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Abstract
The correlation between dysregulation of splicing and cancers has been increasingly
recognised and confirmed. The identification of valuable alternative splicing (AS) in
pancreatic head cancer (PHC) has a great significance. AS profiles in PHC were generated
using the data from The Cancer Genome Atlas and TCGASpliceSeq. Then, the NMF
clustering method was performed to identify overall survival‐associated AS (OS‐AS)
subtypes in PHC patients. Subsequently, we used least absolute shrinkage and selection
operator Cox regression analysis to construct an AS‐related risk model. The splicing
regulatory network was uncovered by Cytoscape 3.7. A total of 1694 OS‐AS events were
obtained. The PHC patients were divided into clusters 1 and 2. Cluster 1 had poorer
prognosis and lower infiltration of immune cells. Subsequently, a prognostic signature was
established that showed good performance in predicting OS and progression‐free sur-
vival. The risk score of this signature was associated with the unique tumour immunity.
Moreover, a nomogram incorporating the risk score and clinicopathological parameters
was established. Finally, a splicing factor‐AS regulatory network was developed. A
comprehensive analysis of the AS events in PHC associated with prognosis and tumour
immunity may help provide reliable information to guide individual treatment strategies.
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1 | INTRODUCTION

Pancreatic cancer (PC) is a highly heterogeneous malignancy,
with a 5‐year survival as low as 9% [1]. Despite its relatively
low incidence, PC is predicted to become the third leading
cause of cancer‐related death by 2025 [2]. Over the past
decade, no major progress has been made in improving
patient outcomes, and a complete resection remains the
only potential treatment modality. Unfortunately, a majority
of patients with PC present with unresectable disease at
initial diagnosis [3]. To date, there are no highly sensitive
and accurate biomarkers that can predict the survival of PC,
especially pancreatic head cancer (PHC). Hence, it is
imperative to search for effective prognostic indicators that

guide clinical decision‐making and improve the clinical
management of PHC.

PC is divided into head, body, and tail cancers in accor-
dance with anatomy. Ling et al. reported the discovery that
different subtypes have showed functional and molecular di-
versity with respect to tissue composition, vascularisation,
and innervations [4]. There has been a long‐lasting debate over
whether tumour location could influence the development of
cancers. Increasing evidence has shown that different tumour
localisations in the pancreas display different clinical pre-
sentations, treatment efficiencies, and clinical outcomes [5–7].
Several in vitro experiments also confirmed that there are
significant differences in chemo‐ and/or radio resistant, cell
migration and invasion, pro‐angiogenic potential, and genetic
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profiles between pancreatic head and body/tail cancers [4].
With the wide application of a high‐throughput sequencing
technology, many studies have demonstrated that PC shows
interpatient genomic heterogeneity [8, 9]. Dreyer et al. inves-
tigated the molecular differences between pancreatic head and
body/tail cancers and further elucidated the major signalling
pathways of these cancers. In addition, these cancers also
show the different features of antitumour immune responses
[10]. These findings suggested that the mechanisms in carci-
nogenesis and tumour progression of PC might differ with
tumour localisation and confirmed the great significance of the
subsite division. Recent studies have identified various prog-
nostic signatures for PC. However, little is known about the
prognostic signature in PHC.

Alternative splicing (AS) is a pervasive gene regulatory
process that determines the generation of various transcripts,
which contributes to proteome complexity [11]. A growing
number of studies have revealed that AS plays an important
role in numerous critical biological processes governing many
cell fate decisions [12]. In particular, the advances in
sequencing technology in the last few years have revealed the
potential roles of AS in the aetiology of cancers, including PC
[13]. In this regard, aberrations in splicing contribute to pro/
antitumour phenotypes in PC by regulating the expression of
key genes [14–16]. Additionally, several studies have shown
that AS is significantly correlated with the tumour stage and
survival in PC [17]. Identifying and characterising dysregulation
of AS events in PC might be of significant clinical value
regarding the diagnosis and treatment of the disease. Never-
theless, there is no clear explanation for the dysregulation of
AS events in PHC.

