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Esophageal squamous cell carcinoma (ESCC) is a malignant tumor developing from the
esophageal squamousepithelium,and is themostcommonhistological subtypeofesophageal
cancer (EC). EC ranks 10th in morbidity and sixth in mortality worldwide. The morbidity and
mortality rates inChina areboth higher than theworld average.Current treatments of ESCCare
surgical treatment, radiotherapy, and chemotherapy. Neoadjuvant chemoradiotherapy plus
surgical resection is recommended for advanced patients. However, it does not work in the
significantpromotionof overall survival (OS) after such therapy.Researchon targeted therapy in
ESCC mainly focus on EGFR and PD-1, but neither of the targeted drugs can significantly
improve the 3-year and 5-year survival rates of disease. Phosphatidylinositol 3-kinase (PI3K)/
proteinkinaseB (AKT)/mammalian targetof rapamycin (mTOR)pathway isan importantsurvival
pathway in tumor cells, associated with its aggressive growth and malignant progression.
Specifically, proliferation, apoptosis, autophagy, and so on. Related genetic alterations of this
pathwayhavebeen investigated inESCC,suchasPI3K,AKTandmTOR-rpS6K. Therefore, the
PI3K/AKT/mTOR pathway seems to have the capability to serve as research hotspot in the
future. Currently, various inhibitors are being tested in cells, animals, and clinical trials, which
targeting at different parts of this pathway. In this work, we reviewed the research progress on
the PI3K/AKT/mTOR pathway how to influence biological behaviors in ESCC, and discussed
the interaction between signals downstream of this pathway, especially eukaryotic translation
initiation factors (eIFs) and the development and progression of ESCC, to provide reference for
the identification of new therapeutic targets in ESCC.

Keywords: esophageal squamous cell carcinoma (ESCC), PI3K/AKT/mTOR signaling pathway, inhibitors,
eukaryotic translation initiation factors (eIFs), therapeutic target
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INTRODUCTION

The General Status of
Esophageal Carcinoma
In 2020, the incidence and mortality of esophageal carcinoma
(EC) ranked tenth and sixth in the world, with about 70% of the
cases affection males. According to statistics, in 2020, 544,076
people died due to EC worldwide1]. The incidence in eastern Asia
is the highest in the world (1). EC mainly includes ESCC and
esophageal adenocarcinoma (EAC). The incidence of ESCC is
higher than EAC in Asia (2). Currently, the incidence of ESCC has
decreased significantly in Asia (e.g., in China), probably due to the
decline in poverty (3), but the mortality rate is still not optimistic.

With the improvement of various examination methods, the
detection rate of esophageal squamous dysplasia is increasing,
especially in the areas with high incidence of ESCC. Esophageal
squamous dysplasia has the potential to develop into ESCC. The
two can be regarded as a continuous pathological process (4).
The symptoms of EC are very insidious. Early EC is often
detected by gastroscopy, CT, or MRI (5). These examinations
may reveal ulceration or protuberance on the mucosal
esophageal surface, or thickening of the esophageal wall (5). As
the lesion progresses, patients might have difficulty swallowing.
They can only take half liquid diet or even liquid diet, until they
are completely unable to eat and thus significantly lose weight.
Some patients even feel chest pain (6).

According to the degree of differentiation of ESCC, three
grades can be differentiated: highly, moderately, and poorly (7)
(Figures 1A–C). Many keratins and intercellular bridges can be
seen in a highly differentiated ESCC. The poorly differentiated
ESCC does not have keratin pearls and intercellular bridges.
These cells are disorderly arranged hierarchy, with higher
cellular atypia and nuclear pleomorphism.

Poorly differentiatedESCCandEACare difficult to distinguish by
HE staining alone (7). Immunohistochemistry (IHC) can distinguish
them. In poorly differentiated ESCC, markers indicating squamous
epithelialdifferentiation(e.g.,CK5/6)(Figures1D,E)arepositiveand
markers indicating glandular epithelial differentiation are negative
(e.g., CK7, CK20) (7) (Figure 1F). P63 is an indicator that has been
shown tobepositively expressed inESCC(8). Somepatients canhave
components of both squamous cell carcinoma and adenocarcinoma,
which is termed adenosquamous carcinoma (9).
The Methods and Efficacy of Current
Treatments for ESCC
Most ESCC patients are diagnosed at advanced stage. Thus, more
attention should be paid to prevention and early diagnosis. If this
disease is diagnosed early, endoscopic therapy is possible. This
can save the patient’s organs and improve the well-being (10, 11).
Some scholars suggest that endoscopic ultrasound (EUS) should
be performed before treatment to accurately evaluate the
condition (it is not recommended for some patients with
extreme esophageal stenosis) and guide the therapy. T staging
and regional lymph node status are important prognostic factors
for ESCC. EUS is a test comparable to PET, accurate for T staging
and inexpensive. More importantly, EUS is superior to CT and
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MRI in the detection of lymph node involvement, with higher
sensitivity (10).

In a randomized controlled trial conducted by Joel Shapiro
and colleagues, the addition of neoadjuvant chemoradiotherapy
(preoperative chemoradiotherapy) during surgery for patients
with resectable EC was found to have an overall survival benefit
(12). It was confirmed during the follow-up for a long term. In a
phase III clinical trial conducted by Chinese scholars, it was also
found that neoadjuvant chemoradiotherapy plus surgery
(NCT01216527) improved the survival rate of locally advanced
ESCC patients compared with surgery alone, with acceptable and
controllable adverse events (13).

Current ly , neoadjuvant chemoradiotherapy and
esophagectomy are the mainly therapy for ESCC. In a guide to
the management of EC, it is suggested that patients with locally
advanced ESCC should receive neoadjuvant chemoradiotherapy
(14). Multimodal therapy has advantages over performing
surgical resection alone. Similarly, patients without metastatic
disease should receive esophageal resection after neoadjuvant
therapy, if the evaluation of surgery is safe (14).

