29], but are

highly influenced by the subjective experiences of the participants

[30]. Consistent with these previous findings, the current study

found that the neural activity in the ERC, but not in the LOC,

could be predicted from the Gabor feature patterns of visual

stimuli. Regardless, the neural activity in both the LOC and ERC

may represent distinct levels of information of the same visual

stimuli, as the brain activity in both the LOC and ERC

contributed to the representation of the same object. For instance,

Naselaris et al. [18] found that the semantic features of the stimuli

could effectively predict the neural activity of the LOC in an

encoding model. However, it is still an open issue whether the

representations in the LOC comprised shape or semantic

information during perception [31]. Nevertheless, corresponding

relationships were still present between the neural representations

in the LOC and those in the ERC, which may be simply derived

from the visual input from the ERC to the LOC during visual

processing, or the modulation effect of the LOC on the ERC, or

both. Thus the nature of the complex relationship between them

should be further studied in future.

We found that the linear addition of LOC information and

Gabor features can improve the ‘prediction’ accuracy. A possible

explanation is that the neural activity in the ERC represents a

combination of purely physical stimulus properties and high-level

visual input signals. Indeed, accumulating evidence shows that the

neural activity in the ERC is heavily influenced by feedback from

higher-level visual regions [11,32–34], even when there is no

bottom-up input [11]. Within the high-level visual cortex, the

LOC is thought to be a critical region involved in this top-down

modulation process [2,3]. Previous studies of illusory contour

processing explored the contributions of the early visual cortex and

high-level visual cortex and clearly demonstrated that contour

processing was initially observed in the LOC rather than in early

visual regions [35–37]. These findings might suggest that neural

activity in the ERC reflects feedback from higher-level regions

(e.g., the LOC) [5] and are further supported by a recent study

indicating that object recognition alters the fMRI spatial pattern in

the ERC [1]. It is noteworthy that our findings in the present study

can not be merely interpreted as the feedback of the LOC to the

ERC during the visual processing, although the improved effect

was observed by combining the VBEM and AVBEM.

The exact neural relationships between LOC and ERC need be

further explored during visual perception. As we know, a

hypothesis of Bayesian inference has been proposed within the

visual system [38,39]. According to this hypothesis, the visual areas

calculate a likely inference for the processed stimuli in a

hierarchical structure by integrating prior visual information from

top-down signals with new bottom-up input [1]. Our findings

might provide evidence for the integration of external input

information and a top-down feedback signal from the high-level

visual cortex in each sub-region (i.e., V1, V2 and V3) of ERC

activity. Although this ‘modulation’ was obvious for ERC activity,

we noted that the effects were different among sub-regions of the

ERC. Specifically, the ‘modulation’ from the LOC was most

significant in V3, then V2 and V1, which is the inverse of the

influence of the Gabor features in the ERC.

It should be noted that the signal with non-neural sources (such

as physiological (cardiac, respiratory) and motion noise [40])

contained in the fMRI data may complicate the interpretation to

our findings. Although the fMRI data used in the present study

had been preprocessed to reduce the autoregressive noise-related

(i.e., physiological and motion noise) effects [14], the residual

Figure 3. Performance of different voxel-based encoding models. (a) Summary of identification performance. The bars indicate the
performance obtained from a set of 120 images, and the dashed green line indicates chance performance. Note that for both participants S1 and S2,
the performance of all three methods was higher than the chance level, and the combination had higher performance than either the stimulus VBEM
or the LOC AVBEM alone. (b) There were inverse modulations in the sub-areas of ERC between the stimulus VBEM and the LOC AVBEM. VBEM, voxel-
based encoding model; AVBEM, analogical voxel-bsed encoding method.
doi:10.1371/journal.pone.0108557.g003
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artifacts still cannot be removed completely [41,42]. Several

previous studies have demonstrated that the complete removal of

noise from fMRI data is impossible nowadays [40,41,43]. Both the

physiological and motion noises can influence the changes of brain

signal and may even bias the correlation of fMRI signals between

regions [43]. That is, these effects may affect the accuracy of using

the signal in LOC to ‘predict’ that in ERC in the present study.

In order to validate our main findings, we also acquired the

resting-state fMRI data from two subjects and estimated the

neural association of the spontaneous activities between LOC

and ERC by using the identical AVBEM analysis. We found that

the neural association between ERC and LOC cannot be built

on the basis of the resting-state fMRI data, and the influence of

motion and global signals on the neural association was not

significant (details see Text S1). These observations suggested

that our findings may be mainly induced by the visual stimuli

processing, neither by the motion noise nor by the spontaneous

fluctuation of the brain in resting-state. In the future, the nature

of the neural association between LOC and ERC during visual

perception should be further explored by considering the

physiological and motion effect.

An interesting extension of the current study is it may enable the

visualization of mental imagery and its associated brain activity.

The current study demonstrated that neural activity in the ERC

exhibited linear relationships with both the Gabor feature and the

neural patterns in the LOC. Therefore, we may indirectly build a

corresponding relationship between LOC patterns and Gabor

features. Many previous studies have shown that the neural

pattern of visual objects is similar to that of visual imagery in the

LOC [44–46]. We speculate that the ‘‘physical shell’’ of the mental

imagery might be further reconstructed from brain activity on the

basis of previous studies [18], which is one of the reasons that we

selected the LOC from among the potential candidates in high-

level visual cortex to be the target region to explore for top-down

modulation effects in the ERC.

Several issues require further investigation in future studies.

First, the current study focused on the LOC to detect the

association of ERC activity and the high-level visual cortex. It

would be interesting to investigate the other high-level visual

cortical regions such as V3a, V3b, and V4 in this process [11].

Second, the performance of our stimulus encoding model was

lower than that in previous studies [14]. The factors responsible

for this difference should be considered in future studies. Third,

the LOC was studied as a whole. However, many studies have

shown sub-cortical regions exist within the LOC [47–49]; thus,

future studies should further detect the different roles of the sub-

cortical regions of LOC in the observed findings of the present

study. The last but not the least, this study showed that the

AVBEM approach made it possible to evaluate the covary of the

LOC and ERC on the neural representation, however, the present

study did not provide direct evidence for the modulation effect of

the LOC on the neural activity of ERC. Thus, it is an interesting

topic to further investigate their cause relationships by a fine

experiment design.

Conclusion

In summary, using VBEM and AVBEM methods, we evaluated

the neural activity in the ERC and its association with the neural

activity in the LOC when participants performed a simple visual

task. We extended previous findings to show that representations

of Gabor features in the ERC activity were relevance with the

high-level visual cortex information (e.g., that in the LOC). And an

AVBEM could evaluate the association of the neural activity

between the ERC and the high-level visual cortex in quantitative

way. This might provide new insights into the neural substrates

underlying visual processing in the ventral visual pathway.

Supporting Information
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(DOC)
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