In the present study, we characterised the different RNA
splicing patterns in PHC by using the data from The Cancer
Genome Atlas (TCGA) and TCGA SpliceSeq. Two subtypes
with distinct tumour immune characteristics were identified
based on OS‐AS events. We utilised the least absolute
shrinkage and selection operator (LASSO) regression model to
identify seven OS‐AS events in PHC. With this signature, the
risk score was calculated and then a prognostic nomogram was
developed, which was demonstrated to be a precise predictor
for prognosis. Finally, we established a regulatory network of
splicing factor (SF) genes and their target AS events to explore
the underlying mechanisms in PHC.

2 | MATERIALS AND METHODS

2.1 | Data source

The RNA‐seq transcriptome data and corresponding clinical
information regarding PC were downloaded from the TCGA
data portal (https://tcga‐data.nci.nih.gov/tcga/). A total of
130 PHC samples were extracted using a Perl script. We used
the SpliceSeq tool to profile AS patterns in PHC samples
(https://bioinformatics.mdanderson.org/TCGASpliceSeq/).
The percent spliced in (PSI) value was used to quantify AS
events from zero to one [18]. A total of seven types of AS

events were calculated in the present study, including exon skip
(ES), mutually exclusive exons (MEs), retained introns (RIs),
alternate promoters (APs), alternate terminators (ATs), alter-
nate donor sites (ADs), and alternate acceptor sites (AAs). The
intersections of the 7 AS event subtypes were visualised using
the ‘UpSet’ R package.

2.2 | Identification of survival‐related AS
events

We further explored the association between AS events and
overall survival (OS) of PHC. The univariate Cox regression
analysis was performed to identify OS‐associated AS (OS‐AS)
events with a p value of < 0.05. The result was shown by
drawing a volcano plot based on the correspondence between
the p value and Z‐score. Bubble plots are presented to display
the top 20 OS‐AS events of each splicing pattern. The cor-
relation between AS events and OS of PHC was indicated by
the colour gradient and size of bubbles.

2.3 | Clustering analysis for OS‐AS events

Based on the non‐negative matrix factorisation (NMF) clus-
tering of PSI values of OS‐AS events, PHC patients were
categorised into distinct subtypes for k = 2–10 by using the
‘NMF’ R package. The parameter settings were as follows:
number of repetitions = 1000, method = ‘brunet’. According
to the cophenetic correlation coefficient, rss and silhouette, the
optimal k value was further determined.

2.4 | Exploration of immune infiltration
between AS clusters

To assess the immune infiltration between different AS clus-
ters, we performed the microenvironment cell‐population
(MCP)‐counter algorithm to quantify the score of 10 im-
mune cells by using the ‘MCPcounter’ R package. A previously
described immune classification has defined six immune sub-
types (C1–C6) in cancer [19]. We further investigated the
relationship between the clusters and six immune subtypes.
Sankey plots were drawn by using the ‘ggalluvial’ R package.

2.5 | Discovering an AS‐based risk score

WeusedLASSO regression analysis to identifyAS events that are
correlated with OS from OS‐AS events by the ‘glmnet’ R pack-
age. According to the optimal penalty parameter (λ) value
determined by a 10‐fold cross‐validation (the value of λ corre-
sponding to the minimum mean cross‐validated error), the
prognostic signature was constructed using these filtered AS
events. The following formulawas used to calculate the risk score
of each patient: Risk score =

Pn
i¼1ðPSI ∗ LASSO regression

coefficientÞ. According to the cut‐off value determined by using
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the ‘survminer’ R package, PHC patients were divided into high‐
and low‐risk groups. The time‐dependent ROC curve is an
appropriate tool to evaluate the performance of candidate
markers when considering time‐to‐event data. We used the
‘timeROC’ R package to assess the predictive potential of the
model by measuring the area under the receiver operating char-
acteristic curve (AUC‐ROC). Then, the 1‐, 2‐, and 3‐year ROC
curves were plotted.

2.6 | Survival analysis

A Kaplan–Meier survival curve was applied to evaluate the
differences in OS and progression‐free survival (PFS) between
groups. A log‐rank p < 0.05 was considered statistically
significant.

