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Purpose: The mechanism by which cancer upregulated gene 2 (CUG2) overexpression 
induces cancer stem cell-like phenotypes is not fully understood. Because the increased 
activity and expression of epidermal growth factor receptor (EGFR) kinase have been 
reported in A549 cancer cells overexpressing CUG2 (A549-CUG2) compared with control 
cells (A549-Vec), the Sprouty2 (Spry2) protein has gained attention as the downstream 
molecule of EGFR signaling. Therefore, we aim to identify the role of Spry2 in CUG2- 
overexpressing lung cancer cells.
Materials and Methods: Spry2 expression levels were examined in A549-CUG2 and 
A549-Vec cells by Western blotting and qRT-PCR. Cell migration, invasion, and sphere 
formation were examined after Spry2 suppression and overexpression. EGFR-Stat1 and Akt- 
ERK protein phosphorylation levels were detected via immunoblotting. NEK2 kinase and β- 
catenin reporter assay were performed for downstream of Spry2 signaling.
Results: Although A549-CUG2 cells showed lower levels of the Spry2 protein than A549- 
Vec cells, no difference in levels of Spry2 transcript was observed between both cells via 
qRT-PCR. Furthermore, MG132 treatment enhanced the protein levels and ubiquitination of 
Spry2, suggesting that Spry2 protein expression can be regulated via the ubiquitin- 
proteasome pathway. The enforced expression of c-Cbl, known as the binding partner of 
Spry2, decreased the Spry2 protein levels, whereas its knockdown oppositely increased them. 
Epithelial–mesenchymal transition (EMT) and sphere formation were increased in A549-Vec 
cells during Spry2 siRNA treatment, confirming the role of Spry2 in CUG2-induced onco-
genesis. Furthermore, EMT and sphere formation were determined by the Spry2 protein 
levels through the regulation of EGFR-Stat1 and β-catenin-NEK2-Yap1 signaling pathways.
Conclusion: CUG2 reduces Spry2 protein levels, the negative signaling molecule of cell 
proliferation, via c-Cbl, possibly activating the EGFR and β-catenin signaling pathways and, 
in turn, contributing to the induction of cancer stem cell-like phenotypes.
Keywords: CUG2, cancer stem cell-like phenotypes, Spry2, c-Cbl

Introduction
Cancer upregulated gene 2 (CUG2) is suggested to have oncogenic activity as 
Affymetrix microarray has shown that it is upregulated in tumors of several tissues 
such as lungs, ovaries, and colon, resulting in tumor formation in nude mice due to the 
overexpression of the protein.1 Recent studies have reported that CUG2 overexpres-
sion induces cancer stem cell-like phenotypes including the increase in cell migration, 
invasion, sphere formation, and resistance to anticancer drugs via the upregulation of 
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TGF-β signaling.2–4 Furthermore, our studies have revealed 
that EGFR-Stat1-HDAC4 signaling axis and β-catenin- 
NEK2-Yap1 signaling axis are also involved in CUG2- 
induced cancer stem cell-like phenotypes.3,5

After Sprouty proteins were first reported to be 
involved in the inhibition of FGF- or EGF-induced signal-
ing during Drosophila development,6,7 detailed action 
mechanisms of the protein have been revealed. For exam-
ple, Sprouty 2 (Spry2) hinders Grb2-SOS interaction and 
Raf activation.8,9 However, some studies have shown that 
Spry2 sustains EGFR signaling by interacting with c-Cbl, 
an E3 ubiquitin ligase, resulting in the inhibition of EGFR 
degradation.10,11 Clinical evidence suggests that decreased 
levels of Spry2 are detected in lung,12 breast,13 and pros-
tate cancer.14 On the other hand, elevated levels of Spry2 
are found in KRasG12V-expressing transgenic mice,15 

where it participates in a negative feedback mechanism; 
leading to the suppression of lung tumorigenesis.

The product of the mammalian c-Cbl gene is widely 
expressed in the cytoplasm of the cell and is involved in the 
negative regulation of receptor tyrosine kinase (RTK) signal-
ing via RTK ubiquitination, subsequently leading to the degra-
dation of the RTK.16,17 Supporting this function, the domain 
structure of c-Cbl contains a tyrosine- kinase-binding domain, 
a RING finger domain, and a C-terminal ubiquitin-associated 
domain.18 The downregulation of Spry2 mediated by c-Cbl E3 
ligase has been reported during EGF or FGF signaling.19

This study was initiated to investigate more detailed 
mechanisms of CUG2-induced oncogenesis. We herein 
report that CUG2 represses Spry2 via c-Cbl E3 ligase, 
which upregulates EGFR and β-catenin signaling. 
Eventually, the activation of these signaling pathways 
contributes to the induction of EMT and sphere formation, 
which are cancer stem cell-like phenotypes.

