
sensors

Article

Bio-Inspired Approaches to Safety and Security in
IoT-Enabled Cyber-Physical Systems

Anju P. Johnson 1,* , Hussain Al-Aqrabi 2 and Richard Hill 2

1 Department of Engineering and Technology, Centre for Planning, Autonomy and Representation of
Knowledge (PARK), School of Computing and Engineering, University of Huddersfield, Queensgate,
Huddersfield HD1 3DH, UK

2 Department of Computer Science, Centre for Industrial Analytics (CIndA), School of Computing and
Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
H.Al-Aqrabi@hud.ac.uk (H.A.-A.); R.Hill@hud.ac.uk (R.H.)

* Correspondence: A.Johnson@hud.ac.uk

Received: 12 December 2019; Accepted: 2 February 2020; Published: 5 February 2020
����������
�������

Abstract: Internet of Things (IoT) and Cyber-Physical Systems (CPS) have profoundly influenced
the way individuals and enterprises interact with the world. Although attacks on IoT devices are
becoming more commonplace, security metrics often focus on software, network, and cloud security.
For CPS systems employed in IoT applications, the implementation of hardware security is crucial.
The identity of electronic circuits measured in terms of device parameters serves as a fingerprint.
Estimating the parameters of this fingerprint assists the identification and prevention of Trojan attacks
in a CPS. We demonstrate a bio-inspired approach for hardware Trojan detection using unsupervised
learning methods. The bio-inspired principles of pattern identification use a Spiking Neural Network
(SNN), and glial cells form the basis of this work. When hardware device parameters are in an
acceptable range, the design produces a stable firing pattern. When unbalanced, the firing rate
reduces to zero, indicating the presence of a Trojan. This network is tunable to accommodate natural
variations in device parameters and to avoid false triggering of Trojan alerts. The tolerance is tuned
using bio-inspired principles for various security requirements, such as forming high-alert systems
for safety-critical missions. The Trojan detection circuit is resilient to a range of faults and attacks,
both intentional and unintentional. Also, we devise a design-for-trust architecture by developing a
bio-inspired device-locking mechanism. The proposed architecture is implemented on a Xilinx Artix-7
Field Programmable Gate Array (FPGA) device. Results demonstrate the suitability of the proposal
for resource-constrained environments with minimal hardware and power dissipation profiles. The
design is tested with a wide range of device parameters to demonstrate the effectiveness of Trojan
detection. This work serves as a new approach to enable secure CPSs and to employ bio-inspired
unsupervised machine intelligence.

Keywords: security; internet of things; cyber-physical systems; hardware trojan horse; design for
trust; field programmable gate qrray; bio-inspired engineering; spiking neural networks; astrocytes

1. Introduction

The adoption of sensors and embedded devices in cloud computing and the Internet of Things
(IoT) requires systems with enhanced trust and security within applications [1–3]. The majority of
high-value/high-profit businesses use and benefit from Internet-based computing, which relies on a
large amount of data being collected and made accessible by connecting objects to IoT systems [4,5].
Within the IoT field, there is a rapid expansion in the area of radio frequency identification (RFID),
sensors, and communications technologies, and their combined effect is to generate intellectual

Sensors 2020, 20, 844; doi:10.3390/s20030844 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7017-1644
https://orcid.org/0000-0003-1920-7418
https://orcid.org/0000-0003-0105-7730
http://www.mdpi.com/1424-8220/20/3/844?type=check_update&version=1
http://dx.doi.org/10.3390/s20030844
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 844 2 of 19

property (IP) [6], although there is less emphasis on the protection of IP. Cloud-based systems are a vital
technology in this respect as they provide usefulness and accessibility to utility computing in terms
of universal availability and timely access. However, to enhance trust and security, cloud computing
needs more secure software and hardware solutions [7,8] to mitigate the risks of transporting IP-rich
data outside of organisational networks and firewalls.

Technological advancements in the field of IoT are enabling the development of innovative
products and services that rely on novel hardware platforms, forming Cyber-Physical Systems (CPS).
One such significant improvement is the use of Field Programmable Gate Arrays (FPGAs) in cloud
computing services and architectures [9]. Due to the high demand for computing resources, cloud
and data centre architectures are moving towards hardware-accelerated computing. Recent studies
show that FPGAs can outperform Graphical Processing Units (GPUs) [10] and, as a consequence, are
increasingly being used in data centres [11]. The ability to reconfigure FPGAs makes them extremely
powerful, as designs can be easily modified and updated once in service. Rather than the years required
to build an Application Specific Integrated Circuit (ASIC) [12], design changes in FPGAs require only
a few months. However, FPGAs are not completely immune to hardware and software vulnerabilities.
Due to advancements in threat vectors, hardware vulnerabilities require further investigation [13].
Recent research shows an increase in the number of attacks upon hardware, indicating that there is a
need for new hardware security primitives and Design for Trust (DFT) in hardware platforms [14,15].

Hardware Trojan Horses (HTHs) are manipulations of hardware Integrated Circuits (ICs) that
weaken the security of a system. There are two essential characteristics of an HTH [16]. First, the HTH
has a malicious intention, such as altering the device functionality, exposing sensitive information,
or reducing circuit reliability. Second, the HTH is added to the device intentionally. The term
intentional implies extra effort in the detection of the HTH, as they are developed especially to bypass
traditional testing techniques. A Trusted Integrated Circuit (TIC) is an electronic circuit that is designed
and developed to enhance trust in areas including IC design, manufacture, IP protection, and chip
authentication [17]. To guarantee an HTH-free chip requires a demanding testing method. Two main
classifications of HTH detection methods are (1) invasive methods and (2) noninvasive methods [18].
In the invasive approach, the manufactured IC is tested using invasive and destructive probing,
which leads to either partially damaged or completely destroyed integrated circuits (ICs). However,
the applicability of such approaches is minimal as the attacker is most likely to modify only a small
random sample of chips in the production chain. The Trojan detection in the modified chips relies
heavily on the probability of selecting the chip with the inserted HTH. Moreover, the method is
expensive for the time and cost taken to test a single IC.

Logic-testing-based techniques and side-channel analysis-based techniques are two broad classes
of noninvasive HTH detection methods. Logic-testing-based methods attempt to determine a deviation
in functionality at various nodes of the circuit. As there is a vast taxonomy of Trojans in the domain,
an adversary can exploit any one of them, needing a one-to-one correspondence between testing
methods and the type of Trojan. Thus, a generic logic-testing method cannot be employed. Side-channel
analysis is a broad approach where the techniques rely on a fingerprint of the IC, which is a measure
of a physical quantity such as the supply current or path delays. IC authentication using Physical
Unclonable Functions (PUFs) generally relies on device-parameters for security [19–21]. They work
well for a variety of Trojans and IC designs with a range of complexities. Conventional approaches
to side-channel-based methods are vulnerable to process variations, which can lead to failure in
distinguishing between an HTH infection and a fault-free IC [22]. This work proposes an HTH
detection method using bio-inspired principles that relies on the device parameters. The HTH
detection unit is capable of considering natural process-dependent variations, thereby avoiding a false
Trojan alert.

