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Diffuse intrinsic pontine gliomas (DIPGs) are amongst the most challenging tumors to
treat. Surgery is not an option, the effects of radiation therapy are temporary, and no
chemotherapeutic agent has demonstrated significant efficacy. Numerous clinical trials
of new agents and novel therapeutic approaches have been performed over the course
of several decades in efforts to improve the outcome of children with DIPG, yet with-
out success. The diagnosis of DIPG is based on radiographic findings in the setting of a
typical clinical presentation, and tissue is not routinely obtained as the standard of care.
The paradigm for treating children with these tumors has been based on that for supra-
tentorial high-grade gliomas in adults as the biology of these lesions were presumed to
be similar. However, recent pivotal studies demonstrate that DIPGs appear to be their
own entity. Simply identifying this fact releases a number of constraints and opens oppor-
tunities for biologic investigation of these lesions, setting the stage to move forward in
identifying DIPG-specific treatments.This review will summarize the current state of knowl-
edge of DIPG, discuss obstacles to therapy, and summarize results of recent biologic
studies.

Keywords: pons, glioma, brainstem, DIPG, diffuse, intrinsic, pediatric, pontine

INTRODUCTION
More than 70% of children with tumors of the central nervous
system (CNS) will survive at least 5 years from diagnosis (Smith
et al., 2010; Howlader et al., 2011). However, pediatric CNS tumors
represent a heterogeneous group of diseases and the dismal sur-
vival of select tumor subtypes, such as diffuse intrinsic pontine
gliomas (DIPG), is not reflected in this number. The median sur-
vival for children with DIPG is less than 1 year from diagnosis
(Mandell et al., 1999; Cohen et al., 2011), and no improvement in
survival has been realized in more than three decades. The reason
for this stagnancy has, at least in part, been attributed to our lack of
understanding of the biology of this disease. In the past few years,
considerable coordinated and collaborative efforts have been made
to address this. Notably, more has been published on the biology
and pathophysiology of DIPG in the past 5 years than in all prior
years combined, generating a groundswell of excitement and cau-
tious enthusiasm. How to best apply this data to the treatment
of children with DIPG remains to be seen, but improved out-
come for these patients is anticipated as we move beyond empiric
therapy and attempt to bridge the gap between bench and bed-
side. This review will discuss the current status and our present
understanding of this disease.

Diffuse intrinsic pontine gliomas are the most common brain-
stem tumors in children, representing 75–80% of pediatric brain-
stem tumors, and affecting an estimated 200–300 children in the
United States each year. While brainstem tumors have sometimes
been grouped together as a single entity, magnetic resonance imag-
ing (MRI) has allowed classification of these tumors into distinct
subsets of focal, dorsally exophytic, cervicomedullary, or diffusely
infiltrating tumors based on imaging characteristics (Epstein and
Farmer, 1993; Figure 1). The prognosis for children with dif-
fusely infiltrating pontine gliomas is significantly worse than that

of other brainstem tumors. The pons contains cranial nerve nuclei
and nuclei critical for life-sustaining function, so damage by the
tumor or its treatment has tremendous repercussions. Resection
is not an option and the tumors are resistant to other therapeutic
measures.

PRESENTATION AND DIAGNOSIS
Diffuse intrinsic pontine glioma is generally a disease of mid-
dle childhood, with the majority of children diagnosed between
5 and 10 years of age. Most present with some evidence of
brainstem dysfunction or cerebrospinal fluid (CSF) obstruction,
although a handful of tumors are identified as incidental find-
ings. Typically, symptoms are present for a short period of time
(i.e., <1 month), but it is not unusual to have generalized or
subtle symptoms present for several months prior to diagnosis.
Commonly reported symptoms include abnormal or limited eye
movements, diplopia, an asymmetric smile, clumsiness, difficulty
walking, loss of balance, and weakness. Classic findings on clinical
examination include the triad of multiple cranial neuropathies,
long tract signs (hyperreflexia, clonus, increased tone, presence of
a Babinski reflex), and ataxia. Signs and symptoms of increased
intracranial pressure may be present due to obstructive hydro-
cephalus resulting from expansion of the pons. Various other
symptoms may occur, including behavioral changes, night terrors,
and school difficulties.