Japanese scholar Masayuki Watanabe and colleagues found
that patients with ESCC received neoadjuvant chemoradiotherapy
plus surgical resection, the 3-year survival rate was 29.8% and the
5-year survival rate was 15.0% (15). This data indicates that there
is still a large proportion of patients who do not achieve better
outcomes. Researchers are still exploring other ways to treat ESCC.
FIGURE 1 | Histomorphology and immunohistochemistry in variably
differentiated ESCC (own images, have not been published in elsewhere, the scale
bar is 50 µm). (A)Highly differentiated ESCC (H&E stain, ×200). (B)Moderately
differentiated ESCC (H&E stain, ×200). (C)Poorly differentiated ESCC (H&E
stain, × 200). (D) In this case of poorly differentiated ESCC, the positive index of Ki-
67 reaches 50% (Envision stain, ×200). (E)Poorly differentiated ESCC cells are
positive for CK5/6 (Envision stain, ×200). (F)Poorly differentiated ESCC cells are
negative for CK7 (Envision stain, ×200).
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Currently, many researchers are focusing on the treatment of
ESCC by molecular targeting. EGFR and PD1 are the hottest
targets. It has been demonstrated that EGFR is one of the cancer
genes responsible for the common somatic copy number
variations (SCNV) in ESCC (16). At the same time, some
researchers found abnormally high expression of EGFR
in ESCC (17). In a phase II, single-group, multicenter trial
conducted in several Chinese hospitals, researchers found that
icotinib (an EGFR tyrosine kinase inhibitor, TKI, NCT01855854)
exhibited promising activity in advanced ESCC patients whose
EGFR was overexpressed or amplified (18). These trial results
showed that only a small number of patients respond well to
icotinib. So, it can be speculated that ESCC patients may have
developed resistance to EGFR-targeted therapy (18). Curtis R
Chong and colleagues proposed that the resisting to EGFR-
targeted therapy in tumor cells could be relevant to the
abnormally activating of PI3K/AKT/mTOR pathway (19).

In the phase III AIO/EORTC clinical trial conducted by M.
Moehler and colleagues, they found that the use of panitumumab
(an anti-EGFR antibody) combined with cisplatin and 5-
fluorouracil did not improve survival compared to unselected
advanced ESCC patients who received 5-fluorouracil alone (20).
This result supports further studies of serum and tumor
biomarkers (20).

Programmed cell death protein 1 (PD-1) is an inhibitory
receptor expressed on activated lymphocytes, can connect with
the ligands of PD-L1 and PD-L2. And they are favorable
to regulating the balance of T cell activation, immune tolerance,
and immune-mediated tissue damage (21, 22). Blockading the
immune checkpoint has fundamentally improved the treatment of
melanoma patients (23). At the same time, many researchers are
exploring its efficacy in other cancers (24). A monoclonal antibody
targeting PD-1, Nivolumab, could increase tumor antigen-specific
T cell proliferation and cytokine secretion in vitro (25, 26). It has
been approved for the treatment of many other diseases, for
example, advanced non-small cell lung cancer and Hodgkin’s
lymphoma (27, 28). Nivolumab has been approved for ESCC
patients who have progressed after chemotherapy in Japan since
February 2020 (29). Toshihiro Kudo and colleagues found that
Nivolumab is safe and effective in advanced EC patients who
are refractory to standard chemotherapy (28). Jiyun Lee and
colleagues found that Nivolumab showed some efficacy
as second-line therapy for ESCC in a phase III trial, but
the improvement of OS was not significant (29). Through
analysis, Qu and colleagues found that overexpression of PD-L1
in ESCCmight relate to short OS. However, the difference was not
statistical significant (P=0.07) (30). Some scholars have also found
that the overexpression of PD-L1 in ESCC is related to its disease-
free survival (DFS), but it has no correlation with its
prognosis (31).

Therefore, the current targeted therapies for EGFR and PD-1
respectively have encountered bottlenecks. The solution is to dig
deeper into the molecular mechanisms of ESCC and find other
sensitive targets. In the future, combination therapy with multiple
molecular-specific targeted drugs may be a good option for the
treatment of ESCC.
Frontiers in Oncology | www.frontiersin.org 3
Environmental Factors and
Probably Genetic Mechanisms
of ESCC Development

The causes of ESCC are complex. Environmental and genetic
factors are contributors for ESCC formation. It is believed that
pathogenic genes have an important influence on it.

Previous studies have found that ESCC has a variety of related
environmental predisposing factors (32). Such as tobacco (33,
34), alcoholic beverages (35, 36), little or no-intake vegetables
and fruits (37, 38), pickled vegetables (39), hot foods (40) and so
on. If the body is exposed to these factors for a long time, it may
increase the susceptibility of ESCC. Some studies found a genetic
link with these exposures for developing ESCC. Chen Wu and
colleagues found that there was a gene-environment interaction
between alcohol abuse and genetic variation in alcohol metabolic
pathways that leads to the development of ESCC. It has been
reported that drinkers who carried both the risk alleles of
ADH1B and ALDH2 had the highest risk to develop cancer (41).

In ESCC, Yongmei Song and colleagues found genomic
alterations in several important pathways (e.g., the RTK-RAS
and AKT pathways) and genes (e.g., PIK3CA) (42).

De-Chen Lin and colleagues found that the MAPK and PI3K
pathways were activated through a variety of mechanisms in
ESCC (16). At the same time, several potentially altered genes
have been identified in ESCC. Such as ERBB, HDAC, PI3K
family, XPO1, FGFR1, TP53, JAK-STAT3, and mTOR-rpS6K
were defined to be recurrent candidate druggable targets (16).
These genes have implications for future molecular studies.

