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Dexmedetomidine (DEX) is a highly selective α2 receptor agonist that is

routinely used in the clinic for sedation and anesthesia. Recently, an

increasing number of studies have shown that DEX has a protective effect

against brain injury caused by traumatic brain injury (TBI), subarachnoid

hemorrhage (SAH), cerebral ischemia and ischemia–reperfusion (I/R),

suggesting its potential as a neuroprotective agent. Here, we summarized

the neuroprotective effects of DEX in several models of neurological

damage and examined its mechanism based on the current literature.

Ultimately, we found that the neuroprotective effect of DEX mainly involved

inhibition of inflammatory reactions, reduction of apoptosis and autophagy, and

protection of the blood–brain barrier and enhancement of stable cell structures

in five way. Therefore, DEX can provide a crucial advantage in neurological

recovery for patients with brain injury. The purpose of this study was to further

clarify the neuroprotective mechanisms of DEX therefore suggesting its

potential in the clinical management of the neurological injuries.
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Introduction

Dexmedetomidine (DEX) exerts its sedative effect by reducing sympathetic tone

through α2 adrenergic receptors, and this agent is more selective than its predecessor, the

α2 adrenergic receptor agonist clonidine; their α2:α1 ratios are 1620:1 and 220:1,

respectively (Virtanen et al., 1988). Unlike most sedatives, DEX has a reversible

sedative effect, similar to the unconscious state of natural sleep, and patients can be

easily awakened. Therefore, DEX is often used in awake craniotomy or awake sedation. In

addition, this drug has anxiolytic and analgesic potential (Lobo et al., 2016; Barends et al.,

2017). DEX causes less respiratory depression than traditional sedatives, but there may be

an increased risk of hypotension and bradycardia. Notably, the liver is involved in the

pharmacokinetics of DEX, so this drug should be administered with caution in patients

with liver impairment (Riker et al., 2009; Jakob et al., 2012; Weerink et al., 2017).
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An increasing number of studies have shown that DEX has

neuroprotective effects and can reduce the inflammatory

response and oxidative stress, inhibit apoptosis, protect the

blood–brain barrier (BBB), maintain the balance of the

coagulation-anticoagulant system and prevent vasospasm

(Wang et al., 2016; Liu et al., 2022). A meta-analysis of

879 patients confirmed the neuroprotective effects of DEX in

inhibiting inflammatory responses, reducing neuroendocrine

hormone release, and maintaining intracranial homeostasis

(Jiang et al., 2017). This literature discusses different

neuroprotective mechanisms of DEX. Figure 1 shows the

overall framework of the literature.

Reducing nerve damage caused by
inflammation

Recent studies have shown that excessive inflammation in the

nervous system is a key factor in the secondary brain damage

caused by traumatic brain injury (TBI), subarachnoid

hemorrhage (SAH), cerebral ischemia and

ischemia–reperfusion (I/R), which mainly manifest as the

activation and migration of immune cells, the activation of

inflammation-related pathways and the release of

inflammatory mediators (Zhang et al., 2013; Miao and Liao,

2014; Van Lieshout et al., 2018).

DEX can inhibit various types of immune
cell infiltration

DEX treatment significantly reduced the number of

neutrophils and microglia in damaged nerve tissue (Wang

et al., 2018a; Yin et al., 2018; Karakaya et al., 2022). In

addition, Wang et al. showed through morphological

observation and showed that the transformation of microglia

from round to large was slowed, indicating that DEX inhibited

microglial reactivity and that microglial reactivity led to the

release of inflammatory mediators such as interleukin-1 beta

(IL-1β) and activated peripheral migrating macrophages and

FIGURE 1
Different trials often offer different explanations for the neuroprotective effects of DEX. By sorting and summarizing relevant studies in recent
years, we found that the neuroprotective effects of DEX are mainly reflected in five aspects: 1) reducing inflammation, 2) reducing apoptosis, 3)
reducing autophagy, 4) protecting the BBB and reducing cerebral edema, and 5) protecting the cellular structure. Among these aspects, the
reduction of the inflammatory response is themost important. Almost all studies on the neuroprotective effect of DEX involve the improvement
of nervous system inflammation.
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T cells, leading to inflammatory infiltration of these cells

(Mantovani et al., 2014; McKee and Lukens, 2016; Wang

et al., 2018a; Yin et al., 2018; Zheng et al., 2018). Activated

macrophages can secrete chemokines that promote the

accumulation of immune cells such as neutrophils, further

exacerbating the inflammatory response (Russo and

McGavern, 2016). Tumor necrosis factor receptor superfamily

member 5 (CD40) and T-lymphocyte activation antigen CD86

(CD86) are activation markers on the surface of macrophages.

Ding et al. showed that DEX treatment could reduce the

expression of CD40 and CD86, suggesting its inhibitory

effects on macrophage activation and infiltration (Yin et al.,

2018; Ding et al., 2019). After several days of TBI, T cells

accumulate at the damaged site and are activated by

microglia, which may further cause secondary injury.

Therefore, T cells play an important role in

neuroinflammation (Krämer et al., 2019). Karakaya et al.

found that a high concentration of DEX (200 μg/kg) could

reduce the amount of T-cell migration occurring

approximately 3 days after TBI and reduce T-cell motility

(Karakaya et al., 2022).