Materials and Methods
Cell Culture
Human lung cancer A549 cells were obtained from 
American Type Culture Collection (Manassas, VA, USA). 
A549 cancer cells stably expressing CUG2 (A549-CUG2) 
and an empty vector (A549-Vec) were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM) supplemented with 10% 
FBS, penicillin, and streptomycin under G410 (500 µg/mL).

Antibodies and Reagents
Antibodies against β-catenin, Akt, ERK, and Stat1, and its 
phosphorylated proteins were purchased from Cell Signaling 

Biotechnology (Danvers, MA, USA). Antibodies against 
E-cadherin, -N-cadherin, -vimentin, -NEK2, and -Yap1 
were obtained from Abcam (Cambridge, MA, USA). Anti- 
Spry2 and -c-Cbl antibodies were acquired from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA).

Cell Transfection
Cells were transfected with Spry2 siRNA, c-Cbl siRNA, 
pcDNA3-Cbl, or pHM6-Spry2 vector (provided from Prof. 
Tarun B. Patel, Albany College of Pharmacy and Health 
Sciences, NY, USA) with Lipofectamine 2000 at 80% 
confluence and harvested for immunoblotting at 40 h post- 
transfection.

Wound Healing Assay
An artificial wound was generated on a confluent cell 
monolayer using a 200 µl of pipette tip. The cells were 
then incubated for 24 h to measure the closure of the 
scratch.

Transwell Invasion Assay
Cells (1 x 104 cells/well) were seeded in the upper well 
containing DMEM without the serum and further cultured 
for 24 h to allow the cells to migrate into the lower well 
containing the serum through a membrane coated with 
Matrigel (BD Bioscience, San Jose, CA, USA). The 
migrated cells were counted after fixation with 4% paraf-
ormaldehyde and staining with eosin for 30 min.

Sphere Forming Assay
Cells were incubated in 24-well ultralow attachment plates 
containing serum-free medium supplemented with insulin 
(5 µg/mL), BSA (0.4%), basic FGF (10 ng/mL), and EGF 
(20 ng/mL) for 6 days. The size and number of spheroids 
were analyzed under a light microscope (CKX31-11 PHP, 
Olympus, Japan).

Immunoblotting and Immunoprecipitation
Total proteins were extracted from cells lysed with RIPA 
buffer containing a protease inhibitor cocktail and were 
then separated using 10% SDS-PAGE. After the transfer of 
the gel to a PVDF membrane, the membrane was incu-
bated with primary antibodies (1:500 dilution) and subse-
quently with horseradish peroxidase (HRP)-conjugated 
secondary antibodies (1:1,000 dilution). The blot was 
developed by the addition of ECL solution, and then 
imaging was acquired using ImageQuant LAS 4000 Mini 
(GE-Healthcare, Tokyo, Japan). For immunoprecipitation, 
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cells were harvested after 48 h of transfection, and the cell 
debris was removed by centrifugation at 10,000 g for 10 
min at 4°C. After preclearance with 25 µL of protein A/G 
agarose, cell lysates were incubated with an appropriate 
primary antibody and protein A/G agarose for 1 h at 4°C. 
The precipitates were resolved on SDS-PAGE gels and 
analyzed by immunoblotting with appropriate antibodies.

Real-Time Quantitative Reverse 
Transcription-Polymerase Chain Reaction 
(qRT-PCR)
Total RNA was isolated from cells, and the cDNAs were 
synthesized using a QuantiTect Probe reverse transcrip-
tase-PCR (RT-PCR) Kit (Qiagen, Venlo, Netherlands) 
according to the manufacturer’s instructions. Real-time 
RT-PCR was conducted on a SYBR Premix Exicycler 96 
Real-Time Quantitative Thermal Block (Bioneer. Daejeon, 
Korea) with the following parameters: 40 cycles for 95°C 
for 5 sec, 58°C for 25 sec and 72°C for 30 sec. The 
reaction mixture for the real-time PCR was assembled 
with 25µl of AccuPower 2x GreenStar Master Mix 
(Bioneer), 19 µl of deionized sterile water, 5 µl of sense 
and antisense primers, and 1 µl of cDNA in 50 µl of total 
volume. The real-time RT-PCR data were obtained in the 
form of threshold cycle (Ct) values, and target gene 
expression was normalized to a GADPH expression. 
Relative expression levels of the target gene (Spry2) 
were calculated by the comparative Ct (2−ΔΔCτ) method 
as previously described.20,21

