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Abstract

Obesity and regional adiposity are important risk factors for cardiometabolic disorders. The

aim of this study is to compare 7-site skinfold (SF) measurement to dual-energy x-ray

absorptiometry (DXA) as the reference method for estimating body fat percentage (BF%)

and regional adiposity in diabetic outpatients. A total of 59 diabetic patients (36 females and

23 males) aged 28.5–78 years (median 67.7 years) with BMI 18.8–40.6 kg/m2 (median:

25.5 kg/m2) were enrolled. 7-site skinfold measurement and DXA were performed at the

same visit day and biochemistry data were collected. Our results demonstrate the BF% cal-

culated via Jackson & Pollock 7-site skinfold equation presents a strong correlation (r =

0.672, p < 0.001 in females; r = 0.885, p < 0.001 in males) with that measured by DXA, but

the means of BF% between these two methods are significantly different in both sexes

(paired t-test, p < 0.001). The Bland-Altman analysis showed the mean differences (DXA-

SF) of BF% were positive for female (8.74%) and male (7.22%), suggesting Jackson & Pol-

lock 7-site skinfold equation tends to underestimate the BF%. Besides, regional SF thick-

nesses of 7-site skinfold measurement were significantly correlated with the matched

regional adiposity quantified by DXA. Furthermore, truncal and android SF thicknesses

were notably positively correlated with several cardiometabolic risk factors in gender-spe-

cific manner. Our data indicate the 7-site skinfold measurement is not an interchangeable

method for precisely measuring BF%, but might be practical for evaluating the cardiometa-

bolic risks in Taiwanese diabetic outpatients.
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1. Introduction

Obesity is a global healthy issue to an extent that almost a third of the world’s population is

nowadays classified as overweight or obese [1]. In Taiwan, according to three consecutive

waves of Nutrition and Healthy survey (1993–1996, 2005–2008, and 2013–2014), the preva-

lence of obesity (BMI�27 kg/m2) increased sharply from 11.8%, 17.9%, to 22.0% and morbid

obesity (BMI�35 kg/m2) elevated from 0.4%, 0.6%, to 1.4% [2]. Besides general adiposity,

regional adiposity: such as central obesity is well proven as a harmful phenotypic feature asso-

ciated with increased risks for diabetes, cardiovascular diseases and cancer [3]. Notably, a

recent large cohort study in Korean has assessed the differential impacts of general and

regional adiposity on major adverse cardiac events (MACE) and found abdominal adiposity

alone was associated with an increased risk of MACE, whereas general obesity without abdom-

inal adiposity did not increase the risk [4]. The underlying pathogenic mechanisms are closely

related to subcutaneous adipose tissue dysfunction with subsequent overspill, ectopic deposi-

tion of visceral adipose depots, which release pro-inflammatory adipocytokines causing

chronic inflammation and insulin resistance [5–7]. In diabetic patients, the prevalence of over-

weight and obesity is even higher [8] and injection therapy with insulin will almost inevitably

exacerbate body weight gain. With the increase of body weight, the diabetic patients further

encounter augmented risks for diabetic morbidity and mortality [9]. Therefore, beyond the

conventional measurements of body mass index or waist-to-hip ratio, there is still an urgent

need to have a practical tool for evaluating the body fat percentage (BF%) and regional adipos-

ity in diabetic patients under regular outpatient follow-up.

Dual-Energy X-ray Absorptiometry (DXA) scanning was considered as a reference method

for measuring different body composition such as total lean mass, bone mineral content, total

fat mass and BF% [10, 11]. DXA could also precisely quantify regional fat mass and lean mass.

Regarding the regional lean mass quantification, appendicular skeletal muscle mass divided to

BMI or square of height has been applied as one of the diagnostic criteria for sarcopenia [12–

14]. Additionally, DXA could delicately analyze human body fat distribution. The gynoid fat

mass adjusted for total fat mass has been showed negatively associated with several cardiovas-

cular risk factors, such as hyperlipidemia and insulin resistance [15]. These findings are in line

with previous large epidemiologic survey using hip circumference as the surrogate of lower

body adiposity, which demonstrated hip circumference is independently associated with lower

risk for myocardial infarction [16]. Hence, the gluteofemoral fat was considered as a protective

metabolic sink, which stably stores triglycerides to alleviate the ectopic fat deposition and

lower the cardiometabolic risks [17]. In contrast, increase of android fat and visceral fat (cen-

tral adiposity) is independently correlated with higher risk for cardiovascular disease [5, 6, 15,

18]. However, the gold standard method: DXA for quantifying BF% and regional fat mass is

not generally accessible in the outpatient clinic since the machine is expensive, space occupied,

experienced operator required and radiation exposure involved.