DEX can inhibit the generation of
inflammatory mediators and
inflammasomes

Immune cell activation leads to enhanced activation of

inflammation-related pathways and promotes the release of a

variety of inflammatory mediators. DEX can act on different

processes associated with inflammation-related pathways,

ultimately reducing the release of inflammatory mediators

and alleviating tissue damage. Toll-like receptor 4 (TLR4) on

the surface of microglia plays an important role in regulating

the inflammatory response caused by cerebral infarction,

cerebral hemorrhage and TBI. Myeloid differentiation

primary response 88 (MyD88) is an important component

of the TLR4 signaling pathway. When TLR4 is activated,

MyD88 activates downstream nuclear factor-kappaB (NF-

κB) to produce a series of inflammatory factors that may

cause nervous system damage, such as IL-1β, tumor necrosis

factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-

18 (IL-18) (Li et al., 2011; Fang et al., 2013; Zhang et al.,

2016). Zhu et al. showed that microglia and macrophages play

important roles in acute neuroinflammation through the

TLR4/MyD88/NF-κB pathway (Zhu et al., 2014). An

increase in these inflammatory mediators impairs the BBB,

increases neuroinflammation, and induces apoptosis (Zheng

and Wong, 2017). IL-1β is the most important inflammatory

mediator in the posttraumatic inflammatory response

because it peaks within hours of brain tissue injury and

promotes the release of other cytokines, prompting nearby

microglia to transition from a surveillant to a reactive state

and leading to the accumulation of other inflammatory cells

(McKee and Lukens, 2016). Many recent studies have shown

that DEX can reduce the release of inflammatory mediators,

such as IL-1β, TNF-α, IL-6 and monocyte chemotactic

protein 1 (MCP-1) by inhibiting TLR4-or NF-κB-related
pathways, thus reducing inflammatory damage in the

nervous system. Table 1 shows changes in various

inflammatory mediators and cells (Wang et al., 2018a; Yin

et al., 2018; Li et al., 2019; Feng et al., 2021b; Huang and Hao,

2021).

The NACHT, LRR and PYD domains-containing protein

3 (NLRP3) inflammasome plays a key role in nervous system

inflammation by inducing the expression of immune- and

inflammation-related genes. NLRP3 activation requires NF-

κB activation, in addition to pathogens or injury-related

molecules that initiate the assembly of NLRP3 (Zhou et al.,

2016; Yang et al., 2018). Activated NLRP3 further activates

caspase-1 and promotes the processing and release of the

inflammatory cytokine IL-18, while activated caspase-1

cleaves inactive pro-IL-1β to produce IL-1β, which

promotes the inflammatory response (Liu et al., 2013;

McKee and Lukens, 2016; Mamik and Power, 2017). Many

studies have proven that DEX can reduce the effect of

caspase-1 on the precursors of inflammatory mediators by

inhibiting the activation of the NLRP3 inflammasome, thus

reducing the release of inflammatory mediators and

ultimately alleviating neuroinflammation (Wang et al.,

2018a; Yin et al., 2018; Zheng et al., 2018; Sun et al., 2019;

Karakaya et al., 2022).

DEX can inhibit oxidative stress-mediated
inflammation

Oxidative stress plays an important role in the

inflammatory response. Reactive oxygen species (ROS) are

one of the most important inflammatory mediators. Nuclear

factor erythroid 2-related factor 2 (Nrf2) is an important

transcription factor that controls the antioxidant activities of

cells, inhibits the increase in intracellular ROS during the

inflammatory response and reduces the transformation of

macrophages into the proinflammatory M1 phenotype (Wu

et al., 2018b; Liu et al., 2018). Nicotinamide adenine

dinucleotide phosphate quinone oxidoreductase-1 (NQO-1)

and heme oxygenase-1 (HO-1) are important antioxidant

enzymes that can alleviate cell damage caused by oxidative

stress by promoting the removal of ROS. Li et al. showed that

DEX could increase the expression of Nrf2 and its downstream

proteins NQO-1 and HO-1 in TBI rat brain tissue (Li et al.,

2019). Moreover, HO-1 can also reduce the infiltration of

inflammatory cells, while NQO-1 has a neuroprotective

effect (Gueron et al., 2009; Sekine et al., 2016; Qu et al.,

2020). Additionally, the Nrf2/NLRP3 pathway may play an
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important role in inhibiting the inflammatory response. Shan

et al. examined the mechanism by which DEX alleviates

neuropathic pain and accidentally discovered that DEX

inhibited the expression of NLRP3 by activating Nrf2, thus

reducing the levels of IL-1β and other inflammatory mediators

(Shan et al., 2021). In-vivo and in-vitro experiments by Wang

TABLE 1 Changes in various inflammatory mediators and cells.

References Study model Subjects Dose and duration Results

Wang et al. (2018a) TBI C57BL/6J mice 25 μg/kg,3 consecutive days • The number of neutrophils and
microglia↓Microglial reactivity↓IL-
1β↓TNF-α↓IL-6↓NF-
κB↓NLRP3↓caspase-1↓

Yin et al. (2018) SAH Sprague-Dawley (SD)
rats

25 μg/kg • The number of neutrophils, microglia,
macrophages and T cells↓IL-1β↓TNF-
α↓IL-6↓MCP-1↓TLR4/NF-κB↓NLRP3↓

Zheng et al. (2018) TBI SD rats 20 μg/kg, 4 consecutive days • Microglial reactivity↓ IL-1β↓IL-
6↓NLRP3↓caspase-1↓

Ding et al. (2019) TBI Humans 0.2–0.3 μg/kg/h, for 100 min • Macrophage activation↓ IL-1β↓IL-6↓IL-
8↓TNF-α↓

C57BL/6J mice 20 μg/kg • IL-1β↓IL-6↓IL-8↓CD40↓CD86↓
Karakaya et al. (2022) TBI Swiss Albino mice 40 μg/kg or 200 μg/kg • Microglia and T-cell

migration↓NLRP3↓IL-1β↓
Feng et al. (2021b) TBI C57BL/6J mice 20 μg/kg • IL-1β↓IL-6↓TNF-α↓NF-κB↓
Li et al. (2019) TBI SD rats 25 μg/kg • TNF-α↓IL-1β↓IL-6↓NF-κB↓Nrf2↑NQO-