Investigations into how the human body responds to malignant growths have led to the
development of an approach to identify the presence of Trojans in an electronic circuit. The human
immune system is designed to recognize the cells that make up our bodies and to repel any foreign

Sensors 2020, 20, 844 3 of 19

invaders such as viruses. An immune system adjusts with some level of variation, but higher
levels of variation are displayed as diseases. We use a similar approach where a predefined device
parameter variation is permitted to occur, yet when an IC parameter variation appears beyond a
tolerance level, this is exposed using a reliable HTH detection unit. Our work uses unsupervised
machine learning methodologies in a Spiking Neural Network (SNN) design. The design of the HTH
detection process considers the influences of brain cells, including Astrocytes and gamma-aminobutyric
acid (GABA)-ergic neurons. Astrocytes are glial cells in the central nervous system (CNS), play diverse
roles, and are essential for a variety of critical neural functions [23]. GABAergic neurons produce
gamma-aminobutyric acid (GABA), a neurotransmitter, which has critical roles in transforming the
synaptic regulations in the brain [24]. SNNs have gained considerable popularity in embedded
applications as they bridge the gap between machine learning (ML) and neuroscience. As these
models are computationally complex for software implementations, they are not widely in use at
present. However, due to advancements in embedded systems, they have become more accessible and
have been the subject of research such as Brainscales [25], SpiNNaker [26], IBM True North [27], and
Loihi [28]. Such research considers theoretical applications but is seldom applied to practical tasks and
is not widely deployed. Recently, approaches to incorporating bio-inspired principles in enhancing
security have attracted significant interest. In [29], the authors discuss SNN-based trojan analysis to
explore the vulnerabilities of Denial-of-Service (DoS) attacks. Additionally, researches in side-channel
analysis and machine-learning-based pattern detection have gained increased interest [30,31].

We use a modified SNN by combining the activities of glial cells in the brain termed astrocyte. The
main aim of the proposed work is to implement a bio-inspired hardware Trojan-detection methodology
suitable for networked applications. Spiking neural networks are proven to be one of the best models
to mimic the brain-inspired method. Additionally, incorporating brain cells such as astrocytes and
GABA interneuron is not viable in other neural-network models. To the best of our knowledge, SNNs
are data-driven and event-driven and are potentially an excellent candidate for designing bio-inspired
systems. The Spiking Astrocyte Neural Network (SANN) is a modification of SNN, which considers
the contributions of astrocytes. This work proposes the use of SANN in hardware Trojan detection
within an electronic circuit. The HTH detection unit is fault resilient by astrocyte-mediated synaptic
regulation. We use unsupervised machine learning to implement stable signing for the Design Under
Test (DUT) if the device parameters are in a permissible range. Any deviations from this behavior lead
to a reduction in neuron-firing response. All presynaptic neurons fetch different device parameters
to the postsynaptic neuron. During the training phase, the circuit learns to achieve a constant firing
activity with the available parameters. We use a steep transmission probability (PR) curve between
the neurons, which can be adjusted to incorporate new device behaviour in the future. For example,
some circuits might require variable power and use a variable PR curve for transmission regulation
between the presynaptic and postsynaptic pair. The stable firing activity produced by permissible
device variation acts promotes occurrences of the device working, whereas failure would disable
circuit functionality. This arrangement is specifically for HTHs, which are activated by increasing or
decreasing the device parameters, such as varying the power, increasing/decreasing the temperature,
or laser-based attacks on the device. These variations would trigger a firing fault in the output neurons
of the network. Variability is adjusted to prevent unnecessary failures or false Trojan detection by
using a tunable transmission probability curve. For safety-critical applications, the tunability curve is
set at an extremely low standard deviation.

The organization of this article is as follows. In Section 2, some preliminary research in the
area of spiking neural networks is presented, which includes the role of astrocytes in selectively
propagating spiking information in the multi-layer neural network. Section 3 describes a primary
Trojan detection circuit, acknowledging the contribution of astrocytes in the regulation of neural
transmitters in a brain-inspired system. Section 4 presents the complete Trojan detection circuitry
for discovering a combination of variations in the design. Section 5 introduces a Design For Trust
(DFT) design methodology for device locking/unlocking based on device parameters. In Section 6,

Sensors 2020, 20, 844 4 of 19

we discuss the design methodology adopted and various design parameters used in our experiments.
This section includes our experimental results, which establish the effectiveness of the proposed
scheme by analyzing the variations in device parameters. Finally, conclusions and future work are
discussed in Section 7.

2. Fundamental Research

2.1. Learning in Spiking Neural Networks

To generate a constant firing activity for the SANN, we adopt a learning algorithm. In this
approach, Spike Timing Dependent Plasticity (STDP) [32,33] together with Bienenstock, Cooper,
and Munro’s (BCM) learning rule [34,35] are combined to develop the BCM-STDP rule [36,37]. The
time difference between presynaptic and postsynaptic spikes is used to adjust synaptic weights.
Equation (1) describes this STDP-BCM formulation.

δw(∆t) =

{
+A0.exp(∆t

τ+
), ∆t ≤ 0

−A0.exp(− ∆t
τ−
), ∆t > 0

(1)

where δw(∆t) is the weight update, ∆t is the time difference between presynaptic and postsynaptic
spike events, A0 is the height of the STDP-learning window controlling the maximum levels of weight
potentiation and depression, and τ+ and τ− control the decay rate of weight updating. The BCM
learning rule modulates the height of the STDP plasticity window as a function of the neuron’s actual
firing rate, according to Equation (2).

A0 =
A

1 + expa(f− f0)
− An (2)

where the actual and target firing rates of the postsynaptic neuron are f and f0, respectively,
A represents the maximum height of the plasticity window. An is the maximum height of the plasticity
window for depression. The parameter a is constant and controls the opening/closing speed of the
plasticity window. The value of a is found experimentally to be 0.1. The updated weights combine to
produce a current which is injected back to the postsynaptic neuron, thereby establishing a constant
firing activity.

The “mth” synapse between presynaptic neuron “i” and postsynaptic neuron j (Sijm) generates a
current based on the synaptic weights given by Equation (3).

Iinjijm = η.(Wijm + δw(∆t)) (3)

where η is a constant that is used to modulate the synaptic weights based on the transmission
probability PR and the flow of current to the neuron is regulated as described in Equation (4).
Section 2.2 describes PR formulation considering astrocyte–GABA interactions.

Iijm(t) =

Iinjijm , rand ≤ PR

0, otherwise
(4)

where Iinjijm(t) is the amount of current generated at time t by the synapse Sijm. “rand” is a random
function used to model the probabilistic synapse. Iijm(t) is a current released by the synapse on a
successful probabilistic event described as in Equation (4). The total current injected to a postsynaptic
neuron (j) (on a successful pattern detection by GABA–astrocyte interaction) is given by Equation (5).

Itotalj
=

∑N,k
i=1,m=1 Iinjijm(t), E = 1

0, otherwise
(5)

Sensors 2020, 20, 844 5 of 19

where “N” is the number of presynaptic neurons (also the width of a pattern) and “k” is the number of
paths between a pair of presynaptic and postsynaptic neurons. Based on the input pattern, postsynaptic
neuron “j” learns to achieve the required spike rate. Learning is achieved using STDP and BCM rules.
As per Equations (1) and (2) , if the output frequency slightly deviates from the required output
frequency (fo), the weights of synapses are updated by a certain amount. If the input frequency varies
significantly from the permissible level, the output frequency fo drops to zero.