Skinfold thickness measurement has been applied to evaluate fatness for over 50 years and

is cheap, handy in the outpatient clinic [19]. It was performed via pinching the subcutaneous

skinfold in different sites and measuring the thickness with specialized calipers. Studies have

revealed it is appropriate for comparing regional adiposity [20–22]. Several equations have

also been developed for calculating BF% using the raw data of skinfold thickness under the

assumptions that majority of adipose tissues were located in the subcutaneous area and the

body fat is equally distributed over the body [23–26]. However, this technique required prac-

tice for performing the standardized measurement and was disputed by high variations

between observers. Currently, studies assess the clinical significance of these skinfold parame-

ters are rare [27, 28].
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Since obesity, particular central adiposity, will significantly impede the glucose control and

increase cardiovascular risks in diabetic patients, assessment of BF% and body fat distribution

is crucial. Therefore, we aim to investigate the application of 7-site skinfold measurement and

compare it with DXA for estimating BF% and fat distribution in diabetic patients under regu-

lar outpatient follow-up.

2. Materials and methods

In total, 59 adults (23 males and 36 females) who receive regular follow-up in outpatient

department of Endocrinology and Metabolism, Tri-Service General Hospital were recruited.

The criteria for inclusion into this trial were as follows: age 25–80 years with type 2 diabetes

mellitus under stable control with either oral hypoglycemic agents or injection therapy of insu-

lin or glucagon-like peptide 1 receptor agonist. The exclusion criteria were pregnancy, current

acute illness of cerebrovascular accident, myocardial infarction, heart failure, renal failure,

hepatic failure or psychiatric diseases. All participants signed written informed consent before

participating in this study and agreed to the use of relevant personal information on a confi-

dential basis. The institutional review boards of Tri-Service General Hospital (TSGH)

approved this study. (TSGHIRB number: 2-108-05-052)

Anthropometric measurements

Body weight was measured to the nearest 0.1 kg; body height, waist circumference and hip cir-

cumference were measured to the nearest 0.1 cm; waist-to-hip circumference ratio and body

mass index (BMI) were calculated. Body weight and standing height were detected using a

standard scale and a wall-mounted stadiometer, respectively as barefoot with the patients

wearing light indoor clothing. Waist circumference was measured at the midway horizontal

plane between the inferior margin of the last rib and the crest of the ilium. Hip circumference

was measured at its widest point. BMI was calculated as weight in kilograms divided by the

square of height in meters. Blood pressure was measured from the right arm in a sitting posi-

tion after resting for 5 minutes. One minute later, the blood pressure was measured again and

the average value was used in the analysis.

7-site skinfold thickness measurement

The standard protocols of skinfold measurement are according to the recommendations pub-

lished by the Committee on Nutritional Anthropometry of the Food and Nutrition Board of

the National Research Council [29]. The skinfold thicknesses were measured to the nearest 0.1

mm using Lange skinfold caliper. Two readings with the difference less than 2 mm were

recorded and the average values were used for analysis. All the skinfold measurements in these

diabetic patients were performed by a single experienced technician to avoid the variation

between observers. Total 7-different sites of the right side body were measured in each individ-

ual, which include tricep, subscapular, chest, midaxillary, suprailiac, abdominal and thigh

skinfold thicknesses and Jackson & Pollock 7-site skinfold equation was used for calculating

the BF% [24, 25]. The sum of suprailiac and abdominal skinfold thickness was further referred

as the android skinfold thickness. The tricep-to-android skinfold ratio and thigh-to-android

skinfold ratio were applied as the surrogates for peripheral fat distribution.

Dual-energy X-ray absorptiometry

Dual-energy X-ray absorptiometry (DXA) was used as a standard reference for measuring

whole and regional body composition, including fat mass, lean mass, and bone mineral
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content. Participants were dressed in cotton robes without metal attachments, lying in a supine

position in the center of the scanning field with their palms facing downwards, arms position-

ing away from their body, and feet, face, chin all maintaining in the neutral position. The scan

took around 5–10 mins to complete, and the dose of radiation per individual was less than

0.01mGy (1.0 mrad). The composition of different body regions including arms, legs, android,

gynoid and trunk was measured in grams by the DXA software (enCORE V13.60.033). The

type of the DXA machine is Lunar Prodigy Advance enCORE 2011.