1↑HO-1↑
(Huang and Hao, 2021) TBI SD rats Unknown • TNF-α↓IL-1β↓IL-6↓NF-κB↓NQO-

1↑HO-1↑
Sun et al. (2019) Sepsis 1321N1 astrocytes 1 μM • NLRP3↓ caspase-1↓

SD rats 25 μg/kg every 2 h • caspase-1↓ IL-1β↓IL-18↓
Wang et al. (2022) Cerebral ischemia C57BL/6J mice Loading dose: 1 μg/kg, then 0.05 μg/kg/min

for the next 2 h
• iNOS①↓IL-1β↓TNF-α ↓ROS↓

MDA②↓Arg-1↑ IL-4↑ IL-10↑SOD↑
Nrf2↑HO-1↑

Microglia from
C57BL/6J mice

1 μM • iNOS①↓IL-1β↓TNF-α ↓ROS↓
MDA②↓Arg-1↑ IL-4↑ IL-10↑SOD↑
Nrf2↑HO-1↑

Sun et al. (2021) Cerebral ischemia SD rats Loading dose: 1 μg/kg, then 0.05 μg/kg/min
for the next 2 h

• caspase-1↓

HAPI microglia 1 μM • caspase-1↓IL-1β↓IL-18↓
Li et al. (2021) Sunstroke ICR mice 25 μg/kg • TNF-α↓IL-1β↓IL-10↑TGF-

β↑Neuroprotective microglial phenotype↑
Wang et al. (2018b) I/R SD rats 10 μg/kg, 50 μg/kg, or 100 μg/kg • TNF-α↓IL-1β↓AMPK③↑
Zhu et al. (2019) I/R SD rats Loading dose: 3 μg/kg, then 6 g/kg/h for the

next 2 h
• TNF-α↓IL-6↓IL-1β↓

Shen et al. (2017) TBI SD rats 15 μg/kg • TNF-α↓IL-1β↓IL-6↓
Kii et al. (2022) TBI C57BL/6 mice and

C57BL/6-TG mice
50 μg/kg • The number of macrophages↓MCP1-

CCR2④↓IL-1β↓
Rodríguez-González
et al. (2016)

Cerebral ischemia Astrocytes from SD
rats

0.3 μM, 1 μM, or 10 μM • IL-6↓TNF-α↓

Chen et al. (2017) Cardiopulmonary
bypass (CPB)

SD rats Loading dose of 2.5 μg/kg or 5 μg/kg before
CPB, then a maintenance dose of 2.5 μg/kg/h
or 5 μg/kg/h during the CPB

• IL-6↓JAK2/STAT3⑤↓

Tanabe et al. (2014) IL-1β-induced
inflammation

C6 glioma cells 30 µM • IL-6↓

Qiu et al. (2016) TBI SD rats Loading dose of 3 μg/kg, then 3 μg/kg/min for
the next 2 h

• IL-6↓TNF-α↓

①iNOS, is a proinflammatory factor; Arg-1, IL-4, and IL-10, are anti-inflammatory factors (Wang et al., 2022).

②MDA, is an indicator of lipid peroxidation, and SOD, is an important antioxidant enzyme (Xu et al., 2014).

③AMPK, plays an important role in energy metabolism and is thought to alleviate ischemic brain injury(Li et al., 2015).

④MCP1-CCR2 can promote macrophage aggregation, aggravate inflammatory responses and even cause cognitive impairment(Morganti et al., 2015).

⑤Activation of the JAK2/STAT3 pathway alleviates brain injury and inflammatory responses and may be involved in the recovery of neurological function (Oliva et al., 2012; Tao et al.,

2015).
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et al. showed that DEX could transform microglial cells from

the proinflammatory phenotype to the neuroprotective

phenotype by promoting Nrf2 translocation from the

cytoplasm to the nucleus and upregulating HO-1 expression.

In addition, DEX can reduce the release of inflammatory

mediators through the Nrf2/HO-1/NLRP3 pathway (Wang

et al., 2022). Mechanistically, heme is broken down by HO-1

into biliverdin and carbon monoxide, which can inhibit

NLRP3 inflammasome activation (Gomperts et al., 2017).

Apoptotic cells are reduced after
central nervous system injury

In various nervous system injury models, a large number of

apoptotic cells were found at the injury site, and DEX successfully

reduced the number of apoptotic nerve cells and affected the

expression of apoptosis-related proteins (Kose et al., 2013; Yin

et al., 2018; Gao et al., 2019; Huang and Jiang, 2019; Sun et al.,

2019; Feng et al., 2021b).

DEX can affect the expression of anti-
apoptotic or pro-apoptotic proteins

The B-cell lymphoma-2 (Bcl-2) protein family plays an

important role in the mitochondrial apoptosis pathway, and

the proapoptotic protein B-cell lymphoma-2 associated X

(Bax) and antiapoptotic protein Bcl-2 are important

components of this protein family. The balance between these

two proteins maintains the normal process of apoptosis in the

physiological state (Youle and Strasser, 2008). Bax promotes

apoptosis through three pathways by ①activating other

proapoptotic factors; ②inactivating the antiapoptotic protein

Bcl-2; and ③triggering the release of corresponding cytokines

into the cytoplasm to activate the apoptosis-related protein

caspase-3 (Shamas-Din et al., 2011; Zhao et al., 2017).

Changes in the levels of caspase-3, which mediates cell

apoptosis, can reflect the degree of apoptosis (Wu et al.,

2017). A series of studies have shown that DEX can reverse

the increase in Bax and the decrease in Bcl-2 after nerve injury

and inhibit the level of caspase-3, thus alleviating apoptosis after

TABLE 2 Changes in various apoptosis-related proteins.

References Study model Subjects Dose and duration Results

Yin et al. (2018) SAH SD rats 25 μg/kg • Bax↓caspase-3↓Bcl-2↑
Feng et al.
(2021b)

TBI C57BL/6J mice 20 μg/kg • caspase-3↓

Li et al. (2019) TBI SD rats 25 μg/kg • Bax↓Bcl-2↑
(Huang and Hao,
2021)

TBI SD rats Unknown • caspase-3↓Bax↓Bcl-2↑

Sun et al. (2019) Sepsis 1321N1 astrocytes 1 μM • ASC①↓GSDMD↓
Chen et al. (2017) Cardiopulmonary

bypass (CPB)
SD rats Loading dose of 2.5 μg/kg or 5 μg/kg before

CPB, then a maintenance dose of 2.5 μg/kg/h
or 5 μg/kg/h during CPB

• caspase-3↓

Kose et al. (2013) Cerebral ischemia Wistar rats Loading dose of 3 μg/kg, then 3 μg/kg/h for the
next 2 h

