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Lip and oral cavity cancer, which can occur in any part of the mouth, is the 11th most
common type of cancer worldwide. The major obstacles to patients’ survival are the poor
prognosis, lack of specific biomarkers, and expensive therapeutic alternatives. This study
aimed to identify the main genes and pathways associated with lip and oral cavity carci-
noma using network analysis and to analyze its molecular mechanism and prognostic sig-
nificance further. In this study, 472 genes causing lip and oral cavity carcinoma were re-
trieved from the DisGeNET database. A protein-protein interaction network was developed
for network analysis using the STRING database. VEGFA, IL6, MAPK3, INS, TNF, MAPKS,
MMP9, CXCL8, EGF, and PTGS2 were recognized as network hub genes using the maximum
clique centrality algorithm available in cytoHubba, and nine potential drug candidates (ra-
nibizumab, siltuximab, sulindac, pomalidomide, dexrazoxane, endostatin, pamidronic acid,
cetuximab, and apricoxib) for lip and oral cavity cancer were identified from the DGIdb da-
tabase. Gene enrichment analysis was also performed to identify the gene ontology cate-
gorization of cellular components, biological processes, molecular functions, and biological
pathways. The genes identified in this study could furnish a new understanding of the un-
derlying molecular mechanisms of carcinogenesis and provide more reliable biomarkers for
early diagnosis, prognostication, and treatment of lip and oral cavity cancer.
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Introduction

Human head and neck cancers begin in the mouth, nose, throat, larynx, sinuses, or sali-
vary glands. Lip and oral cancer is a subgroup of head and neck cancers that cause lip or
oral carcinoma. Oral cancers are often referred to as those occurring in a particular ana-
tomical region, including the lip, gum, tongue, mouth (including the floor of the mouth),
and palate, corresponding to the International Classification of Diseases, 10th revision
C00-06 code. The vast majority of these cancers (up to 85%-95%) are squamous cell
carcinomas, often resulting from pre-existing precancerous lesions. Oral cancer stands
out among head and neck tumors due to its frequent occurrence and mortality rate, as
well as its common association with a late diagnosis [1].

The low survival rate of oral cancer can be significantly increased if it is detected early
or in the pre-cancer stage. Most oral carcinomas are squamous cell carcinomas of the
tongue, buccal mucosa, or gums. Lip cancer is the most common tumor in the head and
neck of the body, and constitutes 25%-30% of all mouth cancers [2]. Lip carcinomas are
usually basal or squamous cell carcinomas [3]. The oral cavity begins from the blood-red
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boundary of the lips and extends to the circumvallate papillae of
the tongue and the intersection of the soft and hard palate. The
oral cavity is divided into the lip, oral tongue, mouth floor, buccal
mucosa, upper and lower gum, retromolar trigon, and hard palate
[4]. Benign oral cavity lesions include those affecting the anterior
tongue, mouth floor, buccal mucosa, retromolar trigone, hard pal-
ate, and gingiva.

An estimated 200,000 cases of oral cancer and 100,000 deaths
occur every year worldwide. The worldwide age-standardized
prevalence of lip cancer was reported to be 0.3 per 100,000 in
2012 (0.4 in males and 0.2 in females) [5]. Smoking tobacco and
excessive alcohol intake account for 75% of cases of lip cancer and
oral cancer. Other risk factors include chewing of betel juice
(paan) with or without tobacco and the consumption of nitrosa-
mine-rich foods and salted fish. Another significant risk indicator
for oral cancer is the overconsumption of cigarettes [6]. The onset
of intake, period, and extent of regular use of chewing tobacco or
use of bidis as a form of smoked tobacco were closely associated
with oral cancer [7]. Smoked tobacco is a major contributor to
carcinogenesis in the upper airway, and a positive association ex-
ists between tobacco smoke consumption and oral cavity cancer,
as documented in numerous studies. The risk of oral cancer is 1.4
1.7 times higher in those who consume tobacco than in those who
do not consume tobacco [8]. Paan includes areca nut, betel leaves,
and slaked lime, sometimes mixed with tobacco, and certain items
like spices, sweets, and essences may be added to paan, depending
mostly on taste. In Asia, smoking paan with or without tobacco is
amajor risk factor for oral cancer [9], but owing to a lack of knowl-
edge and literacy, many people who routinely use paan are un-
aware of its adverse consequences for health [8].