2.7 | Construction of the predictive
nomogram

To identify independent prognostic parameters, univariate and
multivariate Cox regression analyses were applied accordingly.
A p value < 0.05 was considered statistically significant. Then,
the risk score and clinical parameters were used to develop a
prognostic nomogram that might predict the 1‐, 2‐, and 3‐year
OS of patients with PHC. A nomogram plot was established by
using the ‘rms’ R package. Calibration curves were generated to
assess the predictive validity of the nomogram. A higher degree
of consistency with 45° dotted line indicates the optimal pre-
dictive performance.

2.8 | Analyses of the immune landscape

To explore the differences in the tumour microenvironment
between the high‐ and low‐risk groups, we used the ‘estimate’
R package to compute the ESTIMATE score, stromal score,
immune score, and tumour purity for each patient with PHC.
Additionally, a single‐sample gene set enrichment analysis
(ssGSEA) was performed to uncover the characteristics of
immune cell infiltration, immune‐related pathways and
immune‐related functions by the ‘gsva’ R package. A total of
20 major immune checkpoint genes were acquired from a
previous study [20]. The correlation between the risk score and
the main immune checkpoint genes was calculated by Pearson
correlation analysis. The Wilcoxon rank‐sum test was used to
compare the differences in the expression of 20 immune
checkpoint genes between the low‐ and high‐risk groups.

2.9 | Construction of the splicing correlation
network

A list of 404 SF genes was retrieved from the previous liter-
ature [21]. The expression of SF genes was obtained from level
3 mRNA‐seq data in TCGA. Survival‐related SF genes were

identified by univariate Cox regression analysis. Spearman
correlation analysis was performed to evaluate the correlation
between the expression of survival‐related SF genes and the
PSI values of survival‐related AS events. The SF‐AS interac-
tion network was generated by Cytoscape (version 3.7), with
correlation coefficients greater than an absolute value of 0.8.

2.10 | Statistical analysis

All statistical analyses were performed using R software
version 4.0.2. A p value < 0.05 was considered statistically
significant.

3 | RESULTS

3.1 | Integrated AS event profiles in PHC

Integrated AS event profiles were analysed for 130 patients
with PHC obtained from the TCGA cohort. The detailed
clinical characteristics of these patients with PHC are sum-
marised in Table 1. Our results revealed that one gene might
have different types of splicing patterns, which have great
potential responsibility for transcriptome diversity. Addition-
ally, ES splicing was the predominant type in PHC. To inves-
tigate the prognostic value of AS events in PHC patients, we
conducted univariate Cox regression analysis to acquire OS‐AS
events. Consequently, 1684 AS events were identified as
candidate OS‐AS events with a p value of < 0.05, and ES
splicing remained the major AS pattern, accounting for more
than one‐third of the OS‐AS events in PHC (Figure 1a,b). The
top 20 most significant prognostic AS events for each pattern
are displayed in Figure 2a–g. Obviously, many of the top 20 AS
events in AA, AD, and RI acted as favourable prognostic el-
ements (Z‐score < 0). In addition, we noticed that one gene
might have two or more OS‐AS events that showed the same
or opposite effect on survival. For example, AD, ES ,and RI
events in the IL32 gene were significantly associated with OS
and had favourable or adverse effects on PHC survival.

3.2 | Identification of two clusters based on
prognostic AS events

The OS‐AS events were subjected to NMF clustering analysis.
A desired rank k was utilised to determine the numbers of
clusters. The most common approach to determine the k value
is based on the cophenetic correlation coefficient. We use the
minimum k value at which the cophenolic correlation coeffi-
cient begins to drop. For the silhouette coefficient, many
studies reported that the closer it is to one, the better the
clustering result is. However, when the silhouette coefficient is
maximum, the error is also maximum. After a comprehensive
consideration, k = 2 was selected as the optimal cluster
number (Figure S1a,b), that is, assigning the patients with PHC
into two clusters (cluster 1 and 2). As shown in Figure 3a, the
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consensus matrix heatmap for two clusters had sharp and clear
edges, indicating excellent clustering stability and robustness.
Furthermore, the survival analysis showed that the patients in
cluster 1 had significantly shorter OS and PFS than patients in
cluster 2 ( p < 0.001) (Figure 3b,c).