• LPO↓

Gao et al. (2019) I/R SD rats 50 μg/kg • Cyt-c↓APAF-1②↓ caspase-3↓Ngb↑HIF-
1α/p53↑

(Huang and
Jiang, 2019)

Cerebral hemorrhage C57BL/6 mice 50 μg/kg • GPX↑SOD↑MDA↓ROS↓PGC-1a↑

Zhang et al.
(2018b)

TBI SD rats 15 μg/kg • Bax↓Bcl-2↑HSP70↑

Feng et al.
(2021a)

Cerebral ischemia Astrocyte from SD rats 1 μM • caspase-3↓Bax↓Bcl-2↑JAK/STAT↓JMJD3↓

Huang et al.
(2018a)

Cerebral ischemia SK-N-SH cells 10 μM • caspase-3↓ survivin③↓ Percentages of G0/G1
-phase and S-phase cells↑ miR-29b↓

Sun et al. (2020) TBI C57mice 25 μg/kg or 100 μg/kg • p-PERK↓p-EIF2α↓ATF4↓CHOP↓IRE1α-
ASK1-JNK↓

Li et al. (2018) TBI SD rats 20 μg/kg or 50 μg/kg or 100 μg/kg • PGC-1α↑caspase-3↓MDA↓GPX↑SOD↑
Zhao et al. (2021) TBI C57BL/6 mice 100 μg/kg • PSD95↑PSD95-NR2B-nNOS↓caspase-

3↓MMP9↓
Schoeler et al.
(2012)

TBI Hippocampi from
C57BL/6 mice

1 μM • ERK↑

①ASC, is an apoptosis-associated speck-like protein; GSDMD, is a proapoptotic protein (Sun et al., 2019).

②Cyt-c and APAF-1, levels can reflect the degree of damage to hippocampal neuron cells (Gao et al., 2019).

③Survivin is an apoptosis-associated protein(Huang et al., 2018a).
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nerve injury. Zhang et al. showed that DEX can not only affect

the expression of these apoptosis-related proteins but also

increase the protein expression of heat shock protein 70

(HSP70). HSP70 is a molecular chaperone that can reduce cell

damage and has an antiapoptotic effect. Table 2 shows changes in

various apoptosis-related proteins (Feder and Hofmann, 1999;

Chen et al., 2017; Huang et al., 2018a; Zhang et al., 2018b; Yin

et al., 2018; Gao et al., 2019; Li et al., 2019; Feng et al., 2021b; Feng

et al., 2021a; Huang and Hao, 2021).

DEX can reduce apoptosis induced by
endoplasmic reticulum stress

When nerve cells are damaged, ischemia, hypoxia or

oxidative stress will change the internal environment of the

endoplasmic reticulum, causing Ca2+ dysregulation in the

endoplasmic reticulum, and the increased number of unfolded

and misfolded proteins, which triggers endoplasmic reticulum

stress, leads to the unfolded protein response (UPR) and

ultimately induces apoptosis (Sano and Reed, 2013; Dash

et al., 2015). Sun et al. showed that the expression levels of

the endoplasmic reticulum stress markers phosphorylated

protein kinase RNA-like ER kinase (p-PERK), phosphorylated

eukaryotic initiation factor 2α (p-EIF2α), activating transcription
factor 4 (ATF4) and C/EBP-homologous protein (CHOP) were

significantly increased in TBI mice. CHOP also plays an

important role in endoplasmic reticulum pathway-mediated

apoptosis, but DEX decreased the levels of these endoplasmic

reticulum stress marker proteins. This study suggested that

inhibiting the apoptosis-related signaling pathway IRE1α/
ASK1/JNK may reduce apoptosis and alleviate nervous system

injury (Oyadomari and Mori, 2004; Sun et al., 2020).

DEX can reduce apoptosis induced by
oxidative stress

An increasing number of studies have proven that apoptosis

induced by oxidative stress plays an important role in secondary

damage in the nervous system (Kose et al., 2013; Li et al., 2018;

Huang and Jiang, 2019). Oxidative stress can produce excessive

ROS, which can cause damage and impair cell membrane

permeability by oxidizing DNA, proteins and membrane lipids

and further lead to a decrease in Na+-K+-ATPase activity on the

membrane, which will cause an imbalance in the K+ and Mg2+

concentrations in the cell. These two ions are important for

protein synthesis (White et al., 1993). Kose et al. showed that

DEX could reduce lipid peroxidation, and the lipid peroxidation

index, protect the cell membrane and membrane receptors, and

reduce the damage to the cell structure caused by oxidative stress

(Kose et al., 2013). Malondialdehyde (MDA) is an indicator of

lipid peroxidation, while superoxide dismutase (SOD) and

glutathione peroxidase (GPX) are important antioxidant

enzymes. These antioxidant enzymes can convert hydrogen

peroxide and lipid peroxides into nontoxic compounds.

Huang and Lia et al. suggested that DEX could reduce the

apoptosis of nerve cells in patients with brain injury caused

by oxidative stress through the proliferator-activated receptor-

gamma coactivator 1α (PGC-1α) pathway, and DEX decreased

MDA levels while increasing SOD and GPX levels (Xu et al.,

2014; Li et al., 2018; Huang and Jiang, 2019).

Zhao et al. (2021) showed that the expression of postsynaptic

density protein 95 (PSD95) was decreased in TBI mouse brain

tissues, while the levels of the PSD95-N- methyl-D-aspartic acid

(PSD95-NMDA) complex were significantly increased. Excessive

levels of the PSD95-NMDA complex can lead to the massive

release of NO and activate matrix metallopeptidase 9 (MMP9),

thus inducing apoptosis, and DEX can inhibit the formation of

the PSD95-NMDA complex. In addition, after TBI, a large

amount of glutamate is released into the synaptic cleft to

activate NMDA receptors and anchor PSD95. This procedure

greatly promotes Ca2+ influx to produce a large amount of

reactive oxygen and active nitrogen, leading to oxidative stress

and apoptosis. DEX inhibits the interaction between NMDA and

PSD95, thus reducing the oxidative stress response (Gu et al.,

2002; Luo et al., 2011).