Biochemical variables measurement

Venus blood samples were drawn following an 8-hour fast. Levels of glucose, lipids, liver and

renal function were then measured. Serum levels of total cholesterol, triglycerides, low-density

lipoprotein (LDL) cholesterol, alanine aminotransferase (ALT) and creatinine were measured

using a Beckman Synchron LX20 analyzer (LX20; Beckman Coulter, Brea, CA, USA). Plasma

glucose concentrations were determined using the glucose oxidase method on a Beckman Glu-

cose Analyzer II (Beckman Instruments, Fullerton, CA, USA). Before measuring the biochemi-

cal variables, calibration and quality control with standard solutions will be performed ahead.

Then, the measurement will be repeated provided abnormal data were observed. Biochemistry

data were collected from recent 3-months medical records with average 34.7 ± 27.5 days

(mean ± standard deviation) away from the date of DXA, anthropometric and skinfold

measurements.

Statistical analysis

Continuous variables were analyzed using the Mann-Whiney U-test and presented as median

values with quartiles. Chi-square test was applied for assessing the categorical variables and

presented as percentages. Statistical significance was defined as p value less than 0.05, but was

adjusted with Bonferroni correction as needed. Correlations of estimated BF% and body fat

distribution between 7-site skinfold measurement and DXA were assessed using Spearman

rank-order correlations. Agreement of BF% between two methods were evaluated with Bland-

Altman analysis [30] and presented with mean, standard deviation (SD) and 95% limits of

agreement (LOA). Mean of between-methods differences in BF% was examined using paired

sample t-test. Concordance of BF% between 7-stie skinfold measurement and the standard

DXA was further analyzed with Lin’s concordance correlation coefficients [31]. Correlations

between skinfold-caliper measured regional adiposity and biochemistry data were also deter-

mined using Spearman rank-order correlations in gender-specific manner. All statistical anal-

yses were performed using SPSS software version 22 (IBM, Chicago, Illinois, USA).

3. Results

Gender specific comparisons of the basic anthropometric variables, biochemical characteristics

and status of diabetic treatment were shown in Table 1. Serum creatinine level is significantly

higher in males than that in females. There are no significant difference between genders in

age, BMI, waist-to-hip ratio and blood pressure. The median history of diabetes is 10 years in

both male and female group. The status of diabetes was well controlled in both sexes without

significant difference in the levels of fasting glucose and HbA1c. The prescriptions of statin,

oral hypoglycemic and injectable anti-diabetic agents are all similar in both groups. Notably,

anti-diabetic agents that potentially could influence body weight or fat distribution, such as

thiazolidinedione (TZD), sodium-glucose co-transporter 2 inhibitor (SGLT2i), insulin and

glucagon-like peptide 1 receptor agonist (GLP1RA) were prescribed in both groups without

significant difference.
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In Table 2, 7-site skinfold measurement and DXA associated variables were listed and com-

pared between genders. Males have significantly higher chest skinfold thickness, higher total

lean mass and higher total bone mineral content than those in females. In contrast, females

present significantly higher peripheral-to-android fat distribution and total body fat%, which

were consistently demonstrated by either 7-site skinfold measurement or DXA scanning.

Regarding the regional fatness in extremities and android region, there are no significant dif-

ferences between genders in both methods. Notably, females tend to have higher (non-signifi-

cant) fat mass and skinfold thickness in extremities than those in males, which again present

compatible findings between two methods.

In order to assess the correlation and agreement between two methods for measuring body

fat% (DXA and Jackson & Pollock 7-site skinfold equation), Spearman correlation, Lin’s con-

cordance correlation coefficient and Bland-Altman analysis were performed as shown in

Table 3 and Fig 1. The BF% calculated from Jackson & Pollock 7-site skinfold equation shows

strong correlations with the BF% measured by the standard DXA with greater in males

Table 1. Basic anthropometric, biochemical characteristics and status of diabetic treatment in the study

population.

Females Males p value

(n = 36) (n = 23)