2.2. Spike Flow Regulation in the Spiking Neural Network

Spike flow is regulated by following a bio-inspired activity-dependent transmission regulation
in the brain influenced by astrocytes and GABA interneurons. Studies [24] establish that a reduced
transmission of spikes to the postsynaptic neuron terminal occurs at a reduced presynaptic neuron
spike rate. Also, for higher presynaptic signaling, the effect is the converse of that at low transmission
probability, i.e., at a higher input transmission rate, a higher transmission of spikes occurs at the
synapse. However, as the input spike rate increases beyond a threshold, the transmission of spikes
also reduces and falls to zero. The above three observations are due to interactions at the synapse
following a complex biological process where chemicals such as inositol 1, 4, and 5-trisphosphate (IP3);
calcium; and glutamate play important roles [24].

In mathematical representation, the above three phenomena can be combined to represent
a smooth neural transmission curve using a Gaussian distribution. The relation is modelled in
Equation (6) and is represented in Figure 1. Note: Other functions such as triangular distributions and
band-pass filters have also been experimented with, and they all provide identical responses.

PR = exp(
(fpre − fs)

2

2σ2) (6)

where fpre is the frequency of presynaptic neuron spikes, fs is the centre frequency of a pattern, and σ

is the width of the Gaussian passband. Each interconnection between a pair of neurons is expected to
fire at a rate close to fs at normal working conditions. Spikes are permitted to pass to the next layer
of the network if the value of PR is within an acceptable range (PR > PR0). This feature helps to
selectively pass the information to the next layer if the elements are matched. The maximum value of
PR is 1, which occurs when the presynaptic neuron fires at the same rate as the centre frequency.

Figure 1. Activity-dependent transmission probability modulation in a Spiking Astrocyte Neural
Network (SANN): A Gaussian distribution represents transmission probability of a tripartite synapse
coupled to a Gamma-aminobutyric acid (GABA) interneuron. The Gaussian distribution parameters are
adjusted to promote circuit variability and to avoid false triggering of the circuit. Critical applications
use a narrow transmission probability curve.

Sensors 2020, 20, 844 6 of 19

3. Trojan Detection Unit Using SANN

Figure 2 shows a multi-layered network (3 layers shown) with N neurons in the input layer.
Each of the input layer neurons produces a constant firing activity for a given device parameter Di.
The device parameter is allowed to have a deviation of Di ± δi to incorporate natural device variability.
The input neuron NIi produces spikes of frequency centered around FIi if the device parameters are
in the permissible range. The spike frequency of FIi is directly proportional to the device parameter
variations. If the device variations are not in the permissible range, NIi delivers a spike of a frequency
widely deviating from FIi. Similarly, based on the device parameters linked to each input neuron,
spikes of predefined frequencies are generated.

Figure 2. The basic unit for bio-inspired hardware Trojan detection using unsupervised learning
methods Neurons N1 to NN resides in the input layer of the network. A hidden layer contains
2N neurons each, identifying a pattern. The neuron NH represents a hidden-layer neuron used for
identifying a particular pattern of device parameters. A set of responses of the hidden-layer neurons
combine to produce a stable firing activity in the output layer neurons. NO is an output layer neuron.
Astrocytes reside between the layer for spike transmission regulation based on the patterns. There
are K (8 in our experiments) parallel paths between each pair of neurons in adjacent layers. Based on
the input pattern, the output neuron NO learns to achieve the required spike rate under a Trojan-free
condition. The spike rate drops to zero if device parameters are altered beyond the permissible level,
indicating the presence of malicious activity.

All input layer neurons in the system that are working in a fault-free state are expected to
produce spikes around frequency FIi. Various patterns of device parameters can be formed using the
input neuron responses. The input layer spike informs the second layer (hidden layer) of neurons.
For example, pattern P1 corresponds to the violation of all input device parameters (an equivalent of
all zeros in binary). The 2Nth pattern would point to all device parameters in the permissible level.
Based on the amount of permissible variability, the number of patterns to be verified also increases.
For a safety-critical system, we may require all device parameters to be in the permissible level. In this
case, the only pattern to be checked is the 2Nth pattern, and that represents all of the input neurons
producing around F1 frequencies. Some systems can have a permissible variation in one or more
parameters. This scenario would lead to a pattern with a mixture of frequencies.

The number of neurons in the hidden layer equals the number of patterns formed with the input
neuron frequencies. The hidden neuron layer corresponds to various patterns in the network. NHj
would produce a frequency of FH1 if all its presynaptic neurons produce frequencies in their respective
ranges. Otherwise, NHj produces a frequency of FH0. Thus, device parameter violations get projected

Sensors 2020, 20, 844 7 of 19

in respective hidden-layer neuron responses. An astrocyte layer residing between the input and
the hidden-layer neuron verifies and permits (or prevents) spike transmission using transmission
probability regulation. The interactions of astrocytes with the GABA interneurons at the tripartite
synapse influences transmission regulation, and details are provided in Section 2.2. Multiple parallel
paths exist between any pair of neurons in the adjacent layer; parallel paths aid the building of
postsynaptic potential and increase the security of the Trojan detection circuitry. Astrocytes permit
a spike transmission across a layer if there exists at least one path with the required spike frequency
between every pair of neurons.

The response of output layer neurons represents the nature of patterns observed. For example,
a particular design might allow a different set of combinations of device variation. An increase or
decrease in device current for a corresponding deviation in device voltage would be a permissible
combination of device variation. Hence, one of the patterns would represent a particular
current/voltage characteristic and a different hidden-layer neuron pattern would represent a different
set of current–voltage components. Both of the above patterns are correct responses of the device.
It follows that an output layer neuron would fire at a predetermined rate if any of these hidden-layer
patterns were satisfied. Essentially, the three-layer network implements a binary expression as a
Sum-Of-Product (SOP), where the hidden layer evaluates the product expression, and the output layer
neuron evaluates the summative expression. There exists the same number of output layer astrocytes
as the number of output layer neurons. The astrocytes verify if the pattern arriving in the output
layer neurons forms the requirement. More complex pattern behavior can be created to produce a
multi-layered network with more than three layers.

If the device parameters are at the permissible level, spikes in the system follow Equations (1)
and (2) to update the synaptic weights. The updated weights combine to produce a current which is
injected back into the postsynaptic neuron, thereby establishing a constant firing activity. When device
parameters are not in the permissible level, some of the interconnections between the neurons produce
incorrect spike frequencies. The astrocytes block any incorrect patterns, and hence, the firing activity
drops to zero.

This design is tunable to support slight variability in the device parameters while, at the same time,
reducing susceptibility to malicious intrusions. Spike flow is regulated by following a bio-inspired
activity-dependent transmission regulation, as seen in the brain. Below, we briefly describe the
bio-inspired principle.

The width of the Gaussian passband described in Equation (6) represents the amount of tolerance
expected in device parameters. Various device parameters introduce different levels of deviation under
normal operating conditions. Hence, the value of σ varies according to acceptable levels. Increasing
the standard deviation leads to Trojans remaining undetected, and reducing the standard deviation
may lead to false alerts. The value of σ is the designer’s choice based on the particular application.
For critical applications, the Gaussian bandwidth is adjusted to follow a narrow passband to alert for
any slight variation in the circuit.

4. Detailed Trojan Detection Unit for Large-Scale Cyber-Physical Systems

Figure 3 presents a fully connected three-layer spiking astrocyte neural network. The system
generates a stable response with a balanced device parameter. The system consists of N input and K
output neurons in the input and output layers of the network, respectively. The value of N is chosen
based on the number of device parameters to be verified.