DEX can affect the expression of other
apoptosis-related signaling pathways and
anti-injury factors

Schoeler et al. (2012) examined an in vitro TBI model of

hippocampal cells and showed that DEX may protect neurons by

activating the extracellular regulated kinase (ERK) signaling

pathway, which has been shown to protect neuronal cells

from mechanical injury-induced apoptosis in previous studies

(Ma et al., 2011).

Studies have proven that excessive Jumonji domain-

containing protein 3 demethylase (JMJD3) expression can

increase the levels of the proapoptotic proteins Bax and

caspase-3, leading to cell apoptosis. Feng et al. stimulated

astrocytes with oxygen and glucose deprivation (OGD)

in vitro to simulate ischemic hypoxia after cerebral infarction

and demonstrated that DEX could regulate the expression of

apoptosis-related proteins by inhibiting the JAK/STAT pathway

(which is involved in many crucial biological processes, including

cell proliferation, differentiation, apoptosis, and immune

regulation) and reducing the expression of JMJD3 (Zhang

et al., 2018a; Feng et al., 2021a). Huang et al. used an OGD-

induced in vitro cerebral ischemia model and showed that DEX

could reverse the OGD-induced decreases in the percentages of

G0/G1 and S phase cells, increase cell proliferation, reduce cell

apoptosis, and inhibit the expression of microRNA-29b (miR-

29b) (Huang et al., 2018a). Moreover, the authors demonstrated
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in another trial that miR-29b could promote neuronal apoptosis

by targeting MCL-1 (Huang et al., 2018b).

Neuroglobin (Ngb) is an endogenous anti-injury factor that

has a significant protective effect on nerve cells and is thought to

play an important role in inhibiting mitochondrial apoptosis: this

factor is called the “hemoglobin of the nervous system”

(Mammen et al., 2002; Fiocchetti et al., 2021). Gao et al.

found that DEX could increase the expression of Ngb and

inhibit mitochondrial damage-mediated apoptosis in a rat I/R

injury model, possibly by activating the hypoxia-inducible factor

1α (HIF-1α)/p53 signaling pathway. HIF-1α is a regulatory factor
that promotes the expression of a series of genes that enable cells

to adapt to a hypoxic environment (Demidenko and

Blagosklonny, 2011; Gao et al., 2019).

DEX can affect the autophagy-related
signaling pathway to mediate the
production of autophagic proteins

Feng et al. (2021b) showed that autophagy was overactivated

in the brains of TBI mice, and the autophagy markers Beclin-1

and light chain 3I/II (LC3I/II) were significantly increased,

leading to the destruction of the BBB, brain edema, and cell

apoptosis. However, DEX significantly reduced Beclin-1 and

LC3I/II levels, alleviating autophagy and damage. In mice that

were pretreated with the autophagy activator rapamycin, the

neuroprotective effect of DEX on reducing autophagy was

reversed. In this study, DEX inhibited TBI-induced autophagy

by regulating the Nrf2/ROS signaling pathway.

Circlrp1b (a circRNA that regulates autophagy) and DNA-

damage regulated autophagy modulator 2 (Dram2) play

synergistic roles in autophagy, inflammation and impaired

nerve function after TBI, while miR-27a-3p plays the opposite

role in these processes. Li et al. showed that the circlrp1b/miR-

27a-3p/Dram2 pathway played an important role in autophagy

after TBI. DEX decreased the levels of the autophagy-related

proteins Dram2, autophagy protein 5 (ATG5), Beclin-1 and

LC3I/II, reversing the TBI-induced increased levels of

circlrp1b and Dram2 and decreased levels of mir-27a-3p, thus

alleviating the autophagic response (Li et al., 2020).

Shen et al. and Zhu et al. showed that DEX could reduce the

expression of Beclin-1 and LC3I/II, which are autophagy-related

proteins induced by brain injury in rat TBI and I/R models,

respectively, and also reduced the degree of edema, vacuolation

and autophagosomes, as shown by electron microscopy. The

PI3K/Akt pathway plays an important role in cell growth,

metabolism and survival, while mechanistic target of

rapamycin (mTOR) is the core protein that regulates

autophagy. Shen et al. suggested that DEX activated the PI3K/

Akt/mTOR signaling pathway to alleviate autophagy (Li et al.,

2016; Li et al., 2017; Shen et al., 2017; Zhu et al., 2019). Zhu et al.

showed that the reduction in autophagy was due to the inhibition

of c-Jun N-terminal kinase (JNK) pathway activation, which was

previously thought to be widely involved in stress, cell division,

apoptosis and other processes. In the study, Zhu et al. showed

that this pathway may also be involved in autophagy (Zhong

et al., 2017; Zhu et al., 2019). Table 3 shows changes in various

autophagic proteins.

DEX can protect the BBB and
reducing cerebral edema

BBB injury is a common primary brain injury after TBI.

Unavoidable mechanical damage caused by external forces

applied to the brain during the acute stage, which can lead to

brain edema, further increasing intracranial pressure and

worsening patient prognosis (Zhao et al., 2016).

DEX can increase the expression of tight
junction proteins

Tight junction proteins, including occludin, zona occludens-

1 (ZO-1) and claudin-5, are important components of the BBB,

and damage to the BBB is accompanied by the degradation of

tight junction proteins. Wang et al. and Shen et al. showed that

DEX treatment could increase the expression of tight junction

proteins to maintain the integrity of the BBB (Shen et al., 2017;

Wang et al., 2018a). As the expression of tight junction proteins

increased, the permeability of the BBB was restored.

Experimentally, BBB permeability and damage are often

assessed by observing the extravasation of Evans blue dye. A

series of studies have shown that DEX can significantly reduce

the leakage of Evans blue in the cerebral cortex. Reversing the

increase in BBB permeability caused by TBI reduces brain edema

(Shen et al., 2017; Wang et al., 2018a; Sun et al., 2020; Feng et al.,

2021b). In addition, Yin et al. used a model of SAH and showed

that DEX alleviated brain edema by increasing tight junction

protein expression and reducing the extravasation of Evans blue

dye to indicate a protective effect on the BBB (Yin et al., 2018).