3.3 | The relationship between AS clusters
and tumour immunity

We investigated the infiltration differences of 10 immune cells
by the MCP‐counter method between cluster 1 and cluster 2.
As shown in Figure 3d, cluster 1 patients had significantly
lower proportions of B cells, CD8 T cells, cytotoxic lympho-
cyte (CTL), endothelial cells, fibroblast, fibroblast, myeloid

dendritic cells, NK cells, and T cells. These results suggested
that PHC patients in cluster 1 display lower immune cell
infiltration. In addition, we investigated the relationship be-
tween our clusters and the global transcriptomic immune
classification (C1–C6) as described above. The results showed
that cluster 1 tended to be immune C1 and C2 types, while
cluster 2 tended to be immune C3 and C6 types (Figure 3e). In
summary, the two innovative subtypes we identified were
significantly associated with unique immune characteristics.

3.4 | Discovering AS signatures for PHC

LASSO Cox regression analysis was used to select the key OS‐
AS events as candidates from the seven types (Figure S2a).
Based on the optimal value of λ, an AS‐related prognostic
signature was constructed (Figure S2b), including seven AS
events (Table S1). The heatmap for these PSI values of seven
AS events is shown in Figure 4a. According to the cut‐off
point value, 130 patients with PHC were divided into the
high‐risk group (N = 65) and the low‐risk group (N = 65).
Additionally, Figure 4b,c was generated to show the risk score
and survival status of each PHC patient, indicating that the
clinical outcome of patients in the high‐risk group was worse
than those in the low‐risk group. The Kaplan–Meier survival
analysis showed that the patients in the low‐risk group
exhibited significantly longer OS and PFS than those in the
high‐risk group (Figure 4d,e). The AUC‐ROC of the prog-
nostic signature calculated from TCGA was 0.842 at 1 year,
0.853 at 2 years, and 0.789 at 3 years, indicating that the AS‐
related prognostic signature exhibited good performance in
monitoring survival (Figure 4f). The prediction performance of
the model varies with the evaluation time, and it has the best
prediction effect on a 2‐year survival. This shows that the AS‐
related prognostic signature can be used as an effective tool to
predict the survival of PHC patients in the clinic. Subsequently,
we compared the AUC‐ROC of the risk score with that of
other clinical parameters. The results showed that the risk
score was superior to other clinical parameters (Figure 5a). To
further illustrate the advantages of the AS‐related risk score, we
established a prognostic signature based on seven genes cor-
responding to AS events involved in the final signature. As
shown in Figure S4, the AUC‐ROC of the prognostic signature
was 0.740 at 1 year, 0.708 at 2 years, and 0.735 at 3 years.
Compared with this, the AS‐related signature has better per-
formance in predicting OS for PHC.

Additionally, seven prognostic models for each AS type
were also developed by LASSO Cox regression analysis, with
14 AS events in AAs, nine in ADs, seven in APs, seven in ATs,
eight in ESs, five in MEs, and five in RIs. As shown in
Figure S3a–g, the patients in the high‐risk groups all had
significantly shorter OS and PFS than those in the low‐risk
groups. It is worth mentioning that the AUCs of the seven
signatures were all greater than 0.70 (Figure S5a–g). In sum-
mary, AS events have good potential in predicting the prog-
nosis of patients with PHC. In the present study, we focussed
on exploring all types of AS events in PHC. Therefore, the

TABLE 1 Clinical characteristics of the melanoma patients used in
the present study

Clinical characteristics TCGA cohort

No. of patients 130

Age (years) (mean, SD) 64.16 (10.86)

Gender (%)

Male 69 (53.08%)

Female 61 (46.92%)

History (%)

Tobacco history 59 (45.38%)

Alcohol history 72 (55.38%)

Family history 44 (33.85%)

History of chronic pancreatitis 10 (7.69%)