Sensors 2020, 20, 844 8 of 19

Figure 3. Three-layer spiking astrocyte neural network neurons N1 to NN : each receives synaptic input
corresponding to the device parameters collected by various sensors. Based on the number of device
parameters to be observed (N in our experiments), there exist N neurons in the input layer of the
network. The number of neurons in the hidden layer correspond to the number of patterns that can be
formed using the input neurons, leading to 2N neurons in the hidden layer. The response of output
layer neurons depends on the combined effect of the monitored device parameters. If the preferred
combination of parameters in the network is K, then we have K neurons in the output layer of the
network. There exist 2N astrocytes between the input and hidden layer (A∗H), each guiding the flow
of current to the hidden-layer neuron depending on transmission probability. Similarly, there exists a
layer of astrocyte between the hidden layer and output layer counting to K, based on the parameter
combination to be observed.

Based on the predefined device parameter levels, the input layer neurons fire at a specific rate.
Variations in device parameters from the preset values lead to changes in the firing pattern of the input
layer neurons. The second layer of the network contains 2N of hidden-layer neurons, formed to identify
all possible combinations of firing activity of the input layer neurons. There exists a layer of astrocyte
to permit the flow between input and hidden-layer neurons by controlling the synaptic transmission.

Section 2 provides details of synaptic transmission regulation by astrocytes. Each hidden-layer
neuron is associated with an astrocyte, and there are 2N astrocytes between input and hidden-layer
neurons. The number of hidden-layer neurons and astrocytes corresponds to the patterns in the input
layer. This firing activity of input layer neurons and the associated response of the hidden-layer neurons
generates current based on a combined BCM-spike-dependent plasticity rule. The hidden-layer neuron
generates a stable firing rate if an observed pattern is correct based on the astrocyte transmission
regulation. If the pattern is incorrect, the hidden-layer neuron does not produce any firing activity.
The third layer of the network provides a combined response based on the activity of hidden-layer
neurons connected to it. The astrocytes present between the hidden layer and the output layer
control the flow between these two layers based on the correct patterns. A predefined stable firing
activity of the output layer neuron corresponds to a Trojan-free circuit. The primary component of the
proposed Trojan detection circuit is a neuron. The proposed design works with any spiking neuron
representation; however, we encourage the use of the Leaky Integrate and Fire (LIF) neuron model [38].
The LIF neuron requires low computing resources and minimal tuning parameters for implementation,
suiting compact hardware deployment. Similarly, all other components/modules used in the circuit
implementation also have minimal hardware footprints to support lightweight applications and IoT
hardware resources. The representation of a LIF neuron is presented in Equation (7).

Sensors 2020, 20, 844 9 of 19

τmem
dv
dt

= −v(t) + Rmem.Itotal (7)

where τmem, v, Rmem, and Itotal are the time constant, membrane potential, membrane resistance, and
current injected to the neuron, respectively. When the membrane potential reaches a threshold voltage,
the membrane potential is brought back and held at 0V, following a nominal refractory period. We use
the Euler method of integration to evaluate this expression.

A second important component is pattern identification by astrocytes. We use k parallel
connections between pairs of neurons in two adjacent layers. The value of k is selected to provide
sufficient self-security in the detection circuit. A higher value of k prevents the HTH detection unit
from faults, either by a malicious intruder or by random faults in the circuit. Each parallel path
implements the same flow of spikes between layers but with a predefined variable delay. Delay is
introduced to promote the building of postsynaptic potential in spiking neurons. The higher the value
of k, the more it leads to higher resource consumption in the circuit, and hence, a trade-off is required
between the design size and security. Astrocytes permit the flow of spikes between input and hidden
layers if they satisfy the relation modeled in Equation (8).

EH = ∧N
j=1

(
∨k

i=1
(

PRji ≥ PR0
))

(8)

where EH denotes the transmission of spikes to the next layer (1 = permit presynaptic spikes and
0 = disable presynaptic spikes). N is the number of neurons in the input layer, and k is the number
of parallel paths between adjacent layers. PR0 is the minimum transmission probability required
to permit a spike through the parallel paths between the neurons. Once the pattern is detected
(EH = 1), and spikes passed to the neuron NH, it learns to achieve a constant firing activity. Similarly,
all hidden-layer neurons detect various combinations of input patterns. Identifying the response of
various patterns in the hidden layer generates a combined response at the output layer. The astrocyte
permits the flow of spikes between hidden and output layers if it satisfies the relation modeled in
Equation (9).

EO = ∧p
j=1

(
∨k

i=1
(

PRji ≥ PR0
))

(9)

where EO denotes the transmission of spikes to the output layer (1 = permit presynaptic spikes and
0 = disable presynaptic spikes), p is the number of hidden-layer patterns (neurons) to be combined
to generate the response, and k is the number of parallel paths between a pair of presynaptic and
postsynaptic neurons between the input and hidden layers. PRG0 is the minimum transmission
probability required to permit a spike through the parallel paths between the neurons. Once the
pattern is detected (EO = 1) and spikes are fed back to the neuron NH, and it learns to achieve
a constant firing activity. If the output layer neurons fail to produce a predefined stable activity,
this indicates the presence of variability in device response and is likely to be induced by malicious
activity. Section 2.2 defines how to choose the transmission probability curve to avoid false Trojan
alerts in the device.

5. Design for Trust

The proposed architecture of Design for Trust (DFT) should be incorporated with the general
CPS system in order to ensure real-time detection of a Trojan. A pattern in any area of the CPS is
used to lock the respective part of the device logic by adjusting the learning curve to the permissible
range. The basic DFT subblock implemented on an FPGA is with firing activity 54 for parameter 1,
with firing activity 64 for parameter 2, and with firing activity 74 for parameter 3. A time window
of 1024 clock cycle sets calculates the firing activity. Figure 4 represents the SANN-DFT logic unit
for establishing device locking. The biological processes involved in a SANN system requires a
high amount of hardware consumption for its precise representation. Hence, we approximate the
fundamental equations to generate a compact hardware architecture. A moving average is used to

Sensors 2020, 20, 844 10 of 19

determine the spike frequency of neurons with a window of size of 1024 clock cycles. Here, we use
neurons in layer-1 to produce spikes corresponding to the side channel parameters. The neurons are
implemented using the LIF equation, where the input current relates to the device parameter.

Figure 4. SANN-Design for Trust (DFT) logic-locking unit: Input layer consists of neurons representing
different device parameters. The second layer neuron learns the pattern and produces a stable firing
activity, which is used to derive an enabling logic for the design. Any considerable deviation from the
pattern leads to ceasing of firing activity, and the device is locked.

The second layer contains only a single neuron, which detects the presence of a unique pattern.
This neuron is designed to fire at a rate of 100 spikes in a window if the pattern identification is
successful. Hence, this structure requires only two layers with a single neuron in the second layer.
Based on the configured parameter, the design produces a stable firing activity at the output of the
neuron in layer-2. A stable firing activity is chosen as an enable/disable signal for device locking.
Due to the stabilising nature of the design, minute variations of device parameters are filtered and do
not produce any unreliable activity and unnecessary locking of the device.

In this work, we consider minute variations as typical behavior of the design, as they mostly
cannot cause any malicious activity. Any considerable deviation in the device pattern triggers a
low-firing activity instantly. Neurons in layer 1 facilitate the transmission of spike trains to the next
layer. There are 8 parallel variable delay paths between every pair of presynaptic and postsynaptic
neurons. Parallel paths allow the postsynaptic potential to build up neurons in layer-2. Additionally,
they minimize any chance of attacks by circuit modifications in the parallel paths of the SANN-DFT
logic-locking unit. An attacker needs to modify all of the eight connections in the unit to break the
device-locking scheme. A fault in all eight connections would lead to a complete shut down of the
logic area.