Age (years) 67.6 [63.9; 71] 67.7 [60.4; 71.4] 0.816

BMI (kg/m2) 25.0 [21.9; 28.2] 26.1 [23.5; 31.4] 0.164

Waist-to-hip ratio 0.94 [0.91; 1.00] 0.96 [0.92; 1.03] 0.181

Systolic BP (mmHg) 132 [120; 145] 136 [125; 146] 0.491

Diastolic BP (mmHg) 74 [66; 82] 79 [72; 83] 0.168

Fasting glucose (mmol/L) 7.10 [5.77; 8.27] 6.72 [5.88; 8.16] 0.988

HbA1c (%) 7.2 [6.6; 7.8] 7.1 [6.6; 8.0] 0.744

Total cholesterol (mmol/L) 4.12 [3.47; 4.30] 3.65 [3.37; 4.17] 0.181

LDL cholesterol (mmol/L) 2.31 [1.79; 2.72] 1.97 [1.76; 2.54] 0.283

Triglyceride (mmol/L) 3.06 [1.97; 3.68] 2.38 [1.97; 2.98] 0.244

Creatinine (μmol/L) 61.9 [53.0; 70.7] 88.4 [70.7; 106.1] <0.001��

ALT (U/L) 17 [15; 25] 19 [13; 27] 0.892

Statin (%) 80.6% 60.9% 0.097

Metformin (%) 72.2% 82.6% 0.360

AGI (%) 11.1% 17.4% 0.699

SU or glinide (%) 52.8% 52.2% 0.964

TZD (%) 8.3% 8.7% 1.000

SGLT2i (%) 25% 21.7% 0.774

DPP4i (%) 30.6% 34.8% 0.735

GLP1RA (%) 13.9% 17.4% 0.725

Insulin (%) 38.9% 39.1% 0.985

History of diabetes (years) 10 [5.13; 15] 10 [4; 19] 0.882

Continuous variables were analyzed using the Mann-Whitney U-test and are presented as median values and

[quartiles]; Categorical variables were analyzed using the Chi-square test and are presented as percentages.

Abbreviations: BMI, body mass index; BP, blood pressure; HbA1c, glycated hemoglobin; LDL, low density

lipoprotein; ALT, alanine aminotransferase; AGI, alpha glucosidase inhibitor; SU, sulfonylurea; TZD,

thiazolidinedione; SGLT2i, sodium-glucose co-transporter 2 inhibitor; DPP4i, dipeptidyl peptidase 4 inhibitor;

GLP1RA, glucagon-like peptide 1 receptor agonist.

��p<0.001

https://doi.org/10.1371/journal.pone.0236323.t001
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Table 2. Adiposity and body composition evaluated by 7-site skinfold (SF) measurement and dual-energy X-ray absorptiometry (DXA) scan.

Females Males p value

(n = 36) (n = 23)

Skinfold measurement

Chest SF (mm) 4.5 [3.8; 6.1] 5.8 [4.8; 8.8] 0.013�

Abdominal SF (mm) 24.0 [18.4; 28.0] 26.0 [20.0; 35.0] 0.186

Thigh SF (mm) 17.9 [13.6; 24.5] 13.5 [9.25; 27.0] 0.132

Tricep SF (mm) 21.0 [17.5; 23.6] 14.3 [11.8; 28.5] 0.101

Subscapular SF (mm) 20.8 [15.3; 22.9] 20.3 [17.2; 23.6] 0.736

Suprailiac SF (mm) 19.3 [16.1; 23.4] 16.0 [14.0; 24.0] 0.410

Midaxillary SF (mm) 18.3 [14.8; 24.0] 16.8 [12.5; 26.5] 0.756

Android SF (A+Sup) (mm) 42.1[33.4; 52.8] 42.0 [34.3; 59.0] 0.680

Tricep-to-android SF ratio 0.47 [0.40; 0.58] 0.38 [0.32; 0.49] 0.009�

Thigh-to-android SF ratio 0.44 [0.32; 0.59] 0.33 [0.29; 0.40] 0.031�

Body fat-SF (%) 26.9 [23.3; 30.2] 21.5 [18.3; 27.3] 0.003�

DXA scan

Total lean mass (kg) 36.4 [32.4; 39.3] 50.7 [45.7; 54.4] <0.001��

Total BMC (kg) 1.93 [1.66; 2.23] 2.78 [2.44; 2.92] <0.001��

Total fat mass (kg) 20.8 [15.1; 25.1] 21.0 [13.4; 31.8] 0.913

Arms fat mass (kg) 2.21 [1.56; 2.85] 1.49 [1.22; 2.51] 0.082

Legs fat mass (kg) 4.84 [3.61; 6.48] 3.99 [3.17; 6.63] 0.382

Android fat mass (kg) 2.20 [1.49; 2.86] 2.52 [1.51; 3.86] 0.277

Arms-to-android fat ratio 0.99 [0.85; 1.20] 0.69 [0.54; 0.80] <0.001��

Legs-to-android fat ratio 2.35 [1.99; 3.06] 1.90 [1.69; 2.17] 0.006�

Body fat-DXA (%) 36.5 [30.3; 40.9] 28.5 [20.7; 39.0] 0.009�

Continuous variables were analyzed using the Mann-Whitney U-test and are presented as median values and [quartiles]. Abbreviation: SF, skinfold; DXA, dual-energy

X-ray absorptiometry; A, abdominal; Sup, suprailiac; BMC, bone mineral content. Android skinfold was referred as the sum of abdominal and suprailiac skinfold

thickness. Body fat-SF (%) was calculated by Jackson & Pollock 7-site skinfold equation.