Immunofluorescence Microscopy
For performing immunofluorescence microscopy, cells 
grown on coverslips were fixed with 4% paraformalde-
hyde for 15 min, permeabilized with cold acetone for 15 
min, blocked with 10% goat serum for 30 min, and treated 
with anti-Spry2 antibodies for 30 min at room tempera-
ture. Then, the cells were washed and incubated with 
Alexa Fluor 488-conjugated goat anti-rabbit antibody 
(A11008) in PBS for 30 min and washed three times 
with PBS. For performing nuclear staining, the cells 
were incubated with 4′,6-diamidino-2-phenylindole 
(DAPI) for 5 min in the dark and were washed three 
times using PBS. Subsequently, coverslips with stained 
cells were mounted on slides using PBS containing 10% 
glycerol and were imaged using a fluorescence microscope 
(Zeiss Axio Observer D1, Oberkochen, Germany).

Luciferase Reporter Assay
The A549-CUG2 cells were transfected with Top-Flash, or 
Fop-Flash vectors using Lipofectamine 2000. To normal-
ize transfection efficiency, a pGK-βgal vector expressing 
β-galactosidase under the control of a phosphoglucokinase 
promoter was included in the transfection mixture. At 48 
h after transfection, the cells were washed with cold PBS 
and lysed in a lysis solution (25 mM Tris [pH 7.8], 2 mM 
EDTA, 2 mM DTT, 10% glycerol, and 1% TritonX-100), 
and luciferase activity was measured using a luminometer 
and a luciferase kit (Promega, Madison, WI, USA).

Statistical Analysis
Data were presented as means ± standard deviation (SD). 
To compare the difference between two groups, an 
unpaired t-test was used with the GraphPad Prism soft-
ware. P-value of <0.05 was considered statistically 
significant.

Results
CUG2 Overexpression Decreases Spry2 
Expression via c-Cbl E3 Ligase
As our previous studies revealed elevated EGFR expres-
sion and activation of downstream signaling pathways 
such as Akt-ERK pathway in A549-CUG2 cells,22,23 we 
paid attention to the status of Spry2, a regulatory molecule 
involved in EGFR signaling. We then found that Spry2 
protein levels were lower in A549-CUG2 cells than in 
A549-Vec cells as a control (Figure 1A). We confirmed 
that Spry2 was much less stained with immunofluores-
cence in A549-CUG2 cells compared with A549-Vec 
cells (Figure 1B). To examine whether the lower levels 
of the Spry2 protein in A549-CUG2 cells were attributed 
to low Spry2 transcript levels, we performed qRT-PCR in 
both A549-CUG2 and A549-Vec cells after total RNA 
isolation using an RNA miniprep kit. As shown in Figure 
1C, Spry2 transcript levels in A549-CUG2 cells were 
similar to that in A-549-Vec cells. Furthermore, because 
it has been reported that Spry2 protein levels are also 
regulated at the post-transcriptional level such as the ubi-
quitin-proteasome pathway, treatment with MG132, the 
inhibitor of proteasome, enhanced protein levels of Spry2 
in both the cells. We also observed enhanced ubiquitina-
tion of Spry2 under MG132 treatment (Figure 1D). As 
other studies have reported that Spry2 interacts with and 
is the target of c-Cbl E3 ligase,24,25 we introduced c-Cbl 
expression vector or c-Cbl siRNA into both cells. As 
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shown in Figure 1E and F, the enforced expression of 
c-Cbl decreased Spry2 protein levels, whereas its knock-
down enhanced protein levels. These results suggest that 
CUG2 overexpression induces the degradation of Spry2 
protein via c-Cbl E3 ligase, the downstream molecule of 
EGFR signaling.