The results of a whole-exome sequencing conducted by Genta
Sawada and colleagues are consistent with those of De-Chen Lin
and colleagues. Their sequencing included 144 Japanese patients
with ESCC, including neoplastic and non-neoplastic esophageal
tissues (43). In addition, they also found some other gene
mutations in many tumor tissues (43). For example, some
mutations in genes that regulate cell cycle (TP53, CCND1,
CDKN2A, and FBXW7) and epigenetic process (MLL2, EP300,
CREBBP, and TET2). It should be noted that TP53 plays a role in
inhibiting carcinogenesis in organisms (44). The most common
genetic change in a variety of human cancers is the mutation of
TP53 (45). According to reports, the mutation rate of TP53 in
ESCC ranges from 60% to 93.1% (16, 43). Many researchers have
found that TP53 is closely related to PI3K/AKT/mTOR pathway,
which may be involved in the occurrence and development of
tumors (Figure 2). Such as, it has been found that TP53 can
negatively regulate PI3K/AKT/mTOR pathway by upregulating
related proteins (45). Besides, it was also found that PI3K/AKT/
mTOR pathway could negatively affect the expression of TP53 by
upregulating MDM2, which promotes the degradation of p53 (A
protein encoded by TP53) (44). Mutations were also found in
some key genes of signaling pathways, such as NOTCH, WNT
(FAT1, YAP1, and AJUBA) and RTK-PI3K (PIK3CA, EGFR, and
ERBB2) (43).

At present, abnormal activation of PI3K signaling has been
found in ESCC, and genetic mutations of PI3K, AKT andmTOR-
rpS6K have been found. The researchers found that EGFR,
April 2022 | Volume 12 | Article 817916
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ERBB2 and FGFR1 genes were mutated, and their downstream
key pathways were PI3K/AKT/mTOR pathway (16, 43). To some
extent, the functional realization of the three components
depends on PI3K/AKT/mTOR pathway. Therefore, the
occurrence and development of ESCC are closely related to the
PI3K/AKT/mTOR pathway (Figure 3).

At the same time, PI3K/AKT/mTOR pathway has been
proved to be an important pathway controlling growth and
metabolism in cells, which is an important guarantee for the
survival and normal function. Abnormal activation of PI3K/
AKT/mTOR pathway has been found in many tumors, and
inhibition of this pathway has also achieved certain therapeutic
effects for tumors.
PI3K/AKT/mTOR SIGNALING PATHWAY

The PI3K/AKT/mTOR signaling pathway plays an important
role in basic functions of cell growth, apoptosis, translation, and
cell metabolism (46). There were found abnormal expressions of
PI3K/AKT/mTOR signaling pathway in many tumors (47).
These evidences suggested that this pathway acting as an
essential part in the development of tumors and suggested
their potential as new therapeutic targets.

PI3Ks constitute an important enzyme family namely the
lipid kinase family. It can be divided into three categories. The
class I PI3Ks are heterodimers composed of catalytic subunits
and regulatory subunits (48). Class I PI3Ks could be subdivided
into class IA and IB enzymes. The class IA consists of three
catalytic subunits (p110a, p110b and p110d) encoded by
PIK3CA, PIK3CB and PIK3CD genes, which can be activated
by receptor tyrosine kinases (RTKs). While the class IB is
composed of p110g (a catalytic subunit) encoded by PIK3CG
and activated by G protein-coupled receptors (GPCRs) (49, 50).
The regulatory subunits of class IA and IB are also different in
structure (51–54). Class II PI3Ks consist of three different
Frontiers in Oncology | www.frontiersin.org 4
subtypes (PI3K-C2a, PI3K-C2b and PI3K-C2g) (55). Class III
PI3Ks are composed of two subunits (Vps34 and Vps15), and
could play an important role in the autophagy and phagocytosis
pathway of lysosomes (56).

Class I PI3Ks are the research hotspot of PI3K signal
transduction. In addition, class IA PI3Ks are widely found in
carcinogenic processes. RTK or GPCR activation enrolls class I
PI3Ks into the plasma membrane, where p85 (regulatory
subunit) -mediated inhibition of p110 is released and p110
directly phosphorylates PIP2 (phosphatidylinositol 4,5-
bisphosphate) into PIP3 (phosphatidylinositol 3,4,5-
triphosphate) (57). This lipid is similar to the model of second
messenger, which activates downstream proteins and
participates in cell growth and survival (58). Phosphatase and
tensin homolog (PTEN) can dephosphorylate the third site of the
PIP3 inositol ring, result in the conversion to PIP2. It is a
negative regulatory factor that inhibits the transduction of
PI3K signal to pyruvate dehydrogenase kinase 1 (PDK1)
(59) (Figure 3).

AKT is a serine/threonine kinase and a key downstream
signal of PI3K (60). AKT has three subtypes: AKT1, AKT2 and
AKT3. Overexpression and phosphorylation of AKT can be
found in a variety of cancers (61). Sundaramoorthy
Revathidevi and colleagues searched the TCGA data and found
that compared with other activation methods such as
amplification, overexpression and phosphorylation, the
activation of AKT by mutation was rare (60). In many cancers,
methylation of its upstream regulators, including PTEN, has
been shown to activate AKT (62). Also the activation mutation of
PI3K, RAS can potentially activate AKT (63). It is established that
PI3K can directly activate mTORC2, and the activated mTORC2
can activate AKT (59) (Figure 3).

mTOR signal is one of the key genetic variation targets in
cancers, which is often associated with tumor occurrence and
progression. The mTOR protein is a serine-threonine kinase
of PI3K related family, which is a part of mTORC1 and
FIGURE 2 | A simplified diagram of genetic changes about ESCC. There are many genetic changes associated with ESCC. It has been found that PI3K/AKT/mTOR
pathway is closely related to the occurrence and development of ESCC.
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mTORC2 complexes. These two complexes have different
structures and functions (64). The mTORC1 contains
regulatory associated protein of mTOR (Raptor), while the
mTORC2 contains rapamycin insensitive companion of mTOR
(Rictor) (64). Which can explain that mTORC1 is sensitive to
rapamycin while mTORC2 is not sensitive to rapamycin
treatment. The two both contain mammalian lethal sec-13
protein 8 (mLST8). In addition, mTORC2 contains mammalian
stress-activated MAPK-interacting protein 1 (mSIN1; also known
as MAPKAP1) (64) (Figure 3). The tuberous sclerosis complex
(TSC) is a factor that can regulate mTORC1, and it is also one of
the convergence points of multiple pathways in vivo. TSC is a
heterotrimer consisted of TSC1, TSC2 and TBC1D7. At the same
time, TSC functions as a GTPase activation protein (GAP) could
activate the ras homolog enriched in brain (RHEB), a small GTP
enzyme. When AKT is activated, it can mediate TSC2
phosphorylation, inhibit TSC1/2 complex and activate mTORC1
signal (65).