�p<0.05;

��p<0.001.

https://doi.org/10.1371/journal.pone.0236323.t002

Table 3. Spearman correlation, CCC, and Bland–Altman analysis in body fat% measured by two methods: DXA

and Jackson & Pollock 7-site skinfold (SF) equation.

Total (n = 59) Females (n = 36) Males (n = 23)

Spearman correlation (r) 0.837�� 0.672�� 0.885��

CCC (ρc (95%CI)) 0.456 (0.338–0.560) 0.307 (0.162–0.439) 0.561 (0.380–0.700)

Bland-Altman analysis

Bias (DXA-SF) 8.14�� 8.74�� 7.22��

SD 4.66 4.45 4.92

95% LOA -0.98 to 17.27 0.02 to 17.45 -2.43 to 16.86

DXA, dual-energy X-ray absorptiometry; SF, skinfold; r, correlation coefficient; CCC, Lin’s concordance correlation

coefficient; SD, standard deviation; LOA, limits of agreement. Bias was referred as mean of between-methods

differences in body fat% and was examined using paired sample t-test.

��p<0.001.

https://doi.org/10.1371/journal.pone.0236323.t003
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Fig 1. Comparison of BF% measured by DXA and Jackson & Pollock 7-site skinfold equation and displayed as Bland–

Altman plots in females (a) (black circle) and males (b) (black triangle). The central line represents the mean bias

between measurements. Dotted lines represent upper and lower 95% limits of agreement. Y-axis represents difference

of BF% measured by DXA minus BF% measured from skinfolds. Abbreviations: BF%, body fat percentage; DXA, dual

energy X-ray absorptiometry.

https://doi.org/10.1371/journal.pone.0236323.g001
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(r = 0.885, p< 0.001) than females (r = 0.672, p< 0.001). However, the absolute BF% values

estimated by two methods only present fair concordance in female (ρc = 0.307, 95%

CI = 0.162–0.439) and moderate concordance in males (ρc = 0.561, 95%CI = 0.380–0.700).

The means of BF% measured by these two methods are significantly different in both sexes

(paired t-test, p< 0.001). The Bland-Altman analysis revealed the mean differences (DXA-SF)

of BF% are positive for female (8.74%) and male (7.22%) with respective 95%LOA: 0.02% to

17.45% and -2.43% to 16.86%, indicating Jackson & Pollock 7-site skinfold equation tends to

underestimate the BF%.

Comparison between 7-site skinfold measurement and DXA in assessment of regional adi-

posity was executed in gender-specific manner as shown in Table 4. In both sexes, there are

significantly high correlations between two methods regarding assessment of fatness in arms,

legs and android region. In females, the strongest correlation (r = 0.76) was observed in legs

region, whereas males have the strongest correlation (r = 0.89) in android region. When assess-

ing the peripheral-to-android fat distribution, there is significantly moderate correlation

between two methods, solely in the legs-to-android fat ratio of females (r = 0.49).

Correlations between different skinfold variables with age, BMI, blood pressure and bio-

chemistry data were analyzed in females and males, separately as shown in Table 5. All skinfold

variables are significantly positively correlated with BMI, except chest skinfold thickness and

the peripheral (tricep or thigh) to android skinfold ratios. In females, the peripheral (tricep or

thigh) to android skinfold ratios are negatively correlated with age. In both genders, the skin-

folds in trunk (except chest skinfold) and android region are positively correlated with cardio-

metabolic disorders related parameters including blood pressure, glucose levels, lipid profiles

and liver function. Whereas, the positive correlations with HbA1c were only observed in

females and males present strong correlations with systolic blood pressure, diastolic blood

pressure and ALT level. Intriguingly, the peripheral (tricep or thigh) to android skinfold ratios

are free from any correlation with blood pressure and these biochemistry data. Also, the female

thigh skinfold thickness is not correlated with blood pressure and any of these biochemistry

data.

4. Discussion

Our results indicate that 7-site skinfold measurement might be a practical method for assessing

the body fat percentage, regional adiposity and cardiometabolic risks in Taiwanese diabetic

outpatients. In Table 3, the BF% calculated via Jackson & Pollock 7-site skinfold equation

showed a strong correlation with that measured by the standard method: DXA. However, the

absolute values of BF% measured by these two methods are not concordant. Jackson & Pollock

Table 4. Gender-specific correlations in regional adiposity assessed by two methods: DXA and 7-site skinfold measurement.