Spry2 Protein Levels Determine the 
Capacity of EMT and Sphere Formation
To explore whether Spry2 actually affects CUG2-induced 
cancer stem cell-like phenotypes, we reduced the Spry2 pro-
tein levels using Spry2 siRNA in A549-Vec cells. Thereafter, 
we examined the capability of EMT and sphere formation in 
A549-Vec cells. We then found that Spry2 siRNA treatment 
enhances cell migration and invasion in A549-Vec cells 
(Figure 2A and B). These results were further supported by 
detecting the decreased level of E-cadherin, and the increased 
level of N-cadherin and vimentin after Spry2 siRNA treatment 
(Figure 2C), depending on the Spry2 siRNA concentration. 
Spry2 suppression increased sphere size and number 
(Figure 2D). On the other hand, we attempted the enforced 
expression of Spry2 by introducing Spry2-expressing vector 
into A549-CUG2 cells. We found that the enforced expression 
of Spry2 inhibited CUG2-induced cell migration and invasion 
(Figure 3A and B), which are opposite to the results of Spry2 

siRNA treatment. The enforced expression of Spry2 increased 
E-cadherin expression, and decreased N-cadherin and vimen-
tin protein levels (Figure 3C), which can explain the inhibition 
of EMT in A549-CUG2 cells. The transient introduction of the 
Spry2-expressing vector into A549-CUG2 cells significantly 
diminished sphere size and number (Figure 3D). Taken 
together, we suggest that Spry2 protein levels can determine 
the capacity of EMT and sphere formation in A549 lung 
cancer cells.

The Levels of Spry2 Determine the 
Activation of EGFR-Stat1–HDAC4 and β- 
Catenin-NEK2-Yap1 Signaling Pathways
We observed that the enforced expression of Spry2 inhib-
ited EMT and sphere formation (Figure 3A-D); however, 
the mechanism by which Spry2 affects these cancer stem 
cell-like phenotypes was not yet studied. Based on our 
previous research, we believe that the EGFR-Stat1- 
HDAC4 and β-catenin-NEK2-Yap1 signaling pathways 
are involved in cancer stem cell-like phenotypes;3,5 how-
ever, whether Spry2 hinders these pathways has not yet 
been investigated. To test our hypothesis, we examined the 
levels of these signaling proteins under Spry2 overexpres-
sion. As shown in Figure 4A, the enforced expression of 
Spry2 reduced phospho-EGFR, and phosphorylation levels 

Figure 1 Elevated CUG2 expression decreases Spry2 protein levels via c-Cbl E3 ligase in human lung A549 cancer cells. (A) Lysates of A549-Vec and A549-CUG2 cells were 
separated by performing SDS-PAGE on 10% gels. The expression of Spry2 and CUG2 was detected by performing immunoblotting with corresponding antibodies. (B) The 
expression of Spry2 in A549-Vec and A549-CUG2 cells was detected by immunofluorescence using Alexa Fluor 488-conjugated rabbit anti-mouse IgG (green). DAPI was 
used for DNA staining before mounting in glycerol. (C) After isolation of total RNAs from A549-Vec and A549-CUG2 cells, cDNAs were synthesized. qRT-PCR was 
performed and GAPDH was used as an internal control. (ns; not significant) (D-F) A549-Vec and A549-CUG2 cells were treated with MG132 (10 µM) for 8 h, c-Cbl vector 
(2 µg), or c-Cbl siRNA (500 nM). The expression of Spry2 and c-Cbl was detected by performing immunoblotting with corresponding antibodies. After immunoprecipitation 
with anti-Srpy2 antibody, protein ubiquitination was detected with anti-ubiquitin antibody.
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of its downstream molecules such as Stat1, Akt, and ERK 
also decreased. HDAC4 protein levels were also reduced 
after the introduction of the Spry2 expression vector into 
A549-CUG2 cells (Figure 4A). In addition, when we 
examined the β-catenin–NEK2-Yap1 signaling pathway 
under the enforced Spry2 condition, we found that there 
was decrease in phospho-β-catenin (Se34/37), NEK2, and 
phospho-Yap1 (Y357) levels (Figure 4A). Moreover, we 
observed diminished β-catenin transcriptional activity and 
NEK2 kinase activity (Figure 4B and C). Inversely, Spry2 

knockdown increased the phosphorylation levels of EGFR, 
Stat1, β-catenin (Se34/37), and Yap1 (Y357) (Figure 4D). 
HDAC4 expression was also increased during Spry2 
siRNA treatment (Figure 4D). In addition, Spry2 suppres-
sion increased EGFR, Stat1, β-catenin, and NEK2 protein 
levels (Figure 4D). Interestingly, we found that Spry2 
siRNA treatment decreased Yap1 protein levels 
(Figure 4D). These results suggest that Spry2 levels deter-
mine the activation of EGFR-Stat1-HDAC4 and β- 
catenin–NEK2-Yap1 signaling pathways.