The diagnosis of DIPG is based on characteristic MRI find-
ings in the face of this typical clinical presentation (Figure 2). On
MRI, the tumor appears as a large expansile brainstem mass as
opposed to an extrinsic mass compressing the pons. While there
may be an exophytic component due to expansion of the tumor via
the path of least resistance, the epicenter of DIPG lies within the
pons, and the lesion involves the majority of the pons. DIPGs are
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FIGURE 1 | Classification of brainstem gliomas by MRI appearance. (A) Focal brainstem lesion on T1-weighted post-contrast sagittal image. (B) Dorsal
exophytic brainstem lesion on sagittal non-contrast MRI. (C) Cervicomedullary lesion on T1-weighted post-contrast sagittal image. (D) Diffuse intrinsic pontine
glioma lesion on T1-weighted post-contrast sagittal image.

FIGURE 2 |Typical MRI appearance of DIPG. (A) T1-weighted post contrast, (B) T2-weighted, (C) FLAIR.

hypo- or iso-intense on T1- weighted imaging, hyperintense on
T2-weighted imaging, and frequently appear relatively homoge-
neous on fluid attenuated inversion recovery (FLAIR) sequences.
Pinpoint intratumoral hemorrhages are not uncommon. Other
MRI features of typical DIPG include ventral involvement of the
pons, and encasement of the basilar artery. Contrast-enhancement
is variable, but these lesions frequently do not significantly enhance
at diagnosis.

Prior to the routine use of MRI, it is estimated that up to 15% of
patients diagnosed with DIPG actually had a non-tumor process
or non-glial tumor (Jenkin et al., 1987; Epstein and Wisoff, 1988),
and biopsy procedures were frequently undertaken for histological
confirmation. Although MRI is not 100% specific, the vast major-
ity of children diagnosed with DIPG by MRI do have a diffuse
infiltrative glioma. Consequently, in the early 1990s when MRI
became widely available, it was proposed that obtaining tissue for
histologic confirmation was not necessary in children with a typ-
ical clinical presentation and distinctive radiographic findings on
MRI (Albright et al., 1993; Cartmill and Punt, 1999). This recom-
mendation was rapidly incorporated as standard practice given the
perceived surgical risk in this delicate area, particularly for chil-
dren with concurrent increased intracranial pressure and those

considered poor surgical candidates. Since the available therapies
at the time were primarily non-specific cytotoxic agents, the initial
repercussions of diagnosis without tissue appeared to be of little
consequence.

HISTOLOGY
Because of limited tissue availability, our knowledge of DIPG
comes primarily from evaluation of autopsy specimens, small
biopsy samples obtained from patients with atypical radiographic
findings, and biopsy samples obtained from a small number of
institutions such as the Institut Gustave-Roussy where biopsy has
been routinely performed on children with suspected DIPG since
2003 (Roujeau et al., 2007). The majority of diffusely infiltrating
brainstem tumors are fibrillary astrocytomas, histologically resem-
bling malignant gliomas in other locations. Anaplasia, increased
mitotic activity, tumor necrosis, and vascular proliferation are
often, but not always, present. DIPGs may therefore be classified
histologically as fibrillary astrocytomas, World Health Organiza-
tion (WHO) Grades II–IV (Schumacher et al., 2007), although the
utility of grading has been questioned. When biopsies are indi-
cated, they are generally obtained from the most accessible area
and may not be representative of the entire tumor as significant

Frontiers in Oncology | Pediatric Oncology December 2012 | Volume 2 | Article 205 | 2

http://www.frontiersin.org/Pediatric_Oncology/
http://www.frontiersin.org/Pediatric_Oncology/archive


“fonc-02-00205” — 2012/12/26 — 17:43 — page 3 — #3

Warren Diffuse intrinsic pontine glioma

geographic variability of these tumors has been reported (Warren
et al., 2011c; Figure 3). In addition, prognosis is not associated
with histological grade (Edwards et al., 1989; Grigsby et al., 1989;
Hargrave et al., 2006; Laigle-Donadey et al., 2008).