Other predictors of oral cancer are environmental pollutants
such as ultraviolet radiation (lip cancer) or nutritional intake defi-
cits such as fruit and non-starchy vegetables (oral cavity cancer)
[S]. Various mutations and genetic mechanisms have also been re-
ported to contribute to lip and oral cancer development and
growth. Surgery is usually performed to treat oral squamous cell
carcinoma. Surgery facilitates an accurate assessment of the ana-
tomical location, margins, invasive status, and histopathological
characteristics of the tumor, and the corresponding advantages
and disadvantages may determine the strategy.

To date, the ability to treat advanced oral cancer has been con-
strained by a lack of understanding of the specific key genes that
underlie the growth of this cancer. The aim of this study was to
identify key genes through a gene enrichment analysis of lip and
oral cavity carcinoma using bioinformatics and to identify novel

potential diagnostic biomarkers for oral carcinoma.
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Methods

Retrieval of disease genes

The genes associated with lip and oral cavity carcinoma (C0220641)
were retrieved from the DisGeNET database (accessed December
2019) available at http://www.disgenet.org/home/. DisGeNET is
a wide-ranging platform that integrates genes and variants involved
in human disease [10]. A total of 472 disease-associated genes
were obtained and downloaded for further analysis.

Network analysis in Cytoscape

The UniProt IDs of associated disease genes recorded from the
summary of disease-gene associations were uploaded using the
STRING protein query in Cytoscape 3.7.2, which is a precomput-
ed global resource designed to evaluate protein-protein interaction
(PPI) information [11]. The confidence score (cutoff) was set to
0.4 and the maximum additional interactors remained the default
parameter to obtain more closely related genes to the targeted pro-
tein. The STRING network of PPI was constructed and displayed

a hierarchical layout for a better view.

Hub gene retrieval in cytoHubba

The cytoHubba taskbar is a convenient tool for extracting a sub-
network that contains hub genes from an entire large PPI collec-
tion. As the scoring method, maximum clique centrality (MCC)
was selected to identify featured nodes. In the cytoHubba plugin,
the MCC algorithm has been reported to be the most effective
method of finding hub nodes. In this study, the top 10 genes with
the highest MCC values were considered as hub genes [12].

Functional and pathway enrichment analysis of hub genes
The WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) (func-
tional enrichment analysis web) integrates management, data re-
trieval, organization, visualization, and statistical studies of func-
tional enrichment and data visualization, as well as the analysis of
large gene sets, and is available at http://www.webgestalt.org/ [13].
The WebGestalt database is unique in that it includes information
from various biological contexts, including gene ontology (GO),
the Reactome pathway, network module, gene-phenotype and
gene-disease interactions, gene-drug associations, and chromo-
some position. WebGestalt has greatly expanded the scope of
functional domains, contributing to a total of 78,612 functional
categories. It provides a graphical representation of the data with
over-representation enrichment analysis, mainly involving cellular
components, biological processes, molecular functions, and bio-
logical pathways [14]. A false discovery rate (FDR) < 0.05 was
considered to indicate statistical significance.
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Identification of drug candidates based on hub genes

The online tool DGIdb (http://www.dgidb.org/), an available re-
source containing drug-gene interaction data from more than 30
databases, was used to screen antineoplastic drugs targeting hub

genes.

Results and Discussion

In total, 472 genes associated with lip and oral cavity carcinoma
(C0220641) were identified using the DisGeNET database (Sup-
plementary Table 1). DisGeNET combines text-mined databases
with expert-curated databases, provides one of the most extensive
sets of associations of human genetic diseases, and is a valuable
module for the study of molecular mechanisms underlying genetic
diseases [10]. The PPI network was constructed using all 472
genes. PPI analyses help to explain protein roles at the molecular
level and to discover the process of cell regulation. The STRING
database is often used to evaluate and pre-calculate global-view
protein associations comprising 89 full genome sequence datasets,
including 261,033 orthologous genes [15]. The visual representa-
tion of the predicted, ranked protein interactions network in the
STRING database offers a high-level overview of functional asso-
ciations, enabling extensible analyses of biological systems [15]. In
total, 444 nodes and 8,573 edges (interactions) were identified
with the STRING network based on a confidence score of 0.4 and
the maximum additional interactors as the default parameter (Fig.
1).