Following an initialization time, stable firing activity crossing 80% the target frequency enables
the working of the Design Under Testing (DUT). The enable logic guarantees the recognition of the
pattern. Any modifications of the parameters lead to the design being disabled. The eight parallel
paths have different synaptic weights, and hence, controllability and observability are different in these
paths. Hence, this would also prevent attacks targeted at the SNN-DFT logic-locking unit. Neurons in
layer-2 produce a constant activity based on the learning mechanism. Nodes with low controllability
and low visibility are targets for Hardware Trojan insertion, and inserting an SNN-DFT logic-locking
unit at these nodes would reduce the total number of SNN-DFT logic-locking units in the design.

The unsupervised learning methodology quickly recovers any malicious or naturally occurring
faults in one or more synapses by updating the weights in the healthy synaptic pathways. This recovery

Sensors 2020, 20, 844 11 of 19

increases the reliability of the scheme. Any spike rate falling below 70% of the targeting rate locks the
device from usage.

6. Experimental Results

6.1. Experimental Setup

The proposed architecture of the Trojan detection circuit is implemented in Xilinx Vivado 2018.1
and ISE 14.7. Euler integration evaluates the LIF neuron expression with a fixed time step of
t = 210 clock cycle. For hardware implementation, Equation (2) is approximated using a straight
line and Equation (1) is approximated by powers of 2 (shift operations). A rectangular band-pass
filter approximates the Gaussian filter representing the transmission probability in Equation (6).
The system is benchmarked against a fault-free Trojan detection SANN unit implemented on the FPGA.
We deliberately introduced changes in the device parameters to mimic the presence of Trojans to
demonstrate the device-locking phenomenon. In the permissible range of device variations, the design
produces a stable enable signal to drive the design. The proposed system could successfully establish
the device-locking phenomenon if the side channel parameters vary above the permissible limit.
Table 1 provides design parameters for a SANN-Design for Trust (DFT) unit implemented in this
work considering of three variable device parameters. Firing rates of the neurons implemented
by an FPGA-based approximation of a SANN system is compared with a Matlab-based software
implementation. Results illustrate that the FPGA-based approximation produces results comparable
with the simulation results.

Table 1. Design parameters for SANN-DFT Unit

Parameter Parameter Description Value

LIF * Neuron
Vthi Threshold voltage of input layer neurons 15 mV
Vth Threshold voltage of hidden/output layer neuron 68 mV
P1 Device parameter 1 20 mA
P2 Device parameter 2 22 mA
P3 Device parameter 3 26 mA

Rmem Membrane resistance (all neurons) 1 MΩ
τmem Membrane time constant (all neurons) 10 ms

BCM ** Learning Rule: approximated using linear equation
A Maximum height of plasticity window for excitation 1

An Maximum height of plasticity window for depression 0.5
a0 A constant 0.1
Fs Target firing activity of hidden/output layer neuron 100/1024clocks

Transmission probability: approximated using a band-pass filter
σ Standard deviation 10
fs1 Centre frequency of pattern 1 54/1024 clocks
fs2 Centre frequency of pattern 2 64/1024 clocks
fs3 Centre frequency of pattern 3 74/1024 clocks

Synaptic weights
w0 Initialized value 48
η A scaling constant 0.0625

Note: * LIF Neuron : Leaky Integrate and Fire Neuron; ** BCM Learning Rule: Bienenstock–Cooper–Munro
Learning Rule.

6.2. Hardware Results on Xilinx Artix-7 FPGA

The proposed Trojan detection circuitry is implemented on the Xilinx Artix-7 FPGA board.
The device-locking circuitry is implemented on an FPGA and is monitored using a Integrated Logic
Analyzer (ILA). Power estimation of the circuits was carried out using Xilinx Power Estimation and
Analysis Tools, and delay estimation was carried out using Timing Closure and Design Analysis. Table 2
reports the hardware resource footprint of the proposed models. Estimated total on-chip power is

Sensors 2020, 20, 844 12 of 19

also presented in Table 2. The hardware utilization increases with the number of synapses, which
operates based on a BCM-STDP rule. We use 32-bit operations for determining the synaptic weights.
We are working towards a Spike Driven Synaptic Plasticity (SDSP) [39]-based synaptic rule, which
would drastically reduce the synaptic weight as they perform 1-bit operations. Another operation
that consumes hardware is the calculation of transmission probability (Equation (6)). This equation
replaces linear approximations, which would further minimize the hardware overhead.

Table 2. Implementation overhead of the SANN-DFT presented in Figure 4.

Parameter/Components Slice Slice Reg LUT DSP

Hardware Consumption 14, 471 33, 707 25, 065 30

Total On-Chip Power 0.082W

The proposed fault-tolerant learning mechanism in a SANN can be incorporated with reduced
hardware overhead and power consumption, establishing its usability in resource-constrained
applications. The proposed system implemented on an FPGA achieves an acceleration of 104 compared
to the software simulation (Matlab), which indicates the viability of this approach for real-time
cryptographic applications. In biological systems, independent units perform computation in parallel.
For real-world applications, this parallelism can be exploited to execute tasks orders of magnitude
faster than in software. One aspect of the proposed model is that it operates at an accelerated biological
timescale; similar concepts are illustrated in our previous works [40,41].

6.3. SANN-DFT Initialization

Three input spike trains of frequencies 54 spikes/window, 64 spikes/window, and 74
spikes/window are used for testing the basic functionality of the SANN-DFT unit. The above spike
rates correspond to the parameter values of 20 mA, 22 mA, and 26 mA at three locations of the DUT.
These input spike trains are compatible with the center frequency of the associated synapses, and
hence, the astrocyte permits the spike to pass to the neuron No. The target frequency of neuron No is set
to be 100 spikes/window. A standard learning phase will occur, and the spike rate gradually increases
during the training phase and eventually stabilizes at the target frequency of 100 spikes/window
in 0.5 µs, as shown in Figure 5A. Figure 5B–D shows the synaptic weights, which show a slow rise
over the learning period and stabilize at 50 us. Additionally, the system is tested with presynaptic
spike train frequencies varying from center frequency and in the permissible range. No noticeable
change is observed in the firing activity (results not shown), proving that the design is stable against
natural variations.

Sensors 2020, 20, 844 13 of 19

Figure 5. Synaptic weight updates during initialization: (A) Firing rate of No in of SANN-DFT unit
during the initialization phase. All synapses between neurons in layer one and layer two are healthy,
enabling eight parallel paths of variable delays to contribute to the firing activity. A stable firing rate of
100 spikes/1024 clock cycles is established around 50 us. (B) Synaptic weights between N1 and No are
shown. N1 has a spike rate of 54 spike/1024 clock cycles. The value is zoomed around 50 us to show
that different synapses update at different rates. (C) Synaptic weights between N2 and No are shown.
N2 has a spike rate of 64 spike/1024 clock cycles. (D) Synaptic weights between N3 and No are shown.
N3 has a spike rate of 74 spike/1024 clock cycles. Synaptic weights are different because of the variable
delayed paths in the network and the relation between input and output spikes as per the BCM-STDP
learning rule.

6.4. Hardware Trojan Detection

The effects of HTH attacks on various platforms have been widely explored. Hardware
Trojan insertions range from cryptographic hardware [42,43] to remote dynamic configurations on
reconfigurable IoT platforms [44,45]. We assume that a high-frequency clock signal is used to drive
the Trojan detection unit, which can be generated by using dedicated clock generators such as the
Mixed-Mode Clock Manager (MMCM) module [46].