DXA: Arms fat Legs fat Android fat Arms/android fat ratio Legs/android fat ratio

Tricep SF (0.57�; 0.68�)

Thigh SF (0.76�; 0.84�)

Android SF (0.72�; 0.89�)

Tricep/android SF ratio (0.42; 0.02)

Thigh/android SF ratio (0.49�; 0.42)

Data were analyzed with Spearman correlation and presented with gender-specific correlation coefficients (female r; male r). Abbreviation: DXA, dual energy X-ray

absorptiometry; SF, skinfold; BMI, body mass index. Android skinfold was referred as the sum of abdominal and suprailiac skinfold thickness.

�p value less than 0.01 was deemed significant, after the Bonferroni adjustment

https://doi.org/10.1371/journal.pone.0236323.t004
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7-site skinfold equation usually underestimates the BF%. Previous studies comparing the BF%

estimated by other skinfold equations and DXA also report similar findings that the skinfold

method tends to undervalue the actual BF% [32, 33], whereas it might still depend on which

skinfold equation was applied [34]. Besides, the referenced database for developing the Jackson

& Pollock skinfold equation is based on the Caucasian population [24, 25]. Therefore, under-

standing the mean differences of BF% between the skinfold method and standard DXA will

provide useful information for adjusting the BF% calculated via Jackson & Pollock 7-site skin-

fold equation in Taiwanese diabetic patients. While, to establish the adjusted skinfold equation

fitting in our population will require further large database and could not be achieved in this

study.

The potential utilization of skinfold measurement for evaluating the regional adiposity or

fat distribution has been reported in some studies. Ketel et al. [20] found combining skinfold

measurements with waist is superior to the waist-to-hip ratio for determining the body fat dis-

tribution in Caucasian Dutch adults. Also, Surendar et al. [21] observed the skinfold

Table 5. Gender-specific correlations between skinfold variables, age, BMI and several cardiometabolic risk factors.