Table 4 shows changes in various tight junction proteins.

DEX can alleviate inflammation-mediated
BBB injury

In addition to acute mechanical injury, the inflammatory

response after TBI also plays an important role in BBB

disruption. A growing body of research suggests that an

excessive inflammatory response after brain injury can lead to

BBB breakdown and nerve damage (Abdul-Muneer et al., 2015;

Gao et al., 2015). Peripheral neutrophils, macrophages and other

inflammatory cells can migrate to the brain through the damaged

BBB, further exacerbating the inflammatory response (Xu et al.,
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2017). DEX can reduce the expression of the inflammatory

mediators IL-1β, TNF-α, IL-6 and NLRP3 inflammasome in

the brain after TBI (Wang et al., 2018a; Feng et al., 2021b; Li

et al., 2021). Shen et al. suggested that DEX could not only reduce

the inflammatory response but also alleviate BBB injury after TBI

by activating the PI3K/Akt/mTOR signaling pathway, whichmay

increase the expression of the tight junction proteins occludin,

claudin-1 and ZO-1 (Shen et al., 2017).

Cellular structure protection and
enhanced expression of genes
related to neuroprotection

DEX can protect the integrity of the
astrocyte structure

In addition, DEX has been shown to play an important

role in protecting cellular structures after nerve injury. Sun

et al. found that DEX could protect the integrity of the

astrocyte membrane and nuclear structure, and this type of

cell provides support for neurons through glial transmission,

synaptic remodeling, gap connections, energy metabolism,

information transmission and other processes (Rama Rao

and Kielian, 2015; Sun et al., 2019). In this study, abnormally

elevated nuclear histones were detected in the cytoplasm

during cell injury, and the cytoskeletal structure was

destroyed. However, DEX significantly improved these

outcomes, and the number of histones released from the

nucleus was significantly reduced. The overall cytoskeletal

structure of the cells was relatively intact, maintaining

normal cellular morphology. In addition, these findings

showed that histones released from the nucleus can cause

neuronal damage (Sun et al., 2019).

DEX can reduce synaptic and axonal
damage

Synaptic damage often leads to neuronal dysfunction and

even apoptosis after TBI. PSD95 plays a supporting role in

synaptic development, promotes improvements in synaptic

function, and plays a role in synaptic integration and

functional recovery when nerve cells are damaged (Keith

and El-Husseini, 2008; Merlo et al., 2014; Mo et al., 2016).

Zhao et al. showed that the expression of PSD95 was

significantly decreased after TBI, while DEX significantly

reversed this outcome. Mechanistically, DEX reduces the

production of PSD95-NMDA compounds, which has a

negative effect on the repair of damaged synapses and

recovery from cognitive impairment (Zhao et al., 2021).

Wu et al. used an anti-synaptophysin antibody to

immunostain samples and found that the intensity and

number of synaptophysin-positive cells after TBI were

lower than those in the control group, indicating synaptic

degeneration, and DEX treatment protected synapses by

increasing the intensity of synaptophysin staining (Wu

et al., 2018a). In addition, this study showed a protective

TABLE 3 Changes in various autophagic proteins.

References Study
model

Subjects Dose and duration Results

Feng et al.
(2021b)

TBI C57BL/6J
mice

20 μg/kg • Beclin-1↓LC3I/II↓Nrf2↑HO-1↑

Zhu et al. (2019) I/R SD rats Loading dose of 3 μg/kg, then 6 g/kg/h for
the next 2 h

• Beclin-1↓LC3I/II↓JNK↓

Shen et al. (2017) TBI SD rats 15 μg/kg • p-PI3K/t-PI3K↑p-Akt/t-Akt↑p-mTOR/t-mTOR↑the number of
lysosomes↓LC3I/II↓Beclin-1↓

Li et al. (2020) TBI SD rats 20 μg/kg, 4 consecutive days • ATG5↓Beclin-1↓LC3I/II↓circlrp1b/miR-27a-3p/Dram2↓

TABLE 4 Changes in brain water content and various tight junction proteins.

References Study model Subjects Dose and duration Results

Wang et al. (2018a) TBI C57BL/6J mice 25 μg/kg,3 consecutive days • Brain water content↓ Evans blue dye extravasation↓ZO-
1↑occludin↑

Yin et al. (2018) SAH Sprague-Dawley (SD) rats 25 μg/kg • Brain water content↓ Evans blue dye extravasation↓ZO-
1↑occludin↑

Feng et al. (2021b) TBI C57BL/6J mice 20 μg/kg • Brain water content↓ Evans blue dye extravasation↓
Shen et al. (2017) TBI SD rats 15 μg/kg • Brain water content↓ZO-1↑claudin-5↑
Sun et al. (2020) TBI C57mice 25 μg/kg or 100 μg/kg • Brain water content↓Evans blue dye extravasation↓
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effect of DEX on axons. β-amyloid precursor protein (β-APP)
is an important marker of axonal injury because β-APP can be

rapidly transported in normal axons. When axons are

damaged, β-APP transport is impaired, resulting in the

accumulation of β-APP (Kaur et al., 1999). Therefore,

axonal injury can be assessed by β-APP immunostaining.

Compared with the control treatment, DEX treatment

significantly weakened β-APP immunoreactivity,

suggesting that DEX could alleviate the axonal injury

caused by TBI (Wu et al., 2018a). Table 5 shows the

protective effect of DEX on the cell structure.