We apply the proposed SANN-based hardware Trojan detection method to the designed hardware
Trojans reported in References [43–45] as they are relevant to reconfigurable platforms. A characteristic
feature of the above research is the method of launching the attack from a remote location by
dynamically altering the clock of the design. Applying the proposed Trojan detection circuit requires
parameters to be defined. One setting which exposes the Trojan of this nature is the measure of clock
width of the design. A high-frequency clock can be used to measure the width of the design clock.
As the Trojan detection unit runs faster than the design clock, the design would be halted/disabled,
following a failed pattern recognition. Also, other factors, such as a power or voltage profile, can be
used as a parameter in the design.

Figure 6 corresponds to a set of activities occurring in the SANN-DFT unit following a Trojan
insertion. The DUT is enabled to perform its functionality only following an initialization stage of
the SANN-DFT unit. The initialisation stage corresponds to the time taken by the SANN-DFT unit
to achieve at least 80% of the targeted output neuron activity. The unit is designed to achieve 100
(Any desired value can be chosen.) spikes in a window. A spike rate of around 80 spikes in a window
enables the working of design under test (DUT). Any spike rate below this value triggers a halt. The
design takes around 50 us for initialization. At 2 ms, a Trojan is inserted, which changes one of the

Sensors 2020, 20, 844 14 of 19

parameters outside the permissible range. This output firing activity degrades thereafter. More details
are presented in Figure 6.

Figure 6. SANN-DFT Trojan detection: The activities of output layer neurons at various time slots:
(A) the initial stage of output neuron activity which rises gradually from 0; (D) an intermediate
activity rise stage; (G) the desired rate of 100 spikes is achieved in this time slot. The desired rate is
achieved around 50.0 us. A Trojan is inserted at 2 ms, which changes the device parameters; and (J) the
activity following the Trojan insertion decays to zero. The activity fully decays by 20 us after Trojan
insertion. The spike products by output layer neuron: (B,E) during the initialisation phase, the spike
rate gradually increases and stabilises (H) when the desired rate is achieved. (K) After Trojan insertion,
the spike gradually ceases. The signal required to enable the working of DUT: The SANN-DFT unit
enables the DUT to work only if the activity is above 80 spikes in a window. (C) The activity is too
low to trigger the enable signal; (F) the activity needs to further increase to enable the DUF; (I) the
spike activity is greater than 80 in this time slot, which enables the DUT; and (L) after Trojan insertion,
activity drops below 70, which disables the DUT. The enable signal requires 14 us after Trojan insertion
to fall to zero.

6.5. Fault Attack on Trojan Detection Unit

To evaluate the fault-resilient nature of the proposed SANN Trojan detection unit, the spike
train frequencies of N1, N2, and N3 were set to the center frequency of the Gaussian PR curve (54,
64, and 74 spikes/1024 clock cycles), and the SANN was trained with a target frequency for No of
100 spikes/window. Faults are purposefully injected into the system gradually after every 200 µs.
For example, at 200 µs, one of the synapses between N1 and No is broken; we can see an activity drop
in Figure 7A, which subsequently causes the learning window to reopen and the learning process
to restart. Likewise, we gradually increase the faults in synapses of all presynaptic neurons of No.
At 4200 µs, 7 synapses between all presynaptic neurons and No are broken. One synapse is left
fault-free because learning does not happen without a healthy connection between a pair of neurons.
The modulated weights of synapses associated with N1, N2, and N3 are shown in Figure 7B–D. In all
cases of faults, the firing rate is above 70 spikes/1024 clock cycles, providing a stable enable signal
for the DUT. It is evident that the fault repair happens at a rate of µs, proving to be a very efficient
scheme for practical cases. This proves the reliability of the HTH detection unit against malicious
fault insertions.

Sensors 2020, 20, 844 15 of 19

Figure 7. Firing rate of No and synaptic weights under different faulty conditions: (A) Synapses
between neurons in layer-1 and layer-2 induced faults gradually. A stable firing rate of
100 spikes/window is established in all faulty cases. (B) Synaptic weights between N1 and No under
faulty synapses: We induce gradual faults on the system after every 200 µs. After every fault injection,
the weights of healthy synapses update to a higher value to regain the target firing activity. Only one
synapse of No is left unbroken after 4200 µs. (C) Synaptic weights between N2 and No under faults of
different percentages. (D) Synaptic weights between N3 and No under faults of different percentages.
We can see that, for each fault percentage, the systems relearn the synaptic weights for establishing a
constant firing rate similar to the fault-free results. The broken synapses do not increase weight.

7. Conclusions

In this article, we discussed how the bio-inspired approach of anomaly detection could be used in
a reconfigurable platform for real-time Trojan detection. Unsupervised machine learning is used in the
spiking neural network-based design for analyzing patterns at various locations of the reconfigurable
platforms employed in CPS. The design grows in size, with the number of parameters to be analyzed.
We recommend employing smaller units of the design at various/critical locations to monitor any
undesired behavior. Since the circuit works extremely fast (microseconds), it indicates its suitability for
real-time cryptographic Trojan analysis platforms.

The concept is derived by incorporating various bio-inspired principles, particularly the activities
of GABA–astrocyte interactions in the selective transmission of pieces of information across a
multi-layer network. The ability of the brain to achieve homeostasis is utilized to provide minute
variations in the design, which are natural and not a threat. The SANN-DFT logic-locking unit is
adaptive to minute changes in the system and does not trigger unnecessary device locking. Even if
some of the device parameters vary, the system produces a stable “device enable” signal in real-time,
which has no noticeable variation according to the parameter changes. Also, multiple paths are
supported in each layer of the networks to avoid malicious circuit alterations in the design, which
further increases the security of the Trojan detection unit from malicious modifications.

First, our work is implementable with reduced hardware resources, power dissipation, and
propagation delay, leading to a scalable solution for reconfigurable deep-layer neural network
architectures. Second, the proposed idea is demonstrated on an FPGA system that achieves real-time
computation (104 times faster than the biological timescale (1 ms)). One reason is its ability to work
in an accelerated biological timescale. The system can effectively establish a stable Trojan detection

Sensors 2020, 20, 844 16 of 19

functionality with a minimum of 1 interconnection (healthy synapse) between a pair of presynaptic
and postsynaptic neurons.

Future work shall investigate bio-inspired FPGA-based SANN designs for automotive embedded
systems to address a variety of concerns including security, performance, fault-tolerance, reliability, and
scalability. We mainly target applications of the proposed FPGA-based SANN systems in safety-critical
CPS/robotic missions for implementing a real-time responsive system establishing satisfactory fault
resilience. Emerging technologies such as micro-electromechanical systems (MEMS) are a promising
solution for future implementations. MEMS configurations using nanoelectromechanical (NEM) [47]
designs enhance the deployment of the FPGA-based system directly on the application site, closer to
sensors and actuators, and eliminate heat protection circuity in the designs as they can work up to
225◦C. Additionally, this deployment eliminates the latency associated with interfacing FPGA systems
to on-site robotic controllers.

Our work considers different concepts in a spiking neural network to design a reliable FPGA-based
Trojan detection platform, and the proposed design is appropriate for FPGA-based applications such
as in clouds, IoT, and CPSs, where security is a critical factor. This research work constitutes a vital
step in biologically inspired security for hardware applications.