History of diabetes 29 (22.31%)

Grade (%)

Grade 1 20 (15.38%)

Grade 2 75 (57.69%)

Grade 3 34 (26.15%)

Grade 4 0 (0)

Unknown 1 (0.77%)

Residual (%)

R0 74 (56.92%)

R1 43 (33.08%)

R2 4 (3.08%)

Unknown 4 (3.08%)

Not available 5 (3.85%)

Stage (%)

I 12 (9.23%)

II 113 (86.92%)

III 4 (3.08%)

IV 1 (0.77%)
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signature established by all types of AS events was used in
subsequent analyses.

We used univariate and multivariate Cox regression ana-
lyses to determine whether the risk score was an independent
prognostic factor for PHC among clinicopathological factors.
In univariate Cox regression analysis, age, grade, and risk score
were significantly correlated with poor prognosis (Figure 5b).
After correcting for other confounding factors, the grade and
risk score still showed significant differences by multivariate
Cox regression analysis, which indicated that the risk score was
an independent prognostic factor for PHC (Figure 5c).

Additionally, we investigated the relationship between
clinical parameters. The results showed that age, sex, and TNM
stage did not significantly influence the risk score. Patients with
G3 cancer showed a higher risk score than patients with G1
( p = 0.001) and G2 ( p = 0.023) cancers (Figure 6a–g).

3.5 | Construction of a nomogram based on
the AS prognostic signature

To easily predict the individualised survival probability of PHC
patients, a graphical nomogram integrating the risk score of the
signature and clinical parameters was established (Figure 7a).
To assess the actual and predictive performance of the
nomogram for 1, 2, and 3 years in PHC, calibration curves
were plotted, which indicated a stable consistency between the
predicted and actual survival (Figure 7b–d). In this sense, the
nomogram with the AS risk score could be used as an effective
tool to predict the survival of PHC patients in the clinic.

3.6 | Immune landscape of the final
signature based on seven AS events

To understand the specific immune characteristics of the
AS‐related signature, we explored the differences in the

ESTIMATE score, stromal score, tumour purity, and im-
mune score between the high‐ and low‐risk groups. As
shown in Figure 8a, the high‐risk group showed lower
ESTIMATE scores, immune scores, and stromal scores but
higher tumour purity than the low‐risk group. Subsequently,
immune cell infiltration, immune‐related pathways, and
immune‐related functions were evaluated by ssGSEA. We
found lower immune cell infiltration in the high‐risk group,
including NK cells, CD8 T cells, CD4 T cells, regulatory T
cells, B cells, mast cells, macrophages and so on. We found
that the proportions of B cells, CD8 T cells, Th cells,
macrophages, and DCs were significantly lower in the high‐
risk group. Additionally, the scores of APC costimulation,
checkpoint, cytolytic activity, inflammation promotion, T‐cell
costimulation, T‐cell coinhibition, and Type II IFN response
were lower in the high‐risk group (Figure 8a).

As mentioned above, there were differences in the check-
point between the high‐ and low‐risk groups. Thus, we
assessed the association between the risk score and different
immune checkpoint molecules. As shown in Figure 8b,c, the
risk score was significantly correlated with PDCD1. Further
analysis showed that the high‐risk group had significantly lower
expression of 20 immune genes, including PDCD1, than the
low‐risk group (Figure 8d).

3.7 | Regulatory network of survival‐
associated AS events

SFs can regulate AS events by recognising cis‐regulatory ele-
ments within the pre‐mRNA. Numerous studies have high-
lighted that the altered expression of SF genes can promote
oncogenesis [22]. However, it is unknown whether these AS
events may be regulated by prognostic SFs in PHC tissues. To
provide further insights into the influences of SFs in PHC on
RNA splicing, we constructed a regulatory network of survival‐
associated AS events. A correlation network was built using the