Female Tri-SF Sub-SF Che-SF Mid-SF Sup-SF Abd-SF Thi-SF And-SF Tri/And Thi/And

Age 0.27 -0.17 -0.17 -0.17 0.15 0.08 -0.20 0.10 -0.43�� -0.36�

BMI 0.55�� 0.70�� 0.17 0.69�� 0.71�� 0.60�� 0.50�� 0.68�� -0.16 0.15

SBP -0.06 0.23 0.002 0.18 0.15 0.08 -0.02 0.14 -0.10 -0.06

DBP 0.14 0.36� 0.28 0.35� 0.29 0.22 0.28 0.31 -0.04 0.15

FG 0.17 0.31 -0.01 0.17 0.20 0.17 -0.18 0.23 -0.17 -0.28

HbA1c 0.23 0.42� 0.01 0.43�� 0.55�� 0.37� 0.10 0.49�� -0.27 -0.16

TC 0.16 0.12 0.24 0.09 0.13 0.17 0.02 0.18 0.03 -0.08

LDL-C 0.27 0.40� 0.25 0.36� 0.28 0.27 -0.09 0.29 0.01 -0.28

TG 0.24 0.22 0.18 0.18 0.31 0.33 0.25 0.36� -0.03 0.15

Cr -0.03 -0.26 -0.01 -0.30 -0.05 -0.01 0.12 -0.05 -0.01 0.14

ALT 0.40� 0.53�� 0.29 0.43�� 0.24 0.18 0.27 0.24 0.25 0.22

Male Tri-SF Sub-SF Che-SF Mid-SF Sup-SF Abd-SF Thi-SF And-SF Tri/And Thi/And

Age -0.29 -0.12 -0.24 -0.22 -0.27 -0.32 -0.06 -0.31 0.08 0.03

BMI 0.54�� 0.91�� 0.18 0.83�� 0.71�� 0.81�� 0.62�� 0.79�� -0.13 0.11

SBP 0.68�� 0.78�� 0.10 0.81�� 0.74�� 0.64�� 0.57�� 0.69�� 0.23 0.16

DBP 0.50� 0.42� 0.09 0.52� 0.59�� 0.58�� 0.32 0.57�� -0.03 0.08

FG 0.42� 0.13 -0.01 0.11 0.04 0.07 -0.08 0.07 0.35 -0.20

HbA1c -0.01 -0.21 0.18 -0.23 -0.18 -0.23 0.06 -0.19 0.06 0.27

TC -0.09 -0.05 0.05 0.08 0.07 0.06 0.04 0.10 -0.15 -0.02

LDL-C -0.18 -0.02 -0.12 0.14 0.14 0.13 0.01 0.10 -0.32 -0.20

TG 0.21 0.38 -0.04 0.37 0.38 0.48� 0.45� 0.46� -0.34 0.17

Cr 0.18 0.36 -0.04 0.24 0.23 0.23 0.14 0.24 -0.04 -0.09

ALT 0.37 0.48� 0.14 0.55�� 0.62�� 0.75�� 0.42� 0.72�� -0.41 -0.01

Data were analyzed with Spearman correlation and presented with gender-specific correlation coefficients (r). Abbreviation: SF, skinfold; Tri, tricep; Sub, subscapular;

Che, chest; Mid, midaxillary; Sup, suprailiac; Abd, abdominal; Thi, thigh; And, android; Tri/And, tricep-to-android skinfold ratio; Thi/And, thigh-to-android skinfold

ratio; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FG, fasting glucose; HbA1c, glycated hemoglobin; TC, total cholesterol;

LDL-C, low density lipoprotein cholesterol; TG, triglyceride; Cr, creatinine; ALT, alanine aminotransferase. Android skinfold was referred as the sum of abdominal and

suprailiac skinfold thickness.

�p<0.05;

��p<0.01.

https://doi.org/10.1371/journal.pone.0236323.t005
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measurements of trunk fat were higher in the South Indian people with parental history of dia-

betes than those with no parental history. Moreover, measuring the skinfold thickness over

multiple body sites in 40–60 year-old Bulgarian women found the diabetic females presented

primarily upper torso fat distribution and less so in the limbs comparing to the healthy females

[22]. In our study, we assess the body fat distribution via calculating the ratio between periph-

eral skinfold (tricep or thigh skinfold) and android skinfold (sum of abdominal and suprailiac

skinfolds). Intriguingly, both the tricep or thigh-to-android skinfold ratio and DXA defined

arms or legs-to-android fat ratio are higher in women than men, supporting the usefulness of

skinfold measurement in assessing fat distribution while these patients have had around

10-years history of type 2 diabetes (Table 2). Furthermore, the gender-specific correlations

between the regional skinfold thickness and DXA defined regional fat mass were directly eval-

uated in the arms, legs and android regions. The calculated peripheral-to-android ratios were

also specifically assessed (Table 4). Overall, the gender-specific correlations of these two meth-

ods in regional fatness are moderate to very strong (Spearman correlation coefficients between

0.57 to 0.89). Notably, in males, the strongest correlation was observed in the android fatness

(r = 0.89) and, in females, the strongest correlation was showed in the legs fatness (r = 0.76),

which is in line with the gender-specific differences in apple shape or pear shape body figures

[35]. It seems the predominant body phenotype is easier to be identified when using the caliper

to measure skinfold thickness. Indeed, regarding the peripheral-to-android fat distribution,

only females showed a significant correlation when comparing DXA defined legs-to-android

fat ratio to the thigh-to-android skinfold ratio measured by 7-site skinfold method (Table 4).

These results point out the 7-site skinfold measurement could be applied for examining the

regional adiposity and fat distribution in the diabetic outpatients under regular follow-up.

Currently, only few studies investigate the associations of regional body fat distribution or

skinfold thickness with the cardiometabolic risk factors. A previous study in 43,595 women via

examining the relation of DM with six girths found upper body (waist, bust, and neck girths)

was positively related to the prevalence of DM, whereas DM was inversely related to the lower

body (hip and ankle girths) [36]. Lee et al. [37] analyzed 2306 participants (mean aged 60

years, 54.4% women) who underwent computed tomography from the Framingham Heart

Study between 2008–2011 and observed higher upper body subcutaneous fat is associated with

adverse cardiometabolic risk factors, including increase in systolic blood pressure, fasting

plasma glucose and triglycerides with decrease of high-density lipoprotein cholesterol. Similar

analysis has been performed in Korean National Health and Nutrition Examination Surveys

(2008–2010) using dual-energy X-ray absorptiometry in around 7000 individuals (54.6%

women) aged 50 years or older, which revealed increase of truncal and arm fat mass was

related to higher odds ratios for diabetes mellitus (DM), while higher leg fat mass was associ-

ated with a lower risk of DM [38]. Consistently, Pinnick et al. [15] evaluate DXA quantified

regional fat mass in a healthy population-based cohort (n = 3,399, aged 29–54 years) and

gynoid fat mass after adjustment for total fat mass is inversely associated with insulin resis-

tance, dyslipidemia and hypertension in both genders. Regarding to assess the associations of

skinfold thickness with the cardiometabolic risk factors, Hariri et al. [28] performed upper

body (tricep, bicep, subscapular and suprailiac) skinfold measurement in white males and the

strongest correlations were seen with the serum triglyceride levels (positive correlation) and

indices of insulin sensitivity (negative correlation). Similar observation was also reported by