Growth factors, amino acids, and oxygen can activate
mTORC1. When it was activated, it can participate in protein,
lipid and nucleotide synthesis and autophagy (59). For example,
after mTORC1 activation, the phosphorylation of its
downstream signal molecule 4E-binding protein 1 (4E-BP1)
could be inhibited, thus the eukaryotic translation initiation
factor 4E (eIF4E) will be released to participate in protein
synthesis (59). Autophagy-related protein 1(Atg-1) is a node in
several different signaling pathways regulating autophagy in vivo.
mTORC1 is one of the upstream signals of Atg-1, and the
activation of mTOR signal can inhibit the autophagy induction
ability of Atg-1 (66) (Figure 3).
Frontiers in Oncology | www.frontiersin.org 5
mTORC2 is often over-activated in cancer cells, and can
promote cell survival and migration through phosphorylation of
Akt Ser 47 (67, 68). In addition, mTORC2 can regulate
additional physiological functions by phosphorylating different
substrates such as glycolytic enzyme pyruvate dehydrogenase
kinase 1 (PDHK1), serum and glucocorticoid induced kinase
(SGK), protein kinase C z (PKC z) and so on (59, 69, 70).

The Influence of PI3K/AKT/mTOR Pathway
on ESCC Development
Many studies have found that the PI3K/AKT/mTOR pathway is
associated with cell proliferation, apoptosis, autophagy, and drug
resistance of ESCC. Therefore, therapy targeting PI3K/AKT/
mTOR pathway should be a promising therapeutic strategy.

Influence on Cell Proliferation
and Apoptosis
The proliferation is inextricably linked with apoptosis, whether
in normal cells or in tumor cells (71). Numerous studies have
found that mTOR regulates cell growth and division. mTORC1
directly activates the ribosomal protein S6 kinase (p70S6K) and
inhibits 4E-BP1, thereby increasing translation. At the same
time, to a certain extent, it can regulate cell proliferation by
controlling cell cycle. And mTORC2 promotes metabolism
mainly by activating AKT2.

Shau-Hsuan Li and colleagues demonstrated overexpression
of phosphorylated mTOR, p70S6K, and 4EBP1 in 56% tumor
tissues of ESCC patients (72). Survival analysis also found that p-
mTOR and p-p70S6K overexpression, Ki-67 index >50% were
FIGURE 3 | Constituent elements and inhibitors of PI3K/AKT/mTOR pathway in ESCC. Growth factors bind to RTKs to activate the PI3K/AKT/mTOR pathway,
which directly and indirectly results in tumorigenesis, the activation of protein translation and angiogenesis, the inhibition of apoptosis and autophagy. GF,
growth factors; PI3K, phosphatidylinositol 3-kinase; IRS1, insulin receptor substrate 1; RTK, receptor tyrosine kinase; PIP2, phosphatidylinositol 4,5-
bisphosphate; ERK, extracellular signal-related kinase; PIP3, phosphatidylinositol 3,4,5-trisphosphate; TSC, tuberous sclerosis protein; PTEN, phosphatase and
tensin homolog; PDK1, pyruvate dehydrogenase lipoamide kinase isozyme 1; AMP,: AMP-activated protein kinase; AKT, protein kinase B; mTORC, mammalian
target of rapamycin complex; BAD, Bcl2-related death protein; Raptor, regulatory associated protein of mTOR; HIF1-a, Hypoxia-inducible factor 1-a; mLST8,
mammalian lethal with sec-13 protein 8; eIF4E, eukaryotic translation initiation factor 4E; mSIN1, mammalian stress-activated MAPK- interacting protein 1;
Rictor, rapamycin insensitive companion of mTOR; Atg-1, autophagy-related protein 1; 4E-BP1, 4E-binding protein 1; S6K, ribosomal S6 kinase; rpS6,
ribosomal protein S6.
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associated with poor OS. Among them, the overexpression of p-
p70S6K can be considered as an independent prognostic
indicator of ESCC. It is confirmed that everolimus (an
inhibitor of mTOR) can inhibit the growth of ESCC in both
cell lines and transplanted tumor models (72). Before this,
Guiqin Hou and colleagues found that rapamycin and siRNA
against mTOR can rapidly inhibit the expression of mTOR and
phosphorylation of p70S6K and 4EBP1. In addition, inhibition of
mTOR can also make cell cycle arrest at G0/G1 phase and induce
apoptosis of ESCC cells (73).

In an experiment conducted by Jiarui Yu and colleagues, these
scientists explored the effects of Gambogic acid (GA), the mainly
active component secreted by Garcinia hanburryi tree, on the
ESCC cells (74, 75). It was found that GA could inhibit the
proliferation, migration, and invasion of ESCC cells. Meanwhile,
GA induced dose-dependent apoptosis in ESCC cells by
inhibiting the expression of Bcl2 and up-regulating the
expression of apoptosis-related proteins such as Bax and
cleaved-caspase3/9 (75). The probably mechanism was that GA
can down-regulate the levels of PI3K, p-AKT and p-mTOR, and
promote the expression of PTEN in ESCC cells (75).

These experimental data suggest that proliferation and
apoptosis are closely related to PI3K/AKT/mTOR pathway
in ESCC.