F I GURE 1 Overall survival‐related alternate splicing (OS‐AS) events in PHC. (a) Volcano plot of OS‐AS events (red dots) and survival‐irrelated AS events
(green dots). (b) UpSet plot of interactions between the seven types of OS‐AS events in PHC. The left column shows the number of OS‐AS events of each type.
The right column shows the distribution of genes involved in OS‐AS events. PHC, pancreatic head cancer.
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Spearman correlation analysis, and significant correlations are
presented in Figure 9. The results showed that the expression
of 11 SF genes (green dots) was significantly correlated with 12
OS‐AS events. Among these AS events, nine AS events were
significantly linked with favourable survival (blue dots), while

three AS events were significantly linked with adverse survival
(red dots). These results indicated that these AS events were
potentially regulated by a few key SFs related to prognosis in
PHC tissues, which provided an in‐depth understanding of the
regulatory mechanisms in PHC.

F I GURE 2 Bubble plots for seven patterns of overall survival‐related alternate splicing (OS‐AS) events in PHC. (a) Bubble plots for the top 20 OS‐
alternate acceptor (AA) events. (b) Bubble plots for the top 20 OS‐alternate donor (AD) events. (c) Bubble plots for the top 20 OS‐alternate promoter (AP)
events. (d) Bubble plots for the top 20 OS‐alternate terminator (AT) events. (e) Bubble plots for the top 20 OS‐exon skipping (ES) events. (f ) Bubble plots for
the top 20 OS‐mutually exclusive exon (ME) events. (g) Bubble plots for the top 20 OS‐retained intron (RI) events. p values are indicated by the size of the
bubble and the colour scale. There was a corresponding relationship between the p value and Z‐score. PHC, pancreatic head cancer.
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4 | DISCUSSION

PC is a common aggressive tumour with a high mortality rate.
To date, the American Joint Committee on Cancer tumour‐
node‐metastasis (AJCC‐TNM) classification system is still the
only indicator to assess the survival of PC in clinical practice
[23]. However, the conventional classification cannot meet the
need for precision medicine. With the development of high‐
throughput sequencing, an increasing number of prognostic
factors have been proposed based on genomic analysis [24].
However, the relevant research in PHC has not been carried
out until now. Studies have revealed that right‐ and left‐sided
colon cancer have different risk factors and molecular and
biological characteristics. These results suggested that mecha-
nisms in carcinogenesis might differ with tumour location [25,
26]. Increasing evidence indicates that these differences also

exist between pancreatic head and body/tail cancers, providing
decision‐making support for different tumour locations in PC
[27]. In this sense, it is necessary to explore the PHC mecha-
nism. Therefore, we focussed on the identification of a prog-
nostic signature in PHC, with the purpose of developing a
more accurate predictive tool for clinical practice.

Substantial evidence suggests that aberrant AS events are
frequently observed in cancers and recognised as one of the
most important prognostic signatures. These events play
regulatory roles in the mechanism of cancers, such as pro-
moting proliferation, metastasis, and drug resistance [28, 29].
Many studies have characterised survival‐related AS events in
PC [30, 31]. However, systematic survival analyses of AS
events in PHC have been lacking thus far. In the present
study, we analysed AS events in PHC and identified survival‐
relevant AS events as candidate factors to construct the

F I GURE 3 Differences in tumour immunity between the two clusters based on overall survival‐related alternate splicing (OS‐AS) events. (a) Consensus
matrix heatmap when k = 2. (b) Kaplan‒Meier survival curve analysis for the overall survival (OS) of the two clusters. (c) Kaplan‒Meier survival curve analysis
for the progression‐free survival (PFS) of the two clusters. (d) The landscape of immune cell infiltration in the two clusters. (e) A Sankey diagram for the
correlation between two clusters and the global transcriptomic immune classification (C1‒C6).
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prognostic signature. Among the seven types of AS events
associated with OS, ES events were the most important
splicing pattern. Additionally, it has been reported that ES
events are also the predominant type in breast cancer and
prostate cancer [32, 33]. These findings suggested that ES
events might be primarily responsible for the complexity of
the proteome and biological activity in cancer. CD44|15130
and CD44|15131 ranked top in the list of AS events and
were significantly associated with OS of PHC. Interestingly, it
was consistent with the finding in PC [30]. CD44, a PC stem
cell marker, undergoes AS to generate CD44 standard and
CD44 variants (CD44v) [34]. CD44v expression has been
demonstrated to increase in PC, which was associated with
PC metastasis and progression [34]. CD44v expression has
been demonstrated to increase in PC, which was associated
with PC metastasis and progression [34]. Furthermore,
BRCA1|41197 was one of the top 20 OS‐AS events of the
AD pattern. BRCA1 variants were proven to be pathogenic
in PC and were related to DNA damage repair [35]. In this