Tumor cells often appear relatively small, with prominent
cytoplasmic intermediate filaments and cell processes, similar
to fibrillary astrocytomas in other locations of the brain (Maria
et al., 1993). In DIPG, tumor cells tend to pervade normal
cells, diffusely expanding the pons and distorting, displacing
and destroying nerve fiber tracts that normally course through
it (Maria et al., 1993). The tumors tend to spread contiguously,
extending to involve the midbrain, medulla, and cerebellar pedun-
cles (Mantravadi et al., 1982; Grigsby et al., 1989). Despite this
tendency for local spread, CNS metastasis at diagnosis is not
uncommon, with up to 20% of patients reported to have lep-
tomeningeal disease at diagnosis (Donahue et al., 1998; Sethi
et al., 2011). This may be an underestimate, as spinal disease is
not always investigated in asymptomatic patients. Significantly
higher numbers of patients (up to 56%) have evidence of spinal
metastases or leptomeningeal dissemination at the time of recur-
rence or autopsy (Donahue et al., 1998; Gururangan et al., 2006;
Sethi et al., 2011).

STANDARD THERAPY AND DISEASE COURSE
The standard of care for children with newly diagnosed DIPG
is focal radiation therapy, using a 1 cm margin to cover micro-
scopic disease, to a total dose of 54–60 Gy administered over
6 weeks, usually in daily (Monday–Friday) 180–200 cGy frac-
tions. Glucocorticoids are frequently administered in an effort to
reduce and control edema associated with the tumor and radiation
treatment. About 75% of patients will have some improvement
in neurological symptoms in response to radiation therapy and
steroids, but many patients suffer concomitant adverse effects pri-
marily attributed to steroids. Radiation therapy appears to control
tumor growth for a short period of time, prolonging survival by
a mean of ∼3 months (Haas-Kogan et al., 2011). Patients receiv-
ing doses under 50 Gy have a worse outcome compared to those
receiving higher doses (Lee, 1975; Kim et al., 1980; Litman et al.,
1980). Total radiation doses higher than 60 Gy have been evalu-
ated. Initial studies utilizing hyperfractionated radiation therapy
with total doses up to 72 Gy suggested a modest improvement
in survival of children with brainstem gliomas compared to
radiation alone, and compared to radiation with neoadjuvant
or adjuvant chemotherapy (Edwards et al., 1989; Freeman et al.,
1993; Packer et al., 1993). However, subsequent trials using radi-
ation doses up to 78 Gy did not confirm this finding (Freeman
et al., 1993; Packer et al., 1994; Mandell et al., 1999). While radia-
tion therapy appears to offer some benefit to children with DIPG,
no radiosensitizing agent has improved outcome (Mandell et al.,
1999; Marcus et al., 2003; Sanghavi et al., 2003; Bernier-Chastagner
et al., 2005).

Within 3–8 months after completion of radiation therapy,
most children with DIPG will have clinical or radiographic
evidence of disease progression. The pattern of failure is gener-
ally local. In one study, 25% of cases with disease progression
involved the irradiated volume, while 75% involved the margin
of the radiation field (Grigsby et al., 1989). Recently, concern

has been raised regarding a suspected increased incidence of
distant disease at recurrence with the use of antiangiogenic
therapies (Rubenstein et al., 2000; Zuniga et al., 2009), but this
has not been clearly demonstrated for patients with DIPG.
Additional therapies for DIPG are generally not effective and
neurologic deterioration occurs unabated over the ensuing weeks
to months.