Nodes and edges are particularly important because they can be
linked to data on gene expression and protein structure informa-
tion. CytoHubba, which has been widely used to explore import-
ant nodes in biological networks, was then applied to identify the
lip and oral cavity carcinoma hub proteins in the PPI network.
First, scores for all 11 methods are given to each node across the
pre-loaded PPI network by selecting the options for cytoHubba
from the network panel. The MCC score method, which is a lo-
cal-based method, was chosen for this study. The PPI network and
hub genes were visualized using a hierarchical layout. A local rank
approach will only recognize the relationship between the node
and its significant neighbors to measure the node's score within
the network. The MCC method was used to explore the features
of the nodes to enhance their efficacy. According to the MCC
sores, the top 10 ranked nodes for each specific score system were
then obtained from the cytoHubba (Table 1) column in the Cyto-
scape taskbar and shown in the results column, and the subgraph
of all the identified nodes can be seen in the taskbar windows with
a large (red) to basic (yellow) color palette (Fig. 2). The top 10
genes associated with lip and oral cavity carcinoma according to
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MCC scores from the cytoHubba plugin in Cytoscape were
screened [12]. The identified key genes responsible for lip and
oral cavity carcinoma were vascular endothelial growth factor A
(VEGFA), followed by interleukin-6 (IL6), mitogen-activated pro-
tein kinase 3 (MAPK3), insulin (INS), tumor necrosis factor
(TNF), mitogen-activated protein kinase 8 (MAPKS), matrix

Fig. 1. Protein-protein interaction network overview built using
STRING in Cytoscape. The network consists of 8,573 edges
(interactions) between 444 nodes based on a confidence score of
0.4 and the maximum additional interactors default parameter.
Nodes represent proteins, edges represent the interaction between
two nodes (proteins).

Table 1. The top 10 ranked nodes were selected using the MCC
method in the cytoHubba app in Cytoscape 3.7.2

Rank Gene name MCC score

1 VEGFA’ 1.88148120178673E+37
2 IL6 1.88148120178002E+37
3 MAPK3 1.88148120172653E+37
4 INS 1.88148118653989E+37
5 TNF 1.88148116290353E+37
6 MAPK8 1.88148112775536E+37
7 MMP9 1.88147822258162E+37
8 CXCL8 1.88147770682472E+37
9 EGF 1.88147075212715E+37
10 PTGS2 1.88128391642781E+37

These top 10 ranked nodes represent the top 10 hub genes of lip and oral
cavity carcinoma.

“Based on these results, VEGFA was identified as the highest-ranked hub
gene with the highest maximum clique centrality (MCC) score.
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metalloproteinase-9 (MMP9), interleukin-8 (CXCL8), pro-epi-
dermal growth factor (EGF), and prostaglandin G/H synthase 2

Fig. 2. The protein-protein interaction subnetwork consisting of 10
hub genes based on the maximum clique centrality scoring method
ranking. The network of the 10 hub genes is shown with red (high
ranking) and yellow nodes (low ranking) based on the ranking
score.
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(PTGS2).

The top 10 genes in the string network ranked by the MCC
method were then analyzed for gene enrichment analysis using
WebGestalt. To identify the functions, a gene enrichment analysis
of the hub genes was performed, and an FDR < 0.05 was set as
the cutoffvalue [13].

Fig. 3B shows the results of the cellular component GO term
enrichment analysis, which suggested that all 10 hub genes were
significantly enriched in the endomembrane system. The genes
are also present in the membrane-enclosed lumen, extracellular
space, membrane, and vesicle, and actively function in the pro-
tein-containing complex, endoplasmic reticulum, endosome, cell
projection, and extracellular matrix. Other cellular components in-
volving these hub genes include the nucleus, mitochondrion, Gol-
gi apparatus, cytosol, cytoskeleton, cell envelope, and vacuole. The
cell polarity position of the endomembrane pool of Cdc42 and the
possible role of this pool in cancer-related alterations are known.
The Golgi apparatus was noted to be rapidly oriented towards the
posterior end of the plasma membrane, meaning that its integrity
is necessary for guided cell motility and polarized secretion [16].
In the form of single-strand malfunctions, tobacco smoking causes
significant damage to DNA [17], and increases in protein thiols
and lipid peroxidation/oxidation [ 18]. Mitochondrial DNA is vul-
nerable to harm from reactive oxygen species such as superoxide