regard, these findings also verified the accuracy of the results
in this study. However, the molecular mechanisms of OS‐AS
events in PHC remain largely unstudied.

In the present study, two clusters with different prognoses
were identified according to the PSI values of OS‐AS events.
Cluster 2 had a higher immune cell infiltration than cluster 1.
In addition, there was a relationship between the clusters and
the immune classification identified by Thorsson V et al. (C1–
C6) [19]. Cluster 1 mainly corresponded to the immune C1
type (wound healing), while cluster 2 mainly corresponded to
the immune C3 type (inflammatory). Among the six immune
types, C3 had the best prognosis, while C1 had less favourable
outcomes. These findings were consistent with our results.
Therefore, the AS‐related classifier with prognostic value could
determine the specific subtypes associated with tumour im-
munity in PHC.

However, the AS‐related classifier based on the NMF
clustering method could not be applied to individual PHC
patients. Thus, we performed a systematic analysis to construct

F I GURE 4 Identification and assessment of an alternate splicing (AS)‐related prognostic signature for PHC. (a) Heatmap of AS events included in the
prognostic signature in the low‐ and high‐risk groups. (b) The distribution and median value of the risk scores. Patients were divided into low‐ and high‐risk
groups based on the median value. (c) The scatter plot of survival overview. The red dots indicate death, and the green dots indicate survival. (d) Kaplan‒Meier
survival curve analysis for the overall survival (OS) of the prognostic signature for PHC. (e) Kaplan‒Meier survival curve analysis for the progression‐free
survival (PFS) of the prognostic signature for PHC. (f ) The receiver operating characteristic (ROC) curve for assessing the predictive ability of the risk score
based on the prognostic signature in PHC. PHC, pancreatic head cancer.
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a signature based on OS‐AS events to assess the prognosis in
individuals. The AUCs of the AS signature were 0.843 at 1 year,
0.868 at 2 years, and 0.812 at 3 years. The results suggested that
the newly established signature performed well in PHC. More
importantly, the risk score was verified as an independent
prognostic factor for patients with PHC. In addition, we
established a nomogram combining age, sex, TNM stage, and
risk score, which showed a good predictive performance.
Nomograms, transforming statistical predictive models into a
single numerical estimate of survival in each cancer patient,
have become powerful and easily applicable tools in clinical

practice [36]. Additionally, nomograms have been confirmed to
be better than risk stratification, artificial neural networks
(ANNs), and other predictive models [37]. Hence, the newly
established nomogram based on the AS risk score has great
potential in clinical applications.

Increasing evidence indicates that AS events can regulate
immune activity by producing different transcriptional iso-
forms to supplement the function of immunity‐related genes
[38]. Aberrant AS events are commonly observed in cancers
and have been demonstrated to play a critical role in the
antitumour immune response [39]. In this sense,

F I GURE 5 Cox regression analyses for evaluating the independent prognostic value of the risk score. (a) The receiver operating characteristic (ROC) curves
for risk score, age, sex, grade, and TNM stage. (b) Univariate Cox regression analysis of the association between survival and clinicopathological features as well
as risk score. (c) Multivariate Cox regression analysis of the association between survival and clinical features as well as risk score. Horizontal bars represent 95%
confidence intervals.