CHEMOTHERAPY
Because of inevitable disease progression in the vast majority of
children with DIPG, many receive adjuvant chemotherapy, fre-
quently as part of a clinical trial, at some point during their disease
course in an attempt to improve survival. However, no chemother-
apeutic agent has ever demonstrated a significant improvement in
outcome beyond that achieved with standard radiation therapy
alone. An early prospective, randomized trial performed 25 years
ago compared radiation only versus radiation plus post-radiation
chemotherapy using prednisone, CCNU, and vincristine (Jenkin
et al., 1987). This study was performed prior to the routine use of
MRI and included children with brainstem tumors involving the
pons or medulla. Five-year survival was not statistically different
between the two arms, with 17% 5-year survival noted in the radi-
ation only arm versus 20% in the radiation plus chemotherapy
arm. Of note, these survival rates are higher than those reported
in more recent trials; this is likely related to the inclusion of
non-DIPG patients. DIPG has been studied in a large number of
clinical trials including those evaluating cytotoxic agents, high-
dose chemotherapy with stem cell rescue (Dunkel et al., 1998;
Bouffet et al., 2000), neoadjuvant chemotherapy (Doz et al., 2002),
biologic response modifiers (Warren et al., 2006, 2011a,b) and
radiation sensitizers, none of which demonstrated significantly
improved outcome. Contemporary studies limiting enrollment
to patients with DIPG generally report progression-free survival
(PFS) of 5–8 months and 2-year overall survival rates of <10%
(Pollack et al., 2007, 2011; Gururangan et al., 2010; Haas-Kogan
et al., 2011; Table 1).

The majority of recent trials are early (i.e., phase I) clinical trials
or single-armed phase II studies that rely on historical controls for
comparison (Broniscer et al., 2010; Michalski et al., 2010; Cohen
et al., 2011; Geoerger et al., 2011; Haas-Kogan et al., 2011; War-
ren et al., 2011a). Although most, if not all, studies demonstrate
the all-too-recognizable ski-slope Kaplan–Meyer survival curve,
a true historical cohort has not been defined. Those studies that
include younger children, children with a long history of symp-
toms prior to diagnosis, and children with neurofibromatosis type
1 (NF-1) may favorably bias results, as will those excluding patients
with herniation, disseminated disease, and intratumoral hemor-
rhage. The eligibility criteria for previous and ongoing studies
differ, the definition of typical and atypical DIPG is not standard-
ized, and the definition of response or disease progression varies
between, and within, pediatric consortia. There is frequently mis-
match between clinical and radiographic findings for an individual
patient; while some adhere to radiographic definition of response
and progression, others adjust treatment based on clinical findings
alone (Hayward et al., 2008). Performing DIPG-specific random-
ized phase II clinical trials that have adequate power to detect
modest improvements (e.g., from 10 to 12 months) in outcome
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FIGURE 3 | Histologic geographic variability of DIPG. ×4 (A,C) and ×20 (B,D). Hematoxylin and eosin stains from different sections of a single tumor
showing low-grade (A,B) and high-grade (C,D) areas.

Table 1 | Results from recent phase II or non-dose-escalating trials (e.g., pilot) for DIPG.

Reference Year Treatment No. of

evaluable

patients

Median PFS,

EFS, orTTP

(month)

Median OS

(month)

Median

1-year OS (%)

Comment

Warren et al. (2011a) 2012 XRT, PEG-Intron 32 7.8 11.5 46 ± 9

Chassot et al. (2012) 2012 TMZ + XRT 21 7.5 11.7 50 Biopsy-proven

Cohen et al. (2011) 2011 TMZ + XRT 58 6.1 9.6 40 ± 6.5

Haas-Kogan et al. (2011) 2011 Tipifarnib + XRT 40 5.9 8.9 35 ± 7.5

Pollack et al. (2011) 2011 Gefitinib + XRT 43 7.4 56 ± 7.6

Sharp et al. (2010) 2010 Metronomic

TMZ + XRT

15 5.13 9.8 20 ± 10.3

Kim et al. (2010) 2010 TMZ + thal + XRT 12 7.2 12.7 58.3

Jalali et al. (2010) 2010 TMZ + XRT 20 6.9 9.15

Frappaz et al. (2008) 2008 Pre-XRT chemo

(BCNU/MTX)

17 11 patients with symptoms

>1 month prior to dx

Sirachainan et al. (2008) 2008 TMZ + XRT, then

TMZ + cRA

12 10.2 ± 3 13.5 ± 3.