Influence on Cell Autophagy
Autophagy restricts malignant transformation, balances cell
metabolism, and maintains cell survival, but autophagy can
promote the cells growth and progression of the cancer (66).
Many studies have confirmed that autophagy can protect the
cancer cells from anticancer therapy by blocking the apoptotic
pathway (also called protective autophagy), to keep the cancer
cells alive, allowing them to grow and metastasize (76). Some
studies have confirmed that autophagy is mainly induced through
PI3K/AKT/mTOR signaling pathway (77). If this pathway is
blocked, the autophagy will be inhibited, and the apoptosis will
be activated. They together enhance the sensitivity of tumor cells
to treatment (77). Beclin-1 synergistic with PI3K pathway
enhances autophagy vacuole and activates autophagy cascade
reaction (78). Microtubule-associated protein light chain 3
(LC3), now widely used as a monitoring autophagy body
formed by specific molecular markers (79). Yu and colleagues
found that enhanced autophagy was associated with cisplatin
resistance in ESCC cell lines (80). O’Donovan and colleagues
found that in drug-resistant ESCC cells, LC3-II levels were
significantly increased after treatment with 5-fluorouracil (81).
However, inhibition of autophagy induction by siRNA targeting
Beclin1 and ATG7 significantly enhanced the effect of 5-
fluorouracil (81). These studies suggest that in ESCC cells,
autophagy acts as a protective mechanism to promote cell
survival during antitumor therapy, leading to therapeutic
resistance. In addition, Le Yu and colleagues found that
autophagy inhibition can enhance the sensitivity of ESCC cells
to cisplatin in vivo (80). Chi Lu and colleagues reported that
ionizing radiation activates autophagy in ESCC cell lines. In
addition, they found that inhibiting autophagy can enhance
apoptosis and cell cycle arrest in vitro induced by radiation (82).
Frontiers in Oncology | www.frontiersin.org 6
Yan Cai and colleagues found that chloroquine inhibited the
growth and proliferation of ESCC cell EC109, and this was
mediated by regulating autophagy (83).
THE RELATED INHIBITORS TO PI3K/AKT/
MTOR PATHWAY OF ESCC

Pure PI3K Inhibitors
According to selectivity, pure PI3K inhibitors can be divided into
two types: pan PI3K inhibitors and selective isoform PI3K
inhibitors (84). CYH33 is a novel selective inhibitor of PI3Ka
with a unique structure. Jia-jie Shi and colleagues reported that
CYH33 combined with radiotherapy can synergistically inhibit
the proliferation of ESCC (85). Clinical trial of CYH33 in the
treatment of advanced ESCC(NCT03544905) is currently under
way (Table 1). LY294002 was identified as a generic PI3K
inhibitor. Guiqin Hou and colleagues found that LY294002
could inhibit proliferation of ESCC cells through PI3K/AKT/
mTOR/p70S6K signaling pathway. However, LY294002
triggered AKT (Ser473)/PRAS40 (Thr246) feedback activation
mediated by mTORC2 in Eca109 and Ec9706 cells. This may lead
to limited therapeutic effect of LY294002 on ESCC (86).
Therefore, the role of a single PI3K inhibitor is limited.
Further experiments by Guiqin Hou and colleagues highlighted
that shRNA inhibition of Rictor could reduce phosphorylation of
AKTSer473 and Thr308 sites, and counteract activation of AKT
(Ser473)/PRAS40 (Thr246) induced by LY294002, which
significantly improved the sensitivity of ESCC cells to
LY294002 in vitro and in vivo (86). BYL719 is a PI3Ka
inhibitor. Moshe Elkabets and colleagues found that AXL is
involved in ESCC resistance to BYL719 (87). The mechanism of
drug resistance may be that AP-1 transcription factors c-JUN
and c-FOS regulate the overexpression of AXL (88). The
combination of BYL719-SP600125 (blocking JNK signaling
pathway) has achieved certain results in vitro and in vivo (88).
For PI3K inhibitor, the application of PI3K inhibitor combined
with other drugs should be a hot spot in the future. However, the
result of a completed clinical trial of combined drug use was not
satisfactory. Combined application of LJM716(HER3 targeting
antibody) and BYL719 (NCT01822613) in ESCC patients, the
tumor did not shrink as expected.

AKT Inhibitors
Few Akt inhibitors are currently used in clinical trials. Tricribine
(TCN), an Akt inhibitor, significantly inhibited p-Akt, HIF-1a,
and VEGF expression in vitro and in vivo, enhancing the
radiosensitivity of ESCC in vitro and in vivo (89). ESCC has
been proved to have a close relationship with PI3K/AKT/mTOR.
The phosphorylation at Thr308 and at Ser473 is both necessary
for full AKT activation. MK-2206 is an oral inhibitor targeting on
all three AKT subtypes. Ni Shi and colleagues found that in
ESCC cells, the phosphorylation level of AKT at Ser473 only
slightly decreased upon treatment with MK2206 (Table 1) (90).
The effect of MK2206 alone in the mouse model of ESCC was
also not ideal. However, in a clinical trial conducted by Timothy
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A. Yap and colleagues, it was found that MK-2206 has a certain
therapeutic effect on solid tumors such as lung and colorectal
cancer (91). The underlying molecular changes in ESCC may be
more complex. For example, when MK2206 is used alone, the up
or downstream targets of AKT may be activated to affect drug
action. Subsequent experiments by Nishi and colleagues found
that MK2206 combined with BEZ235 (a co-inhibitor of PI3K
and mTOR) enhanced the inhibiting of proliferation in ESCC
cells, both in vivo and in vitro.

mTOR Inhibitors
The mTOR inhibitors are divided into three generations (92).
Current researches are mainly focused on the first and
second generations.