F I GURE 6 The relationship between clinical features and risk score. (a) The relationship between age and risk score. (b) The relationship between sex and
risk score. (c) The relationship between grade and risk score. (d) The relationship between stage and risk score. (e) The relationship between T stage and risk
score. (f ) The relationship between N stage and risk score. (g) The relationship between M stage and risk score.
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dysregulated AS events in cancers lay the foundation for
immune‐therapy target expansion. As mentioned above,
there were significant differences in the immune cell infil-
tration of cluster 1 and cluster 2. Therefore, we explored the
association between the risk score and tumour immunity in
PHC. In this study, the high‐risk patients had lower pro-
portions of B cells, CD8+ T cells, and Tregs. Many studies
have shown that the proportion of Treg cells is positively
related to the poor prognosis of PC patients, which is
inconsistent with our results [40]. However, recent studies
reported that the depletion of Treg cells led to the accel-
eration of tumour progression in PC, which might explain
the lower proportion of Tregs in the high‐risk group [41].
Treg cells suppress CD8+ T cells in numerous ways.
Nevertheless, the increase in CD8+ T cells caused by Treg
depletion was offset by a compensatory increase in other
cells [41]. Additionally, it was important to mention that the
scores of APC costimulation and T‐cell costimulation were
lower in the high‐risk group, which contributed to immune
evasion. Immune evasion has been considered one of the
hallmarks of cancer. To avoid immune recognition and
destruction, the abnormal regulation of antigen‐presenting

molecules causes damage to T‐cell responses [42]. It has
been reported that downregulation or loss of antigen‐
presenting molecules was observed frequently in PC [43].
Thus, our results have important implications for further
understanding the mechanism of AS events in promoting
PHC tumourigenesis.

Immune checkpoint inhibitors have expressed a remark-
able potential in the treatment of cancer. However, they are
rarely effective for PC, and only patients with different
mismatch repair or microsatellite instability were recom-
mended to treat with anti‐PD‐L1 [44]. Several studies found a
correlation between the expression of immune checkpoint
genes and response to immunotherapy or cancer prognosis
[45]. Thus, we further explored the relationship between
immune checkpoint genes and the risk score. The results
showed that the high‐risk group had significantly lower im-
mune checkpoint gene expression, including PDCD1. In
summary, immune analysis found that PHC patients in the
high‐risk group exhibited lower immune scores, lower CD8 T
and Th‐cell infiltration, and lower immune checkpoint gene
expression. It has been reported that anticancer immunity is
generally characterised into three main phenotypes: the

F I GURE 7 Establishment and assessment of a nomogram integrating the risk score and clinicopathological features. (a) Nomogram for predicting the 1‐, 2‐
and 3‐year survival in patients with pancreatic head cancer (PHC). The scores for all parameters were added and translated into 1‐, 2‐ and 3‐year survival rates.
(b) Calibration curve of the nomogram for 1‐year survival. (c) Calibration curve of the nomogram for 2‐year survival. (d) Calibration curve of the nomogram for
3‐year survival.
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inflamed phenotype, the immune‐excluded phenotype and the
immune‐desert phenotype, which are associated with indi-
vidual responses to anti‐PD‐L1/PD‐1 therapy [46]. The
immune‐desert phenotype is characterised by a lack of T cells
in either the tumour cells or the stroma, which rarely respond
to anti‐PD‐L1/PD‐1 therapy [47]. Unsurprisingly, the high‐
risk group was more likely to be this immune‐desert
phenotype. Thus, it was reasonable to speculate that the
patients in the high‐risk group might have a weaker response
to immunotherapy. In this sense, the established risk score
could serve as a predictor for the prognosis and response to
immunotherapy, which provides support for clinical decision‐
making.

Although our results showed promise and potential, there
were still some limitations and shortcomings in the present
study. First, due to the lack of datasets containing all infor-
mation needed for further analysis, we analysed only the data
from TCGA. Furthermore, we utilised published retrospective
datasets for the analysis, and these results were not validated in
prospective studies. In the future, we will collect clinical

samples for external validation in an attempt to confirm the
clinical application value of the signature.

5 | CONCLUSION

In the present study, we integrated AS event profiles in PHC
and identified a novel risk score associated with tumour im-
munity that exhibited good performance in predicting the
prognosis of PHC. The SF network provided reliable infor-
mation to better understand the mechanism of AS events in
oncogenesis in PHC.
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