Addo et al. [27] that, in US adolescents, tricep and subscapular skinfold thickness were compa-

rable with DXA whole-body fat in predicting serum triglyceride levels. Moreover, a prospec-

tive study conducted in 988 adult Peruvian found sub-scapular skinfold thickness was strongly

associated with the development of type 2 DM and hypertension [39]. However, none of these
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studies concurrently evaluate both upper and lower body skinfold thickness in diabetic

patients under regular outpatient follow-up.

In our study, we performed 7-site skinfold measurements in diabetic outpatients and

observe similar findings (Table 5) that upper body fatness, particularly truncal and android

skinfold thickness were positively correlated with HbA1c levels in women and positively corre-

lated with systolic blood pressure, diastolic blood pressure, ALT levels in men. These gender-

differential correlations are intriguing, but still required further investigation to ascertain these

observations. Previous research has showed, for a given body mass index, females with pheno-

typic pear-shaped adiposity usually could maintain better insulin sensitivity than males [40].

Therefore, it seems reasonable when elder women had dysregulated upper body adiposity

might particularly suffer from glucose dysregulation as observed in our data. Also, males with

central adiposity commonly will be vulnerable to the visceral fat accumulation [41]. Since the

visceral fat deposition will increase hepatic fatty infiltration and induce systemic inflammation,

it won’t be surprised that males with increased truncal or android adiposity were positively

correlated with elevated blood pressure and liver function. Whereas, the lower body fatness

presented by thigh skinfold thickness in women is free of correlation with any blood pressure

and these biochemistry data. Notably, the peripheral (tricep or thigh) to android skinfold ratio

is also free of correlation with these cardiometabolic risk factors in both genders. However,

this cross-sectional observation is just an exploratory assessment and will definitely require a

larger population with a prospective cohort study to validate its clinical significance.

There are still some limitations in the research. First, these participants recruited from out-

patient department were relatively healthy with ambulatory activity. They were firstly assessed

by the attending physician, then regular education was provided by the diabetes educator.

Recruitments were conducted as the patients fit with the inclusion criteria and have no current

acute illness of cerebrovascular accident, myocardial infarction, heart failure, renal failure,

hepatic failure or psychiatric diseases. Therefore, the findings might not completely reflect the

diabetic patients in this age (median 67.7 years). Second, this is an observational cross-sec-

tional study of consecutive diabetic outpatients from a single hospital. Further prospective

multicenter cohort study in large population will be required for assessing the clinical implica-

tion of the skinfold measurement, particular in evaluating the risks of cardiovascular disorders

in diabetic patients. Finally, we only collected 59 participants in this study, which are relatively

small for performing Bland-Altman analysis. According to the observation by González-Ruı́z

et al. [33], the upper limits of the differences between DXA and skinfold measurement are

18.3% in girls and 21.3% in boys. Therefore, provided we allowed the maximum difference to

22% in females and 23% in males and applied the mean and standard deviation of differences

observed in our data (female: 8.74% and 4.45%; males: 7.22% and 4.92%) with selection of type

I error as α = 0.05 and type II error as β = 0.2 (power: 80%), the minimum required sample

size will be n = 27 in females and n = 19 in males via using the calculation presented by Lu

et al. [42]. This paper serves as the first-stage research results and we will keep expand the sam-

ple sizes to decease the bias. Also, we will prospectively follow these diabetic patients to evalu-

ate the subsequent trend of developing cardiometabolic disorders, such as myocardial

infarction, ischemic stroke or cardiovascular death as the next-stage research.

In conclusion, our results indicate the 7-site skinfold measurement is not an interchange-

able method for precisely measuring BF% due to its underestimation. Whereas, comparing to

DXA as the reference method, it presents a strong correlation in assessing BF% and moderate

to strong correlations in evaluating regional adiposity. The truncal and android skinfold thick-

nesses were positively correlated with multiple cardiometabolic risk factors. In contrary, the

peripheral-to-android skinfold ratio and female thigh skinfold thickness are free of correlation
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with these risk factors. Therefore, the 7-site skinfold measurement might be a practical tool for

estimating the cardiometabolic risks in Taiwanese diabetic outpatients.
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