radicals, hydrogen peroxide, and hydroxyl radical due to a lack of a
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Fig. 3. Gene enrichment analysis of 10 significant hub genes (false discovery rate < 0.05) based on the gene ontology slim summary using
WebGestalt. (A) Gene enrichment analysis of 10 recognized hub genes based on biological processes. (B) Gene enrichment analysis of 10
recognized hub genes based on cellular components. (C) Gene enrichment analysis of 10 recognized hub genes based on molecular function.
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defensive histone backbone [19]. In the vast system of close and
distant cell-to-cell communication, extracellular vesicles (EVs) are
secreted by most cell types [20]. Under the influence of hypox-
ia-inducible factors, EVs that developed under a stressful environ-
ment showed enhanced proliferation and migration of oral cancer
cells [21]. As for the molecular function of the lip and oral cavity
carcinoma hub genes (Fig. 3C), most of these genes are involved
in protein binding, with moderate functions in ion binding, trans-
ferase activity, nucleotide binding, and enzyme regulatory activity.
Protein binding is a secreted glycoprotein that enhances cell-cell
and cell-extracellular matrix permeability and induces the produc-
tion of IL-1, IL-6, and other blood monocyte cytokines, contrib-
uting to the invasion and metastasis of lip and oral cancer cells
[22]. Antioxidant disruption to salivary DNA and proteins can en-
courage oral squamous cell carcinoma [23]. The mechanism
through which oxidative damage is involved in oral cancer is that
when the salivary DNA is extracted from exfoliated oral epitheli-
um, the oxidized proteins and DNA contained in the saliva inter-
act with salivary free radicals [24]. Hydrolase is involved in the
metabolism of tobacco carcinogens [25]. Hydrolase activity is
linked to an increased risk of oral cavity, pharyngeal, and laryngeal
cancers, which are smoking-related cancers, and recent study sup-
ported its involvement in lung cancer [26]. In terms of biological
processes (Fig. 3A), most of the hub genes are involved in cell
communication, metabolic processes, multicellular organismal
processes, developmental processes, responses to stimuli, and lo-
calization and biological regulation. These hub genes are also in-
volved in cell proliferation, cellular component organization, and

I FDR <0.05 FDR >0.05
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multi-organism processes. Cancer cells, which have altered glucose
and lipid metabolism, show radical improvements in energy me-
tabolism function compared to normal cells. Tumor metabolism
studies have reported that oncogenic signaling pathways stimu-
lated metabolic reprogramming to upregulate lipid, carbohydrate,
protein, DNA, and RNA biosynthesis, leading to enhanced tumor
development. Under aerobic conditions, cancer tissues have ele-
vated glycolysis levels in the cytosol, even with fully functioning
mitochondria, as a result of phosphoinositide 3-kinase (PI3K)/
AKT signaling; this is known as the Warburg effect [27]. The cell's
regular activities and organization are closely regulated by excitato-
ry or inhibitory input [28]. In tumor cells, pathways are altered,
enabling them to divide quickly, sequester blood vessels that stim-
ulate growth, remove or enhance signals to create abnormal func-
tional or structural alterations, and penetrate local or remote sites
of normal tissue [29]. Fig. 4 shows the biological pathways (Reac-
tome pathways). Most of these genes are involved in activation of
the AD-1 family of transcription factors, signal attenuation, and
MAPK3 (ERK1) activation. The transcription factor protein-1
(AP-1) superfamily activator is known to modulate gene expres-
sion during the development of many cancers and has been recog-
nized as a potential target for modern therapeutic applications. Its
components are involved in RAF-independent MAPK 1/3 activa-
tion, interleukin-10 signaling, MAPK targets/nuclear events medi-
ated by MAPKSs and high-affinity IgE receptor-mediated MAPK
activation including interleukin-4 and interleukin-3 signaling.
These hub genes were found to be involved in phosphatidylinosi-
tol-S-phosphate/phosphatidylinositol-4,5-bisphosphate and im-
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Fig. 4. Gene enrichment analysis of 10 recognized significant hub genes (false discovery rate [FDR] < 0.05) based on the biological pathways

of the Reactome database.
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mediate early response 3-regulated PI3K/AKT signaling, regula-
tion of regulate phosphatidylinositol 3-kinase and Akt/Protein Ki-
nase B (PI3K/AKT) signaling, senescence-associated secretory
phenotype, cellular senescence, and signaling by interleukin. The
PI3K/Akt pathway is a central controller of viability in response to
cell stress (e.g,, pH, nutrient, and oxygen levels), and deregulation
of the PI3K signaling pathway leads to cancer [30].