6

58 ± 14.2 7 patients <5 years;

OS 16.2 ± 0.7 months

Korones et al. (2008) 2007 VCR, VP-16, XRT 30 9 27.7 ± 7

Turner et al. (2007) 2007 Thal + XRT 12 5 9

Aquino-Parsons et al. (2008) 2006 Carbogen + XRT 7 8 9.6

Bernier-Chastagner et al. (2005) 2005 Topotecan + XRT 32 8.3 25.5 ± 8

DIPG, diffuse intrinsic pontine glioma; DIBG, diffuse intrinsic brainstem glioma; XRT, radiation therapy; PFS, progression-free survival; TMZ, temozolomide; TTP, time
to progression; EFS, event-free survival; OS, overall survival; cRA, cis-retinoic acid.
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is generally precluded by the relatively small number of patients
and the time necessary to reach objective endpoints. Until a more
contemporary historical cohort is defined, studies that attempt
to identify a modest improvement in survival would therefore
require a large number of patients or a randomized control arm
involving DIPG patients who receive radiation therapy only, some-
thing that is not likely to appeal to patients, families or treating
physicians.

OBSTACLES TO CHEMOTHERAPY
A number of obstacles that may contribute to the lack of efficacy
of chemotherapeutic agents are known or suspected. For a drug
to be effective against a tumor, you need to have an active agent,
delivered to its site of activity, and present in its active form in
effective concentrations for a long enough period of time. The cells
need to be sensitive to the agent, and if it is a molecularly targeted
agent, the target must be present. While this may be stating the
obvious, from a practical standpoint, much of this information is
unknown when treating a patient with DIPG.

There are several factors that can affect drug levels at the brain
tumor site. These include the concentration of drug in the blood-
stream, the amount of protein and tissue binding (i.e., it is the free
or unbound drug that is active), and the degree of CNS penetration
(i.e., how much drug crosses the blood:brain or blood:tumor barri-
ers and diffuses across the brain parenchyma to its site of action).
The blood:brain barrier (BBB), a layer of specialized endothe-
lial cells comprising the wall of CNS capillaries, re-enforced by
its surrounding basal lamina, pericytes, astrocytes, and microglia
(Wolburg et al., 2009), serves to protect the CNS from toxins, limits
the CNS penetration of large, hydrophilic substances, and thereby
hinders delivery of many chemotherapeutic agents to the tumor
site. The blood:tumor barrier may be less restrictive due to dis-
rupted and leaky tumor vessels, but even if agents are able to cross,
diffusion of agents across the parenchyma remains limited to only
a few millimeters (Morrison and Dedrick, 1986).

Given the lack of adequate tumor-bearing animal models and
the ethical constraints of sampling brain tumor tissue in children,
the degree of drug penetration at the tumor site and therefore
adequate drug dosing remains unknown. With empiric cytotoxic
agents, the paradigm is to treat with the maximum tolerated dose
(MTD), but this may not result in adequate exposure at the tumor
site, and is not applicable to molecularly targeted agents for which
an MTD may not be identified.

Several strategies have been employed to overcome the BBB
and improve drug delivery to the tumor site. These include the
use of high dose chemotherapy with stem cell rescue (Finlay and
Zacharoulis, 2005), biologic or osmotic BBB disruption (Hall et al.,
2006; Warren et al., 2006), and p-glycoprotein inhibition (Green-
berg et al., 2005). Most recently, convection-enhanced delivery has
been used to deliver agents directly into the tumor of patients with
DIPG (Lonser et al., 2007). Using this technique, agents are deliv-
ered under continuous low-pressure via a catheter placed directly
in the tumor or tumor bed, and clinical trials in children with
DIPG are ongoing.

When treating with chemotherapy, it would be advantageous
to assess drug activity or inactivity early in the treatment course
so treatment options can be reassessed and patients will not be

exposed to additional cycles of inactive agents. Determining the
acute effects of an agent, particularly a cytostatic agent, and early
efficacy on the tumor and its microenvironment can be difficult.
In neuro-oncology, activity of an antitumor agent is frequently
assessed using MacDonald criteria (MacDonald et al., 1990) or
a variant, with decreased tumor size, decreased steroid use, and
improved neurologic symptoms indicative of response. How-
ever, there are a number of issues with applying these response
criteria to patients with DIPG. These criteria were developed
primarily for enhancing supratentorial gliomas, and DIPG fre-
quently do not enhance or they may exhibit a heterogeneous
pattern of enhancement. Given their invasive nature and indis-
tinct borders, there is significant interobserver variability using
standard tumor measurement criteria when measuring DIPG on
MRI (Hayward et al., 2008). Even if the tumor size is reduced
by a chemotherapeutic regimen, this is generally not sustained
and does not translate into improved survival. Standard MRI
cannot reliably differentiate tumor and treatment effects, and
phenomena such as pseudoprogression and pseudoresponse com-
plicate interpretation of MR images. For children with DIPG,
new enhancement months after radiation therapy may repre-
sent treatment effect (e.g., radiation necrosis), tumor progression,
or both. These cannot be easily distinguished using standard
MRI, resulting in a frustrating predicament for both families and
caregivers.