Other neuroprotective effects of DEX

Extracellular regulated kinase1/2 (ERK1/2) is an

indispensable mediator of mitosis, and cyclic adenosine

monophosphate response element binding protein (CREB)

maintains the survival of damaged neurons and promotes the

subsequent regeneration and repair process. Teng et al. and

Shi et al. showed that DEX could increase the expression of

ERK1/2 and CREB in damaged nerve cells (Cao et al., 2012;

Shi et al., 2018; Teng et al., 2019). Yang et al. compared

mRNA and miRNA expression in TBI model rats in the

control group and DEX treatment group by RNA

sequencing and conducted bioinformatics analysis: the

results showed that Lyn and Cdk1 may be central genes

involved in DEX-mediated neuroprotection (Yang et al.,

2021). Cdk1 is critical in mitotic substrate processing, and

Lyn regulates B-cell signaling pathways to maintain tolerance

to autoantigens. In addition, activation of the Lyn-ERK1/2-

CREB pathway increases the expression of brain-derived

neurotrophic factor (BDNF) (Zhang et al., 2010;

Malumbres, 2014; Brodie et al., 2018). Rodríguez et al. and

Degos et al. showed that DEX could increase the expression of

BDNF in astrocytes to play a neuroprotective role (Degos

et al., 2013; Rodríguez-González et al., 2016).

Discussion

The effects of DEX on inflammation after TBI are

summarized in Figure 2. At the cellular level, DEX reduces

the density of microglial cells, inhibits microglial reactivity,

and reduces inflammatory cell infiltration by inhibiting the

reactivity of microglia and the accumulation of macrophages

and T cells (Mantovani et al., 2004; Wang et al., 2018a; Zheng

et al., 2018; Ding et al., 2019; Karakaya et al., 2022; Kii et al.,

2022). At the molecular level, DEX inhibits the microglial TLR4/

MyD88/NF-κB pathway and reduces the expression of various

inflammatory mediators and the NLRP3 inflammasome (Wang

et al., 2018a; Zheng et al., 2018; Li et al., 2019; Feng et al., 2021b;

Huang andHao, 2021; Karakaya et al., 2022). The oxidative stress

process mediates inflammation through ROS and promotes the

infiltration of macrophages (Liu et al., 2018; Kii et al., 2022).

Therefore, we believe that the effect of DEX onmicroglia plays an

TABLE 5 Protective effect of DEX on the cell structure.

References Study model Subjects Dose and duration Results

Sun et al. (2019) Sepsis 1321N1 astrocytes 1 μM • Nuclear histones↓ Stability of
cytoskeletal structure↑

Li et al. (2021) Sunstroke ICR mice 25 μg/kg • TREM2①↑Arg-1↑
Rodríguez-González et al.
(2016)

Cerebral ischemia Astrocytes from SD
rats

0.3 μM or 1μ M or 10 μM • BDNF↑

Chen et al. (2017) Cardiopulmonary
bypass (CPB)

SD rats Loading dose of 2.5 μg/kg or 5 μg/kg before CPB,
then a maintenance dose of 2.5 μg/kg/h or 5 μg/kg/h
during the CPB

• S100β↓NSE②↓

Zhao et al. (2021) TBI C57BL/6 mice 100 μg/kg • PSD95↑PSD95-NMDA↓
Wu et al. (2018a) TBI C57BL/6 mice 1 μg/kg or 10 μg/kg or 100 μg/kg • Intensity and number of

synaptophysin-positive
cells↑β-APP↓

Yang et al. (2021) TBI SD rats 100 μg/kg • Lyn↑Cdk1↑miR-7a-5p↓miR-
873-5p③↓

Shi et al. (2018) I/R SD rats Loading dose of 3 μg/kg, then 6 μg/kg/h for the
next 2 h

• ERK1/2↑CREB↑ADRA2A④↑

I/R Astrocytes from SD
rats

500 ng/ml for 3 h • ERK1/2↑CREB↑ADRA2A④↑

Teng et al. (2019) I/R SD rats 1 μg/kg/d,7 consecutive days • ERK1/2↑CREB↑

①TREM2 is a glycoprotein receptor for microglia that is involved in the regulation of neuroinflammation(Neumann and Takahashi, 2007).

②Changes in S100β and NSE, levels can reflect the degree of brain injury and are specific markers of central nervous system injury (Luo et al., 2016).

③Downregulation of miR-7a-5p and miR-873-5p is related to the neuroprotective effect of DEX(Yang et al., 2021).

④ADRA2A-mediated ERK1/2 phosphorylation plays a neuroprotective role(Shi et al., 2018).
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important role in alleviating inflammatory injury in TBI, possibly

by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway. Based

on these studies, we found that DEX could affect most of the

inflammatory processes shown in Figure 2, but DEX-mediated

inhibition of microglia and the promotion of Nrf2 expression

may be the initial links in its neuroprotective effect (Wang et al.,

FIGURE 2
The TBI model plays a leading role in research on the neuroprotective effect of DEX. Therefore, trials with TBI as the model were screened and
summarized to explore the neuroprotective mechanism of DEX under the same injury conditions. In the TBI model, the action of DEX involves two
main processes, the inflammatory response and oxidative stress, which act on multiple levels of cells, signaling pathways and molecules; oxidative
stress process ultimately promotes the release of inflammatory mediators and infiltration of inflammatory cells. Once again, it was confirmed
that DEX plays an important role in alleviating inflammation in patients with neurological injury.

FIGURE 3
After summarizing the literature included in this paper, it was found that the neuroprotective effects of dexmedetomidine are not completely
independent. Its effect on Nrf2 signaling pathway can reduce inflammation, apoptosis, autophagy, and protect BBB by inhibiting ROS generation.
Additionally, the PI3K/Akt/mTOR pathway plays an important role in alleviating autophagy and protecting the BBB.
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2018a; Zheng et al., 2018; Li et al., 2019; Feng et al., 2021b; Huang

and Hao, 2021; Karakaya et al., 2022). Recent studies have shown

that these two processes can drive all other processes after being

initiated by DEX. However, the direct effect of DEX on other

processes cannot be ruled out. Notably, in models of ischemic

brain injury and neuralgia, DEX acts on oxidative stress processes

to reduce the number of inflammatory microglia and

NLRP3 inflammasome formation. This result suggests that the

oxidative stress process may be directly linked to the

inflammatory response through microglia and the

NLRP3 inflammasome (Shan et al., 2021; Wang et al., 2022).