VEGFA encodes a platelet-derived growth factor/vascular endo-
thelial growth factor (VEGF) family member that acts as a glyco-
sylated mitogen, increasing endothelial permeability, angiogenesis,
vasculogenesis, endothelial cell growth, and cell migration. VEG-
FA functions as a central stimulator of angiogenesis, which is an
important trait of cancer that plays a crucial role in tumor growth.
The production of VEGFA is induced by the generation of hypox-
ic conditions within tumors [31]. A study reported that VEGFA
mRNA levels were 53-fold higher in oral carcinoma tissues than in
normal tissues. Hence, VEGFA functions as a potent autocrine
survival factor for cancer cells. The risk of oral cancer may be cor-
related with VEGFA locus haplotypes, and the haplotype effect
may be more substantial than a single susceptibility polymorphism
[32]. Compared to the normal oral mucosa, multiple studies have
shown upregulation of VEGFA expression in cancerous tissues.
VEGEF levels in oral cancer patients were also found to be signifi-
cantly higher than normal controls, in an analysis that included
clinical stage and lymph node metastasis. This suggests that VEG-
FA levels may be a reliable biomarker and that VEGFA may be a
potential target for developing chemotherapy strategies for oral
carcinoma patients.

IL-6 is a pleomorphic cytokine involved in various physiological
and pathological processes, such as responses to trauma and infec-
tion and the progression of inflammation and tumors. IL-6 ap-
pears to lead to oral cancer pathogenesis via multiple pathways and
biological processes [33]. IL-6 can stimulate the release of matrix
metalloproteinase 1 and 9, which are responsible for malignant
growth and neoangiogenesis in oral squamous cell carcinoma. Sev-
eral keratinocyte mechanisms, including cell formation, survival,
and differentiation, are also modulated by IL-6. By triggering glob-
al hypomethylation and changes in DNA methylation trends in
oral cancer cells, IL-6 can contribute to the growth of oral cancer
[34]. IL-6 is linked with increased tumor growth and metastasis,
and may therefore be involved in this disease's pathogenesis. Se-
rum IL-6 was detected at higher concentrations than salivary IL-6
in oral cancer patients. Therefore, serum IL-6 was proposed as a
diagnostic or prognostic marker for oral cancer and pre-cancer.

Tumor cell development, differentiation, apoptosis, angiogene-
sis, invasion, and metastasis are associated with MAPK3 and
MAPKS. The repression of MAPK signaling caused by irregular
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gene expression leads to abnormal responses, whereas regulated
MAPK inhibits the development of inhibitory proteins in cell cy-
cles. PI3K/Akt gene mutations lead to irregular activation of the
MAPK pathway in oral cancer. This observation suggests an intri-
cate relationship between the MAPK and PI3K/Akt pathways
[35].

INS encodes insulin. By modifying the insulin receptor substrate-1
(IRS-1) pathway, diabetes can also raise the risk of certain forms of
cancer, including oral carcinoma. Changes in pathway thus an inter-
mediate step towards neoplasia, involving cytoskeleton modifications
and decreased cell adhesion. Both integrin and focal adhesion kinase
involvement induce IRS-1 activation upon INS activation by tyrosine
phosphorylation [36]. TNF promotes cell proliferation and apopto-
sis, and was reported to be present at high levels in patients with oral
leukoplakia, oral lichen planus, and oral submucous fibrosis, which
have been claimed to be clinical biomarker for oral cancer [37].

MMP-9 is also a possible biomarker of oral cancer. MMP-9 is a
family of enzymes that has been found to be linked to tumor pro-
gression because they are active in extracellular matrix breakdown.
More specifically, MMP-9 is a family of zinc-dependent proteinas-
es associated with type IV collagen, a key source of the basal lami-
na, and other forms of collagen in various pathological conditions
[38].