Non-invasive evaluation to identify response to antitumor
agents continues to be investigated, and some imaging techniques,
such as MR perfusion and magnetic resonance spectroscopy
(MRS), have shown promise as predictive or surrogate markers
of response in this population (Hipp et al., 2011; Steffen-Smith
et al., 2011). In one study, evaluating spectroscopy in 38 children
with DIPG, the choline:N-acetyl aspartate ratio (CHO:NAA) was
shown to be prognostic, with those patients having CHO:NAA
higher than the median of 2.1 demonstrating a greater risk of
mortality compared to patients with CHO:NAA ≤2.1 (Steffen-
Smith et al., 2011). This study also showed that changes in
CHO:NAA over time were associated with outcome. Any increase
in CHO:NAA was inversely associated with survival (p = 0.009),
while decreasing CHO:NAA was associated with a decreased risk
of death. The greater the change, the more significant the observed
effect.

Likewise, perfusion studies were evaluated in a group of DIPG
patients. In general, tumor growth is associated with increased
vessel density and increased vessel permeability, features that can
be evaluated on newer MRI sequences. Increased blood flow
to a region of interest may be indicative of increased vascular
growth, associated with tumor grade, or associated with malignant
transformation. In a recent study by Price et al. (2011) relative
cerebral blood volume (rCBV) determined on perfusion imag-
ing correlated with cell proliferation in adults with high-grade
gliomas. In a study evaluating perfusion imaging in 34 children
with DIPG, increased perfusion at any single time point was asso-
ciated with shorter survival (RR = 4.91; Hipp et al., 2011). In
addition, increasing perfusion over time was a poor prognostic
factor. Additional imaging techniques such as diffusion tensor
imaging are being evaluated in children with DIPG although their
clinical utility remains to be seen.
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LACK OF TISSUE
Because of limited tissue availability, very little information on
the biology and pathophysiology of DIPG has been available
in the literature (Louis et al., 1993; Cheng et al., 1999; Gilbert-
son et al., 2003) until recently. The importance of understanding
the biology of DIPG has been brought to the forefront with the
development of molecularly targeted agents. No molecularly tar-
geted agent has been shown to significantly improve survival in
a clinical trial for children with DIPG. This includes therapeu-
tic agents aimed at targets defined in adult high-grade gliomas,
including platelet-derived growth factor receptor (PDGFR; Pol-
lack et al., 2007), epidermal growth factor receptor (EGFR;
Geoerger et al., 2011; Pollack et al., 2011), vascular endothe-
lial growth factor receptor-2 (VEGFR2) (Broniscer et al., 2010),
and farnesyl transferase (Haas-Kogan et al., 2011). Determining
why these agents fail is key to advancing the use of molecu-
larly targeted agents in general for the treatment of children
with DIPG.

An unprecedented number of studies on the biology of DIPG
have been published in the past few years (Joshi et al., 2008; Paugh
et al., 2010, 2011; Zarghooni et al., 2010; Barrow et al., 2011; Monje
et al., 2011; Warren et al., 2011c). These studies give insight as
to the possible cell of origin, genetic profiling, driver mutations,
and oncogenic alterations. While the etiology and exact patho-
physiology of DIPG remain to be determined, critical pathways
and potential treatment targets have been identified, and criti-
cal conclusions can be drawn: (1) pediatric DIPGs differ from
adult high-grade gliomas, (2) pediatric DIPGs differ from pedi-
atric supratentorial high-grade gliomas, (3) genomic studies of
DIPG demonstrate aberrations in druggable targets, (4) signifi-
cant interpatient and intrapatient variability exists, and (5) the
tumor microenvironment appears to play a key role in DIPG
tumorigenesis.