Author Contributions: The work described in this article is the collaborative development of all authors.
Conceptualization: A.P.J., H.A.-A., and R.H.; methodology: A.P.J. and R.H.; design, implemention, and generation
of results on hardware-FPGA: A.P.J.; analysis and interpretation of results H.A.-A. and R.H.; preparation of the
draft, review, and editing: R.H., A.P.J., and H.A. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, J. Hybrid blockchain and pseudonymous authentication for secure and trusted IoT networks. ACM
SIGBED Rev. 2018, 15, 22–28. [CrossRef]

2. Abera, T.; Asokan, N.; Davi, L.; Koushanfar, F.; Paverd, A.; Sadeghi, A.R.; Tsudik, G. Things, trouble, trust:
On building trust in IoT systems. In Proceedings of the 53rd Annual Design Automation Conference, Austin
TX, USA, 5–9 June 2016; p. 121.

3. Al-Aqrabi, H.; Hill, R. Dynamic Multiparty Authentication of Data Analytics Services within Cloud
Environments. In Proceedings of the 2018 IEEE 20th International Conference on High Performance
Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 742–749.

4. Al-Aqrabi, H.; Liu, L.; Hill, R.; Cui, L.; Li, J. Faceted Search in Business Intelligence on the Cloud.
In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications
and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August
2013; pp. 842–849.

5. Nedeltcheva, G.N.; Shoikova, E. Models for Innovative IoT Ecosystems. In Proceedings of the International
Conference on Big Data and Internet of Thing, London, UK, 20–22 December 2017; pp. 164–168.

6. Misra, G.; Kumar, V.; Agarwal, A.; Agarwal, K. Internet of things (iot)–a technological analysis and survey
on vision, concepts, challenges, innovation directions, technologies, and applications (an upcoming or future
generation computer communication system technology). Am. J. Electr. Electron. Eng. 2016, 4, 23–32.

7. Trimberger, S.; McNeil, S. Security of FPGAs in data centers. In Proceedings of the 2017 IEEE 2nd
International Verification and Security Workshop (IVSW), Thessaloniki, Greece, 3–5 July 2017; pp. 117–122.

8. Al Aqrabi, H.; Liu, L.; Hill, R.; Antonopoulos, N. A multi-layer hierarchical inter-cloud connectivity model
for sequential packet inspection of tenant sessions accessing BI as a service. In Proceedings of the 2014 IEEE
Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), Paris,
France, 20–22 August 2014; pp. 498–505.

http://dx.doi.org/10.1145/3292384.3292388

Sensors 2020, 20, 844 17 of 19

9. Zhang, K.; Chang, Y.; Chen, M.; Bao, Y.; Xu, Z. Engaging Heterogeneous FPGAs in the Cloud. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA,
24–26 February 2019; p. 308.

10. Graf, H.P.; Cadambi, S.; Jakkula, V.; Sankaradass, M.; Cosatto, E.; Chakradhar, S.; Dourdanovic, I. A Massively
Parallel Digital Learning Processor. In Advances in Neural Information Processing Systems 21; Curran Associates,
Inc.: Red Hook, NY, USA, 2009; pp. 529–536.

11. Gupta, P. Accelerating Datacenter Workloads. In Proceedings of the 26th International Conference on Field
Programmable Logic and Applications (FPL), Ghent, Belgium, 4–8 August 2016.

12. Salcic, Z.; Smailagic, A. Digital Systems Design and Prototyping Using Field Programmable Logic; Springer
Science & Business Media: New York, NY, USA, 2012.

13. Xiao, K.; Forte, D.; Jin, Y.; Karri, R.; Bhunia, S.; Tehranipoor, M. Hardware trojans: Lessons learned after one
decade of research. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2016, 22, 6. [CrossRef]

14. Chen, A.; Hu, X.S.; Jin, Y.; Niemier, M.; Yin, X. Using emerging technologies for hardware security beyond
PUFs. In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 14–18 March 2016; pp. 1544–1549.

15. Zhang, J.; Yuan, F.; Wei, L.; Liu, Y.; Xu, Q. VeriTrust: Verification for hardware trust. IEEE Trans. Comput.-Aided
Des. Integr. Circ. Syst. 2015, 34, 1148–1161. [CrossRef]

16. Bhunia, S.; Hsiao, M.S.; Banga, M.; Narasimhan, S. Hardware Trojan attacks: Threat analysis and
countermeasures. Proc. IEEE 2014, 102, 1229–1247. [CrossRef]

17. Lv, Y.Q.; Zhou, Q.; Cai, Y.C.; Qu, G. Trusted integrated circuits: The problem and challenges. J. Comput. Sci.
Technol. 2014, 29, 918–928. [CrossRef]

18. Chakraborty, R.S.; Narasimhan, S.; Bhunia, S. Hardware Trojan: Threats and emerging solutions.
In Proceedings of the 2009 IEEE International High Level Design Validation and Test Workshop,
San Francisco, CA, USA, 4–6 November 2009; pp. 166–171.

19. Suh, G.E.; Devadas, S. Physical unclonable functions for device authentication and secret key generation.
In Proceedings of the 2007 44th ACM/IEEE Design Automation Conference, San Diego, CA, USA, 4–8 June
2007, pp. 9–14.

20. Labrado, C.; Thapliyal, H.; Prowell, S.; Kuruganti, T. Use of Thermistor Temperature Sensors for
Cyber-Physical System Security. Sensors 2019, 19, 3905. [CrossRef]

21. Babaei, A.; Schiele, G. Physical Unclonable Functions in the Internet of Things: State of the Art and Open
Challenges. Sensors 2019, 19, 3208. [CrossRef]

22. Narasimhan, S.; Du, D.; Chakraborty, R.S.; Paul, S.; Wolff, F.; Papachristou, C.; Roy, K.; Bhunia, S.
Multiple-parameter side-channel analysis: A non-invasive hardware Trojan detection approach.
In Proceedings of the 2010 IEEE international symposium on hardware-oriented security and trust (HOST),
Anaheim, CA, USA, 13–14 June 2010; pp. 13–18.

23. Araque, A.; Carmignoto, G.; Haydon, P.G. Dynamic signaling between astrocytes and neurons. Annu. Rev.
Physiol. 2001, 63, 795–813. [CrossRef]

24. Perea, G.; Gómez, R.; Mederos, S.; Covelo, A.; Ballesteros, J.J.; Schlosser, L.; Hernández-Vivanco, A.;
Martín-Fernández, M.; Quintana, R.; Rayan, A.; et al.. Activity-dependent Switch of GABAergic Inhibition
into Glutamatergic Excitation in Astrocyte-neuron Networks. Elife 2016, 5, 1–26. [CrossRef]

25. Schemmel, J.; Briiderle, D.; Griibl, A.; Hock, M.; Meier, K.; Millner, S. A Wafer-scale Neuromorphic Hardware
System for Large-scale Neural Modeling. In Proceedings of the 2010 IEEE International Symposium on
Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 1947–1950.