The First Generation of mTOR Inhibitors
Rapamycin and its analogues are the first generation of mTOR
inhibitors. Through allosteric mechanism, they can partially
inhibit the activity of mTORC1 and slow down the proliferation
of cancer cells (93). Guiqin Hou and colleagues reported that
rapamycin could induce apoptosis in ESCC cells. In addition,
rapamycin was found to inhibit tumor growth in human ESCC
cell line EC9706 in nude mice. Its inhibitory effect was stronger
than that of cisplatin used alone. But the combination of
rapamycin and cisplatin was the strongest (94). Temsirolimus
(CCI-779, TriceITM) is one of these analogues. Toshio Nishikawa
and colleagues found that in some ESCC cell lines (such as TE-1,
TE-8, and TE-10), the level of mTOR phosphorylation was
increased, accompanied by the upregulation of hypoxia-
inducible factor-1a (HIF-1a). Temsirolimus significantly
inhibited the activation of mTOR and its downstream effector
proteins, resulting in decreased proliferation of ESCC cells. Finally,
in vitro, temsirolimus significantly reduced the size of
subcutaneous tumors in nude mice and effectively extended the
survival of mice with esophageal carcinoma in situ (the cell used
for this experiment was TE-8) (95).

At the same time, the first generation of mTOR inhibitors only
had little effect on the phosphorylation of 4E-BP1 (96).These
inhibitors do not inhibit the activity of mTORC2, so the direct
activation of AKT by mTORC2 is not affected. And the negative
feedback loop formed after suppressing mTORC1 can activate the
PI3K/AKT signal (93). This may be the cause of inhibitor
resistance. Now some studies have found that some tumors are
resistant to these inhibitors. For example, T Fujishita and
colleagues found that everolimus (a rapamycin analogue) had
little effect on blocking tumor invasion when used in the later
phase of locally aggressive intestinal adenocarcinoma (cis-Apc/
Smad4 mice model). But inhibiting mTOR and EGFR or MEK at
the same time may be more effective in treating colon cancer (97).
As such, the molecular in tumors are more complex than expected,
and combination of drugs seems to be a more meaningful route.

Clinical trials with rapamycin and its analogues related to
ESCC have not been carried out. Still some researchers have also
had limited success in treating a small number of rare cancers
with monotherapy, including mantle cell lymphoma and
pancreatic neuroendocrine tumors (98, 99).
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The Second Generation of mTOR Inhibitors
The second generation mTOR inhibitors are some small molecule
ATP competitive inhibitors. They can target mTOR or both
mTOR and PI3K. Several categories according to the chemical
structure exist (92). The pyrazolopyrimidine class is one of them.
PP242 is a typical example of a pyrazolopyrimidine. The inhibitory
effect of PP242 was stronger than that of rapamycin, and PP242
could inhibit the activities of mTORC1 and mTORC2.

Yu Huang and colleagues examined the antitumor effect of
PP242 in ESCC cell lines include Eca-109 and TE-1 (100). As
expected, they found that PP242 can weaken the activities of both
mTORC1 and mTORC2 signaling in ESCC, stronger than
rapamycin. PP242 could inhibit 4E-BP1 phosphorylation and
abrogate PI3K/AKT feedback activation relying on mTORC1
(100). It seems that the anti-tumor effect of the second
generation of inhibitors should be far more obvious than that
of the first generation. In ESCC cells, Yu Huang and colleagues
found PP242 can effectively inhibit the proliferation, induce
apoptosis, and arrest cell cycle (100).

PP242 is not tested in currently ongoing clinical trials. TAK-
228 (derived from PP242) was well tolerated as a single agent and
showed initial therapeutic activity in hematological malignancies
(NCT01118689) (101).

Dual PI3K and mTOR Inhibitors
Regarding second generation mTOR inhibitors, some
compounds were found to target both PI3K and mTOR (92).
BEZ235 is one of them. Ning Wu and colleagues found the
activity of p-AKT, p-mTOR, and p-p70S6K can be reduced
significantly by BEZ235 in ESCC cells include Eca-109 and
TE-1. This inhibitory effect can induce autophagy and
apoptosis of human ESCC cells (102). At the same time, they
found that BEZ235 combined with Trichostatin A(histone
deacetylase inhibitor) had better tumor inhibition effect than
single drug (102).Clinical trials of dual PI3K and mTOR
inhibitors have not been conducted in the ESCC. But the
clinical trials of BEZ235 in other tumors are ongoing. In a
clinical trial, the dual PI3K and mTOR inhibitor, PF-05212384
was found to have manageable safety and antitumor activity.
This trial provides support for further clinical studies in patients
with advanced solid malignancies (NCT 00940498) (103).

mTOR Pathway Inhibitors
Some natural polyphenols extracted from plants, such as curcumin
and resveratrol, have been confirmed to inhibit mTOR signaling
pathway directly or indirectly in certain tumors (92). Researchers
have also explored the role of these extracts in ESCC (104, 105).

Curcumin is a polyphenolic compound extracted from
turmeric roots. It is safe, non-toxic, and has anti-tumor effects
in the human body (106). Many studies have shown that
curcumin and PI3K/AKT/mTOR signaling pathway are closely
related. Lian Deng and colleagues found that curcumin
combined with docetaxel can induce apoptosis and autophagy
in ESCC cells, which may be based on the PI3K/AKT/mTOR
signaling pathway (104).
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Resveratrol is rich in grapes, red wine, and peanuts (107). It is
a plant defensin that has specific cytotoxicity for multiple
carcinoma cells (such as melanoma and breast cancer), with
certain treatment potential (108, 109). Qishan Tang and
colleagues has confirmed that resveratrol can induce cell cycle
arrest at the sub-G1 phase and result in subsequent apoptosis, in
a dose-dependent manner (110). They also confirmed that
resveratrol can inactivate the mTOR signal (110).

Epigallocatechin-3-gallate (EGCG), a primary tea polyphenol,
has been shown to inhibit the growth of certain human cancer
cells (111). The mechanisms of inhibiting tumor are antioxidation,
inhibiting cell proliferation and angiogenesis, as well as increasing
cancer apoptosis (111). Yao-Kuang Wang and colleagues has
confirmed that EGCG can inhibit the proliferation and colony
formation of arecoline-induced ESCC cells by inhibiting AKT and
ERK1/2 pathway (105). Exactly, an important downstream signal
of AKT and ERK1/2 is mTOR. A clinical trial on EGCG
(NCT05039983) in ESCC is currently ongoing in China.