An intriguing characteristic of DIPG is the predominant age
group affected, with a peak incidence in middle childhood,
suggesting an etiology associated with development. In efforts
to define a potential cell of origin, Monje et al. (2011) exam-
ined the spatial and temporal distribution of neural precursor
cells in the human brainstem. They described a distinct cell
population in the ventral pons that is Nestin and Vimentin
immunopositive (both markers of primitive neuroectodermal
cell types in the developing and post-natal CNS); approximately
half of these cells are also positive for the basic helix-loop-helix
transcription factor Olig2 (classically associated with oligoden-
droglial lineage precursor cells). They demonstrated that the
density of this Nestin+ Vimentin+ Olig2+ cell type normally
changes during childhood. It is present in all ventral brain-
stem structures during infancy, decreases by 2 years of age,
and then increases again during middle childhood. What reg-
ulates the changing density of this cell population in humans
is unknown. However, using a mouse model, Monje et al.
(2011) determined that Hedgehog signaling drives proliferation
of Olig2+ cells in the ventral pons of mice. In addition, Hedgehog
activity and Hedgehog-responsive cells increased in the ventral
pons of the mouse during the time period corresponding to
middle childhood in humans. These studies suggest that the
nature of neural precursor cells in the ventral pons and the

microenvironment within the developing brain may influence the
disease process.

Puget et al. (2012) also implicated the Sonic Hedgehog pathway
in a trial in which they performed genomic studies on a large num-
ber (n = 61) of newly diagnosed children with DIPG. In this study,
DIPG was distinguished from high-grade gliomas by several genes
involved in the Sonic Hedgehog pathway. The authors suggest
that the gene expression signatures of DIPG were associated with
“differential reprogramming of embryonic signaling organizers.”
They demonstrated involvement of two distinct oncogenic path-
ways that resulted in two biological DIPG subgroups, including
one group with an oligodendroglial phenotype that was associated
with PDGFRA gain or amplification, and another group referred
to as the mesenchymal and pro-angiogenic phenotype that was
associated with higher expression of STAT3.

Both the Monje and Puget studies implicate altered gene
expression during development as potentially key steps in DIPG
pathogenesis. Histones play an important role in gene regu-
lation, influencing chromatin structure and accessibility, and
post-translational modifications of the histone tail play a role
in epigenetic regulation of gene expression. Notably, two recent
studies demonstrated somatic mutations in histone H3.3 asso-
ciated with DIPG (Khuong-Quang et al., 2012; Wu et al., 2012).
Wu et al. (2012) performed whole genome sequencing on DNA
of seven patients with DIPG and showed that four of these seven
had a mutation in H3F3A (the gene that encodes the H3.3 pro-
tein) or HIST1H3B (gene which encodes H3.1) that resulted in a
K27M substitution (lysine replaced by methionine at amino acid
27). They expanded this study in 43 additional DIPG patients
and found that 78% of DIPG patients demonstrated K27M sub-
stitutions in H3F3A or HIST1H3B compared to only 22% of
non-brainstem glioma patients. Similarly, Khuong-Quang et al.
(2012) demonstrated that 71% of 42 DIPG patients had the
K27M mutation compared to 14% of supratentorial glioblas-
tomas. They also noted that patients with wild type H3.3 had
better overall survival. Interestingly, H3.3 is located on Chro-
mosome 1q, an area commonly gained in DIPG (Barrow et al.,
2011; Warren et al., 2011c). However, in the study by Wu et al.
(2012), there was no significant correlation between the pres-
ence of H3F3A mutations and gain of chromosome 1q. Lysine
27 of the histone H3 tail is also a key residue for epigenetic
regulation of neural precursor cell differentiation (Liu and Casac-
cia, 2010).