CXCLS, also known as interleukin-8 (IL-8), is involved in oral
cancer invasiveness through activation of MMPs. Metastatic activ-
ity was correlated with interactions between IL-8 and MMP.
Well-established inflammatory cytokines in oral cancer cells have
been shown to affect MMP development [39].

The EGF receptor is a cell-surface tyrosine kinase known to reg-
ulate the metastasis and recurrence of oral cancer. Abnormal stim-
ulation of the downstream signaling pathways promotes the epi-
thelial-to-mesenchymal transition, which ultimately results in neo-
plastic cells with elevated invasive and metastatic capability [40].

In oral cancers, PTGS2 or cyclooxygenase 2 was elevated. Mani-
festing as broad hypomethylation in the promoter region of the
CpG island area, PTGS2 expression occurs at various organ sites
in response to stress, cigar smoke, and pharmacological drugs, al-
tering the methylation of the PTGS2 promoter [41].

Based on the 10 predicted hub genes as potential therapeutic
targets for lip and oral cancer, we identified several antineoplastic
drugs based on the DGIdb database. Specifically, nine small-mole-
cule drugs (ranibizumab, siltuximab, sulindac, pomalidomide, dex-
razoxane, endostatin, pamidronic acid, cetuximab, and apricoxib)
were identified as potentially having therapeutic effects for lip and
oral cavity cancer based on their interaction scores in the DGIdb
database. The interaction scores were calculated based on the evi-
dence score and relative drug and gene specificity. Table 2 shows

https://doi.org/10.5808/gi.20062
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Table 2. Antineoplastic drugs targeting the predicted hub genes for lip and oral cavity cancer based on the DGldb database

Hub gene Drug Type Source Interaction score
VEGFA Ranibizumab Inhibitor DrugBank, TdgClinicalTrial, ChemblInteractions, TEND, PharmGKB TTD 6.51
IL6 Siltuximab Inhibitor DrugBank, MyCancerGenome, Chemblinteractions, TTD 8.61
MAPK3 Sulindac Inhibitor DrugBank 0.34
INS - - - No interaction
TNF Pomalidomide Inhibitor DrugBank 0.22
MAPK8 Dexrazoxane - NCI 0.39
MMP9 Endostatin - DrugBank 0.82
CXCL8 Pamidronic acid NCI 0.39
EGF Cetuximab CIViC, PharmGKB

1.16
PTGS2 Apricoxib Inhibitor TALC, TdgClinicalTrial, ChemblInteractions 1.39

The interaction score was calculated from the DGIdb database based on the evidence score and relative drug and gene specificity. The table shows small-mol-
ecule drugs with potential therapeutic effects for lip and oral cavity cancer based on the highest interaction score for each predicted hub gene.

small-molecule drugs with potential therapeutic effects for lip and
oral cavity cancer based on the highest interaction score for each
predicted hub gene. However, it is indeed necessary to support
promising therapeutic targets with more studies.

Our analysis has many advantages over previous work [42-44].
First, this study had a broad sample size retrieved from the Dis-
GeNET database, which covers research from expert-curated re-
positories, genome-wide association study catalogs, animal mod-
els, and scientific literature. We further studied the functional and
pathway enrichment of important genes. To our best knowledge,
we identified some heretofore unreported prognostic biomarkers,
such as MAPK3, INS, and PTGS2. However, further clinical vali-

dation of these reported biomarkers is needed.

Conclusion

A comprehensive perspective was provided by the bioinformatics
analysis to understand the mechanism underlying lip and oral cav-
ity carcinoma development. In this study, the following hub genes
were identified as being involved in lip and oral cavity carcinoma
through network analysis: VEGFA, IL6, MAPK3, INS, TNF,
MAPKS8, MMP9, CXCL8, EGF, and PTGS2. In total, 472 gene-dis-
ease associations and 10 hub genes were identified and recognized
as target biomarkers for lip and oral cavity carcinoma. We also
identified several antineoplastic drugs with potential applications
for lip and oral cavity cancer. A detailed study of the genes’ biolog-
ical mechanisms and their pathways may provide potential targets
for the therapeutic drug monitoring of lip and oral cavity carcino-
ma. Nevertheless, further studies are required to understand the
development oflip and oral cavity carcinoma to unravel its mecha-

nism more completely.
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