These natural compounds can inhibit the growth of ESCC
cells and are inseparable from mTOR signal.
eIFS AND PI3K/AKT/mTOR PATHWAY

PI3K/AKT/mTOR Pathway Can Regulate
eIFs to Influence the Translation
Translation is an important and complicated process of gene
expression in eukaryotes. Translation mainly includes four
processes: initiation, elongation, termination, and ribosome
recycling (112). The regulation of translation mainly takes
place at initiation phase and which is the rate limiting phase of
protein synthesis (113). The regulators of translation initiation
are the eIFs. The activation of RTKs, MAPK and PI3K/AKT
signaling pathways could be stimulated by some signals which
promoting tumorigenesis (114). These pathways play an
important role in the regulating of eIF functions (115). Both
MAPK and PI3K/AKT pathways regulate the functions of eIFs
via mTOR. Therefore, mTOR plays a leading role in the
regulation of eIF functions (115, 116). Their mis-regulation
usually causes abnormal translation, synthesizes aberrant
proteins, finally leading to tumorigenesis (117–120).

Overview on the Role of eIFs in
Translation Initiation
The initiation process of translation begins with the formation of
the 43S pre-initiation complex (121). The 43S initiation complex
consists of 40S ribosomal subunit, eIF2–GTP–Met-tRNAiMet,
eIF1, eIF1a and eIF3 (121, 122). The 43S initiation complex can
then be guided by the eIF4F complex to bind with mRNA. The
eIF4F complex is a heterotrimer composed of eIF4A, eIF4E and
eIF4G subunits (123). The mRNA was scanned by 43S initiation
complex. With the assistance of eIF1, the tRNA anticodon ring
correctly binds to the start codon AUG on the mRNA (121).
eIF4A has helicase activity. eIF4E binds to the mRNA’s cap
structure. It is usually bonded with 4E-BP1. Once 4E-BP1 was
phosphorylated, the eIF4E could be released. The role of eIF4G is
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to link mRNA with ribosomes (123, 124). eIF3 acts more like a
scaffold, links other eIFs with 40S ribosomal subunit (125).
When the complex encounters the correct AUG start codon,
eIF2 will be hydrolyzed, and other eIFs will be released. At the
last stage of translation initiation, eIF2 is in an inactive GDP
binding state, the GTP bound to eIF5B is hydrolyzed, and these
translation factors are separated from the ribosome (122, 126). In
addition, eIF6, which has not yet been mentioned, is the first eIF
associated with the 60S subunit that modulates translation in
response to extracellular signals (127, 128).

eIFs-Potential Therapeutic Targets
in Tumors
Moreover, some researchers found that changes in the expression
of certain translation promoters (primarily increased expression)
were associated with the development of specific tumors (129–
131). For example, eIF1A is a small 17kDa promoter and highly
conserved in all eukaryotes. Somatic mutations in the N-terminal
tail (NTT) of eIF1A have been found to be associated with uveal
melanoma, thyroid cancer, and ovarian cancer (132–134). Urmila
Sehrawat and colleagues found that eIF1A could regulate different
mRNAs differently in mammalian cells (135). The eIF1A NTT
mutants enhanced the scanning of the 5 ‘UTR-containing cell
cycle genes, possibly affecting the cell cycle and promoting cell
proliferation (135). eIF3H is one of the central subunits of eIF3
complex. It has been observed that eIF3H is often amplified in
breast and prostate cancer together with proto-oncogene Myc
(136, 137). Researchers have found the amplification of eIF3H
gene in colorectal cancer and non-small cell lung cancer (NSCLC)
through genome-wide analyses and fluorescent in situ
hybridization (FISH) (117, 138, 139). In addition, the expression
level of eIF3H is positively correlated with the poor differentiation
and invasive growth of prostate cancer (117, 137).

In ESCC, there are also some limited studies on eIFs. For
example, Ting Liu and colleagues found that eIF4E increased
significantly in clinical ESCC tissues and ESCC cell lines, and its
expression level was associated with lymph node metastasis,
TNM period, and ESCC’s overall and disease-free survival
(140). After using the shRNA knockout eIF4E, it was found
that the induced cytotoxicity by cisplatin has increased in the
ESCC cell lines, and the chemosensitivity to cisplatin in
xenograft tumor models also has increased (140). Hong Yang
and colleagues found that excessive expression of eIF5A2 in
ESCC cells resulted in increased chemoresistance to 5-
fluorouracil, docetaxel, and taxol. Conversely, the shRNAs of
eIF5A2 could increase the sensitivity of tumors to these
chemotherapeutic drugs. It was found that in patients who
underwent taxane-based chemotherapy after esophagectomy,
eIF5A2 overexpression was associated with poor total survival
rate (P <0.05) (141). Therefore, targeting eIF4E or eIF5A2 may
be a feasible method of improving ESCC chemotherapy
sensitivity. However, eIFs in ESCC still require more researches.

These previous examples reveal eIFs may be a promising
target for future tumor treatment. At present, there are some
inhibitors of eIFs in preclinical and clinical trials (Table 2).
Ribavirin is an antiviral drug approved by the Food and Drug
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Administration (FDA) for hepatitis C, which can also treat
syncytial virus infection and viral hemorrhagic fever (144–
146). Importantly, ribavirin has been extensively documented
as an inhibitor of eIF4E (147–149).

JingJin and colleagues found an overexpression of eIF4E in most
ovarian cancer patients. In addition, the eIF4E function is critical
for the growth and survival of tumors (150). eIF4E inhibition was
found to be achieved at clinically achievable doses of ribavirin.
Inhibition of eIF4E by ribavirin may be a potential therapeutic
approach to improve clinical management of ovarian cancer (150).
Sakibul Huq and colleagues found that ribavirin enhanced
radiosensitivity in nasopharyngeal carcinoma (NPC). At the same
time, it can inhibit the expression of various proteins which are all
overexpressed in NPC and correlated with poor prognosis, also can
inhibit the mTOR/eIF4E axis (151). These studies indicate that
ribavirin is a potential targeted drug for tumor therapy.