Several genomic studies have identified a number of chromoso-
mal aberrations and targets in DIPG, including PDGFRA, MDM4,
MYCN, EGFR, MET, KRAS, CDK4, amongst others (Paugh et al.,
2010, 2011; Zarghooni et al., 2010; Barrow et al., 2011; Warren
et al., 2011c; Grill et al., 2012; Li et al., 2012). Not surprisingly,
many of the identified aberrations involve genes that regulate cell
growth, cell death, and repair pathways. Rather than describe each
of these in detail, it is important to realize that, although these stud-
ies significantly contribute to our knowledge and understanding
of the biology of DIPG, the number of samples is relatively small.
The glaring fact is that no one target is identified in all tumor
cells of all patients with DIPG. Treating a single target will there-
fore unlikely result in a significantly improved outcome for these
patients. Indeed, clinical trials evaluating individual molecularly
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targeted agents have been performed in children with DIPG with-
out success. Precise reasons for the lack of efficacy are unknown,
but in most, if not all, studies, it is unknown if the target was
expressed, was insufficiently expressed, or whether drug exposure
at the target site was adequate. Presumably, combinations of sev-
eral targeted agents will be necessary to observe an effect given
the multiple chromosomal alterations found in individual patient
samples.

BIOPSY
In contrast to the majority of centers in the United States, rou-
tine biopsy of children with suspected DIPG has been performed
in Europe since 2003 (Roujeau et al., 2007). In the initial report
detailing their experience in 24 children, the investigators report
morbidity in 2 children (cranial nerve palsy, worsening hemipare-
sis) which was reversible, and no incidents of mortality, concluding
that the procedure was relatively safe in experienced hands using
modern neurosurgical technique (Roujeau et al., 2007). Given
this demonstration of relative safety, along with the significant
information obtained, the ability to perform genomic testing
on small tissue samples, the identification of potentially drug-
gable targets and known interpatient heterogeneity, there is a
movement within the pediatric neuro-oncology community to
push for routine biopsy of patients with suspected DIPG (Mac-
Donald, 2012; Rutka, 2012) although this remains under debate
(Boop, 2011).

Because the vast majority of samples biopsied are malignant
gliomas, the primary purpose of the biopsy in patients with a
typical clinical presentation and typical radiographic appearance
would not necessarily be for histologic confirmation, although this
would be important for those with atypical features, particularly
since brainstem PNET can mimic DIPG radiographically (Sufit
et al., 2012). Rather, the major question to be addressed is whether
or not treatment chosen based on biopsy results can improve the
outcome of these children. Intrapatient heterogeneity of DIPG has
been demonstrated, and defining where to biopsy and how rep-
resentative these results are of the tumor need to be broached. At
the very least, routine biopsy would supply additional tissue for

study, may enhance our understanding of the disease, and enrich
the datasets gleaned from clinical trials.

CONCLUSION
An unprecedented number of biologic and genomic studies, gen-
erating considerable novel and exciting data, have been performed
on DIPG over the past few years, primarily due to a number of
collaborative efforts. We now know that DIPGs are a distinct
entity, biologically different from both adult high-grade gliomas
and pediatric supratentorial high-grade gliomas. We know that
genomic mutations occur in DIPG, resulting in a number of
druggable targets. However, we also know that no single target
defines DIPG, and significant inter- and intrapatient variability
exists. Our challenge now is to select appropriate targets, treat
with agents at doses that will result in adequate exposure at the
site of action, and rapidly identify drug efficacy or lack of response
in individual patients. Until we are able to non-invasively iden-
tify targets, obtaining tissue from patients will be important for
selecting appropriate agents, so that children with DIPG will only
be exposed to those agents that have any chance of benefit. Tumor
assessment, identification of tumor targets, selection of appropri-
ate agents, and determination of adequate dosing should inform
treatment selection, and pre-treatment determination of this data
may become the new study paradigm for the next generation of
DIPG clinical trials.

It is imperative that we continue to embrace global collabora-
tions given the relatively small numbers of patients. It is key to be
able to perform trials and identify efficacious treatment paradigms
quickly. We need to be able to compare results from different clin-
ical trials; to do this, similar eligibility and response criteria are
necessary, and it is important to identify an appropriate historical
cohort. Finally, it is necessary to change our mindset, and not be
mired in historical outcomes for children with DIPG, as recent
data opens a host of avenues for promising approaches.
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