However, it is undeniable that there may be some heterogeneity

in the mechanism of inflammation due to different experimental

models.

DEX decreases apoptosis mainly by inhibiting the

mitochondrial pathway of apoptosis; mitigating

endoplasmic reticulum stress and oxidative stress; and

decreasing the expression of proapoptotic proteins.

According to the literature, these three apoptosis pathways

are relatively independent, and there is no evidence to verify a

connection between them. The mechanism by which DEX

inhibits mitochondrial apoptosis may involve reducing the

expression of JMJD3 by inhibiting the JAK/STAT pathway,

reducing the production of the proapoptotic proteins Bax and

caspase-3, and activating the HIF-1α/p53 signaling pathway

to enhance the adaptation of nerve cells to adverse

environments (Gao et al., 2019; Feng et al., 2021a). The

DEX-mediated inhibition of endoplasmic reticulum stress

pathway-mediated apoptosis may be related to inhibiting

the IRE1α-ASK1-JNK pathway (Sun et al., 2020). DEX

may inhibit oxidative stress through the PGC-1α pathway

and the interaction between NMDA and PSD95 (Li et al.,

2018; Zhao et al., 2021).

Based on recent studies, we expounded on the role and

possible mechanism by which DEX alleviates autophagy,

protects the BBB and maintains normal cellular structure.

In addition, we found that the various protective effects of

DEX on the nervous system were not independent. For

example, inhibiting oxidative stress can reduce autophagy

and apoptosis, while reducing inflammation can prevent the

destruction of the BBB (Wang et al., 2018a; Feng et al.,

2021b). DEX activates the PI3K/Akt/mTOR signaling

pathway and plays an active role in alleviating autophagy

and protecting the BBB (Shen et al., 2017). The

neuroprotective effect of dexmedetomidine and its

relations in various aspects are shown in Figure 3. In

addition, the protective effect of DEX in patients with

brain injury is not limited to neuroprotection. For

example, studies have shown that DEX can reduce

delirium and agitation in patients after TBI (Roberson

et al., 2021; Soltani et al., 2021), and DEX can also reduce

paroxysmal sympathetic hyperactivity (PSH) caused by

nervous system damage (Tang et al., 2017; Branstetter

et al., 2020).

This review indicates that DEX can play a

neuroprotective role in different aspects of brain injury

caused by a variety of factors and that DEX can

significantly improve patient prognosis. However, this

study has some limitations. First, most of the current

experiments on the neuroprotective effects of DEX are

animal experiments or in vitro cell experiments, and

clinical data are lacking. In addition, priority is given to

TBI and cerebral ischemia models; few other models of

neurological damage are available for review. Therefore, in

this paper, the goal was not to differentiate damage types but

to examine neuroprotective effects; different types of nerve

damage have certain similarities. Further understanding of

the neuroprotective effect of DEX on different injury types

will be important in the future.
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Glossary

Akt V-akt murine thymoma viral oncogene homolog

AMPK AMP-activated protein kinase

APAF-1 apoptotic protease activating factor 1

Arg-1 arginase-1

ASC apoptosis-associated speck-like protein containing a CARD

ASK1 apoptosis signal-regulating kinase 1

ATF4 activating transcription factor 4

ATG5 autophagy protein 5

Bax B-cell lymphoma-2 associated X

BBB blood–brain barrier

Bcl-2 B-cell lymphoma-2

BDNF brain-derived neurotrophic factor

CCR2* C-C chemokine receptor type 2

CD40* tumor necrosis factor receptor superfamily member 5

CD86* T-lymphocyte activation antigen CD86

Cdk1 cyclin-dependent kinase 1

CHOP C/EBP-homologous protein

CREB cyclic adenosine monophosphate response element

binding protein

Cyt-c cytochrome c

DEX dexmedetomidine

Dram2 DNA-damage regulated autophagy modulator 2

ERK extracellular regulated kinase

GPX glutathione peroxidase

GSDMD gasdermin D

HIF-1α hypoxia-inducible factor-1α
HO-1 heme oxygenase-1

HSP70 heat shock protein 70

I/R ischemia–reperfusion

IL-1β interleukin-1beta

IL-4 interleukin-4

IL-6 interleukin-6

IL-8 interleukin-8

IL-10 interleukin-10

IL-18 interleukin-18

iNOS inducible nitric oxide synthase

IRE1α inositol-requiring enzyme 1α

JAK2 Janus kinase 2

JMJD3 Jumonji domain-containing protein 3 demethylase

JNK c-Jun N-terminal kinase

LC3I/II light chain 3I/II

LPO lipid peroxidation

MCL-1 myeloid cell leukemia-1

MCP-1 monocyte chemotactic protein 1

MDA malondialdehyde

miR-29b microRNA-29b

MMP9 matrix metallopeptidase 9

mTOR mechanistic target of rapamycin

MyD88 myeloid differentiation primary response 88

NF-κB nuclear factor-kappaB

Ngb neuroglobin

NLRP3* NACHT, LRR and PYD domains-containing protein 3

NMDA N-methyl-D-aspartate

nNOS neuronal nitric oxide synthase

NQO-1 nicotinamide adenine dinucleotide phosphate quinone

oxidoreductase-1

NR2B N-methyl-D-aspartic acid receptor 2B

Nrf2* nuclear factor erythroid 2-related factor 2

OGD oxygen and glucose deprivation

p-EIF2α phosphorylated eukaryotic initiation factor 2α
PGC-1α proliferator-activated receptor-gamma coactivator 1α
PI3K phosphoinositide 3-kinase

p-PERK phosphorylated protein kinase RNA-like ER kinase

PSD95 postsynaptic density protein 95

PSH paroxysmal sympathetic hyperactivity

ROS reactive oxygen species

SAH subarachnoid hemorrhage

SOD superoxide dismutase

STAT3 signal transducer and activator of transcription 3

TBI traumatic brain injury

TGF-β transforming growth factor-β
TLR4 Toll-like receptor 4

TNF-α tumor necrosis factor alpha

UPR unfolded protein response

ZO-1 zona occludens-1

β-APP β-amyloid precursor protein
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