Figure 3 Enforced Spry2 expression decreases EMT and sphere formation in A549-CUG2 cells. (A) After transfection of A549-CUG2 cells with Spry2 expression (2 µg) or 
control vector for 48 h, cell migration was measured by a wound healing assay. The wound closure areas were monitored by phase-contrast microscopy at the magnification 
of 100x. (B) The invasion assay was performed at 48 h post-transfection with the Spry2 vector. The assay was performed in triplicate and error bars indicate SD (**; p< 
0.01). (C) The expressions of EMT proteins were detected by immunoblotting using the corresponding antibodies at 48 h post-transfection with the Spry2 or control vector. 
(D) A549-CUG2 cells were treated with the Spry2 or control vector. Thereafter, spheroid size and number were evaluated for 6 days post-seeding. Spheroid size greater 
than 50 mm was the criterion for sphere formation. The assay was carried out in triplicates, and error bars indicate SD. (**; p<0.01, compared to the control vector).

Figure 2 Knockdown of Spry2 increases EMT and sphere formation in A549-Vec cells. (A) After the transfection of the A549-Vec cells with Spry2 (500 nM) or control 
siRNA for 48 h, cell migration was measured by a wound healing assay. The wound closure areas were monitored by phase-contrast microscopy at the magnification of 100x. 
(B) An invasion assay was performed at 48 h post-transfection with Spry2 siRNA. The assay was performed in triplicate, and error bars indicate SD (**; p< 0.01). (C) The 
expressions of EMT proteins were detected by immunoblotting using the corresponding antibodies at 48 h post-transfection with Spry2 or control siRNA. (D) A549-Vec 
cells were treated with control and Spry2 siRNAs. Thereafter, spheroid size and number were evaluated for 6 days post-seeding. Spheroid size greater than 50 mm was the 
criterion for sphere formation. The assay was carried out in triplicates, and error bars indicate SD. (*; p<0.05, compared to the siRNA control treatment).
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Discussion
The mechanism by which CUG2 overexpression maintains 
the activation of EGFR- and β-catenin-mediated signaling 
remains unanswered. Therefore, we paid attention to regula-
tory molecules of EGFR downstream signaling, and 
attempted to examine the status of Spry2 protein, the down-
stream regulatory molecule of EGFR signaling.8,26 We found 
low Spry2 protein levels in A549-CUG2 cells due to E3 
ligase c-Cbl-mediated ubiquitination, indicating the post- 
transcriptional regulation of Spry2 under CUG2 overexpres-
sion. Interestingly, the enforced expression of Spry2 hindered 
cell migration, invasion, and sphere formation, whereas its 
knockdown resulted in the acceleration of cancer stem cell- 
like phenotypes, suggesting the role of Spry2 as a tumor 
suppressor. Similarly, other studies showing that Spry2 pro-
tein levels determine cell migration and invasion in pancrea-
tic and gastric cancer cells27,28 also supported our results. 
Considering the known regulatory role of Spry2 in RTK 
signaling,6,7 Spry2 overexpression reduces EGFR-Stat1- 
HDAC4 and Akt-ERK signaling, whereas its knockdown 
shows opposite results.

As another target signaling of Spry2, the β-catenin signal-
ing pathway was examined. Spry2 knockdown stabilized β- 
catenin protein, which might be induced by NEK2 as 
mentioned in our previous29 and other studies,30 which 
have documented that β-catenin phosphorylation at Ser33/ 
Ser37 is mediated by NEK2 activity and provides resistance 

against β-catenin degradation by E3 ligase β-TrCP. We also 
observed elevated NEK2 and reduced Yap1 protein levels by 
the suppression of Spry2, whose mechanism warrants further 
research. Although a significant change in β-catenin protein 
levels was not detected under an enforced Spry2 expression, 
increased levels of Spry2 inhibited the activation of β-catenin 
transcriptional activity and NEK2 kinase activity. 
Collectively, our results suggest that the suppression of the 
negative role of Spry2 mediated by c-Cbl E3 ligase elevates 
EGFR and β-catenin signaling under CUG2 overexpression 
and maintains activated EGFR and β-catenin signaling, 
thereby contributing to the induction of cancer stem cell- 
like phenotypes.
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