Several clinical trials related to ribavirin are underway, such as
oropharynx squamous cell cancer (NCT01721525), acute
myeloid leukemia (NCT01056523), melanoma (NCT00897312).
CONCLUSIONS AND DISCUSSIONS

ESCC is a complex disease, the external predisposing factors and
genetic mutations both have an important impact on
oncogenesis and tumor progression. So, we should focus on
the prevention, warning high-risk individuals away from alcohol,
cigarettes, and so on. At the same time, we should pay attention
to the screening of disease and improve the early diagnostic rate.
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Once ESCC patients could be diagnosed in the early stage, their
prognosis and living quality will be improved significantly.

From the global cancer report, the incidence and mortality
rate of ESCC are currently ranked tenth and sixth (1). This data
shows that the current situation of ESCC is not optimistic. At
present, neoadjuvant chemoradiotherapy and esophagectomy
are the mainstream treatment methods of ESCC. Many
researchers focus on treating ESCC by targeted therapy (EGFR
or PD-1). There are currently a variety of related drugs used for
clinical, and some ESCC patients respond particularly well to
them. Still the increase of patients’ overall five-year survival rate
has no statistical significance (18, 31).

In all results of ESCC gene testing conducted by several
research groups, the abnormal expression of PI3K/AKT/mTOR
and its related pathways have been found. In this article, we
discussed how the PI3K/AKT/mTOR pathway affects the
growth, proliferation, and autophagy of ESCC. It is also
discussed that inhibitors in different parts of PI3K/AKT/
mTOR pathway can affect the growth and biological behavior
of ESCC (Table 1). Additionally, the eIFs regulated by PI3K/
AKT/mTOR pathway, also has an important influence on the
occurrence and development of tumors. Through the discussion,
it was found that the PI3K/AKT/mTOR pathway and eIFs could
be the future therapeutic target of ESCC.

Still, it should not be ignored that there are only few relevant
studies on the application of PI3K/AKT/mTOR pathway inhibitors
in ESCC. Most studies have used a single inhibitor and with limited
efficacy. At present, there are few studies on the combination of
multiple inhibitors with different targets in ESCC ongoing. It may be
TABLE 1 | The researches about inhibitors of PI3K/AKT/mTOR pathway in ESCC.

Classification Drug Target Administration Latest researches in ESCC Trial Number

PI3K inhibitors Rigosertib PI3K Oral, parenteral Clinical trials NCT01807546
LY294002 PI3K Suggest not to use in clinical Pre-clinical /
BYL719 PI3Ka Oral Clinical trials NCT01822613
CYH33 PI3Ka Oral Clinical trials NCT03544905

AKT inhibitors MK2206 AKT Oral Pre-clinical /
Tricribine AKT Parenteral Pre-clinical /

mTOR inhibitors Rapamycin mTORC1 Oral Pre-clinical* /
Temsirolimus mTORC1 Parenteral Pre-clinical* /
PP242 mTORC1/2 Parenteral Pre-clinical /

Dual PI3K and mTOR inhibitors BEZ235 PI3K, mTORC1/2 Oral Pre-clinical /
mTOR pathway inhibitors Curcumin mTOR pathway Oral Pre-clinical /

Resveratrol mTOR pathway Oral Pre-clinical /
EGCG AKT, ERK1/2, mTOR pathway Oral Clinical trials NCT05039983
April 2022 | Volume 12 |
*FDA approved.
TABLE 2 | The inhibitors of eIFs in tumor and the specific tumor types that can be inhibited in clinical trials.

Classification Target Administration Development Tumor type Trial Number

4EGI-1 elF4F Not published Pre-clinical / /
Ribavirin elF4E Oral, parenteral Clinical trials* Acute Myeloid Leukemia (142) NCT01056523
ISIS 183750 elF4E Parenteral Clinical trials Colorectal Cancer (143) NCT01675128
LY2275796 elF4E Parenteral Clinical trials / /
eFT226 eIF4A1 Parenteral Clinical trials / /
*FDA approved.
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that researchers have not yet paid attention to the potential
therapeutic effects of PI3K/AKT/mTOR pathway and its regulated
eIFs in ESCC. It also could be that new drugs are being developed
slowly and in fewer varieties. But why the effectiveness of a single
inhibitor is limited?

The researchers found that the activation of multiple pathways is
themain cause of drug resistance in tumor cells (115). Such as, Jessie
Villanueva and colleagues found that melanoma cells show
enhanced activation of PI3K signaling after treatment with BRAF
inhibitors, leading to drug resistance of tumor cells (152). In ESCC,
some researchers found the resistance of tumor cells to EGFR-
targeted therapy might be related to the abnormal activation of
PI3K/AKT/mTOR pathway (19). Thus, the growth of tumors
carrying oncogenes that activate multiple pathways does not
depend on a single signaling pathway.

The PI3K/AKT/mTOR pathway and its regulated eIFs have
been proved to be a key pathway involved in growth. And many
other pathways in the body are inseparable from it. Therefore, the
future treatment of ESCC must be related tightly with the PI3K/
AKT/mTOR pathway and its regulated eIFs. Simultaneous
suppression of multiple targets of this pathway may be a future
research focus. One hypothesis: it may be focused more on the co-
inhibition of PI3K/AKT/mTOR pathway and eIFs.
Frontiers in Oncology | www.frontiersin.org 10
In this context, multiple components of several oncogenic
signaling pathways and eIFs participated in mRNA translation
have been identified as biomarkers with potential diagnostic,
therapeutic and prognostic value. Therefore, anti-tumor agents
targeting the core elements of protein synthesis and related
signaling pathways can get over intratumor heterogeneity and
represent as novel promising anticancer drugs.
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