26. Furber, S.B.; Galluppi, F.; Temple, S.; Plana, L.A. The Spinnaker Project. Proc. IEEE 2014, 102, 652–665.
[CrossRef]

27. Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.;
Guo, C.; Nakamura, Y.; et al. A Million Spiking-neuron Integrated Circuit with a Scalable Communication
Network and Interface. Science 2014, 345, 668–673. [CrossRef] [PubMed]

28. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain,
S.; et al. Loihi: A Neuromorphic Manycore Processor with On-chip Learning. IEEE Micro 2018, 38, 82–99.
[CrossRef]

http://dx.doi.org/10.1145/2906147
http://dx.doi.org/10.1109/TCAD.2015.2422836
http://dx.doi.org/10.1109/JPROC.2014.2334493
http://dx.doi.org/10.1007/s11390-014-1479-9
http://dx.doi.org/10.3390/s19183905
http://dx.doi.org/10.3390/s19143208
http://dx.doi.org/10.1146/annurev.physiol.63.1.795
http://dx.doi.org/10.7554/eLife.20362
http://dx.doi.org/10.1109/JPROC.2014.2304638
http://dx.doi.org/10.1126/science.1254642
http://www.ncbi.nlm.nih.gov/pubmed/25104385
http://dx.doi.org/10.1109/MM.2018.112130359

Sensors 2020, 20, 844 18 of 19

29. Madden, K.; Harkin, J.; McDaid, L.; Nugent, C. Adding Security to Networks-on-Chip using Neural
Networks. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI),
Bangalore, India, 18–21 November 2018; pp. 1299–1306.

30. Farahmandi, F.; Huang, Y.; Mishra, P. Trojan Detection Using Machine Learning. In System-on-Chip Security;
Springer: Cham, Switzerland, 2020; pp. 173–188.

31. Mthunzi, S.N.; Benkhelifa, E.; Bosakowski, T.; Hariri, S. A bio-inspired approach to cyber security. In Machine
Learning for Computer and Cyber Security: Principle, Algorithms, and Practices; CRC Press: Boca Raton, FL, USA,
2019; p. 75.

32. Abbott, L.F.; Nelson, S.B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 2000, 3, 1178–1183. [CrossRef]
[PubMed]

33. Song, S.; Miller, K.D.; Abbott, L.F. Competitive Hebbian Learning through Spike-Timing-Dependent Synaptic
Plasticity. Nat. Neurosci. 2000, 3, 919–926. [CrossRef]

34. Bienenstock, E.L.; Cooper, L.N.; Munro, P.W. Theory for the development of neuron selectivity: Orientation
specificity and binocular interaction in visual cortex. J. Neurosci. 1982, 2, 32–48. [CrossRef]

35. Bear, M.F.; Cooper, L.N.; Ebner, F.F. A physiological basis for a theory of synapse modification. Science 1987,
237, 42–48. [CrossRef]

36. Liu, J.; McDaid, L.J.; Harkin, J.; Karim, S.; Johnson, A.P.; Millard, A.G.; Hilder, J.; Halliday, D.M.; Tyrrell,
A.M.; Timmis, J. Exploring Self-Repair in a Coupled Spiking Astrocyte Neural Network. IEEE Trans. Neural
Netw. Learn. Syst. 2018, 30, 865–875. [CrossRef]

37. Liu, J.; McDaid, L.J.; Harkin, J.; Wade, J.; Karim, S.; Johnson, A.P.; Millard, A.G.; Halliday, D.M.; Tyrrell, A.M.;
Timmis, J. Self-repairing learning rule for spiking astrocyte-neuron networks. In International Conference on
Neural Information Processing; Springer: Cham, Switzerland, 2017; Volume 10639, pp. 384–392.

38. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge
University Press: Cambridge, UK, 2002.

39. Fusi, S.; Annunziato, M.; Badoni, D.; Salamon, A.; Amit, D.J. Spike-driven synaptic plasticity: Theory,
simulation, VLSI implementation. Neural Comput. 2000, 12, 2227–2258. [CrossRef]

40. Johnson, A.P.; Liu, J.; Millard, A.G.; Karim, S.; Tyrrell, A.M.; Harkin, J.; Timmis, J.; McDaid, L.J.; Halliday,
D.M. Homeostatic Fault Tolerance in Spiking Neural Networks: A Dynamic Hardware Perspective. IEEE
Trans. Circ. Syst. I Regul. Pap. 2017, PP, 1–13. [CrossRef]

41. Johnson, A.P.; Liu, J.; Millard, A.G.; Karim, S.; Tyrrell, A.M.; Harkin, J.; Timmis, J.; McDaid, L.; Halliday, D.M.
Fault-Tolerant Learning in Spiking Astrocyte-Neural Networks on FPGAs. In Proceedings of the 2018 31st
International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems
(VLSID), Pune, India, 6–10 January 2018; pp. 49–54. doi:10.1109/VLSID.2018.36. [CrossRef]

42. Pirpilidis, F.; Stefanidis, K.G.; Voyiatzis, A.G.; Kitsos, P. On the effects of ring oscillator length and hardware
Trojan size on an FPGA-based implementation of AES. Microprocess. Microsyst. 2017, 54, 75–82. [CrossRef]

43. Johnson, A.P.; Chakraborty, R.S.; Mukhopadhyay, D. A novel attack on a FPGA based true random
number generator. In Proceedings of the WESS’15: Workshop on Embedded Systems Security, Amsterdam,
The Netherlands, 4–9 October 2015; p. 6.

44. Johnson, A.P.; Patranabis, S.; Chakraborty, R.S.; Mukhopadhyay, D. Remote dynamic clock reconfiguration
based attacks on internet of things applications. In Proceedings of the 2016 Euromicro Conference on Digital
System Design (DSD), Limassol, Cyprus, 31 August–2 September 2016; pp. 431–438.

45. Johnson, A.P.; Patranabis, S.; Chakraborty, R.S.; Mukhopadhyay, D. Remote dynamic partial reconfiguration:
A threat to Internet-of-Things and embedded security applications. Microprocess. Microsyst. 2017, 52, 131–144.
[CrossRef]

46. Xilinx Inc. Mixed-Mode Clock Manager (MMCM) Module (v1.00a). 2012. Available: www.xilinx.com/
support/documentation/ip_documentation/mmcm_module.pdf (accessed on 4 February 2020).

47. Chen, C.; Parsa, R.; Patil, N.; Chong, S.; Akarvardar, K.; Provine, J.; Lewis, D.; Watt, J.; Howe, R.T.; Wong,
H.S.P.; et al. Efficient FPGAs using nanoelectromechanical relays. In Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 21–23
February 2010; pp. 273–282.

http://dx.doi.org/10.1038/81453
http://www.ncbi.nlm.nih.gov/pubmed/11127835
http://dx.doi.org/10.1038/78829
http://dx.doi.org/10.1523/JNEUROSCI.02-01-00032.1982
http://dx.doi.org/10.1126/science.3037696
http://dx.doi.org/10.1109/TNNLS.2018.2854291
http://dx.doi.org/10.1162/089976600300014917
http://dx.doi.org/10.1109/TCSI.2017.2726763
https://doi.org/10.1109/VLSID.2018.36
http://dx.doi.org/10.1109/VLSID.2018.36
http://dx.doi.org/10.1016/j.micpro.2017.09.001
http://dx.doi.org/10.1016/j.micpro.2017.06.005
www.xilinx.com/support/documentation/ip_documentation/mmcm_module.pdf
www.xilinx.com/support/documentation/ip_documentation/mmcm_module.pdf

Sensors 2020, 20, 844 19 of 19

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Fundamental Research
	Learning in Spiking Neural Networks
	Spike Flow Regulation in the Spiking Neural Network

	Trojan Detection Unit Using SANN
	Detailed Trojan Detection Unit for Large-Scale Cyber-Physical Systems
	Design for Trust
	Experimental Results
	Experimental Setup
	Hardware Results on Xilinx Artix-7 FPGA
	SANN-DFT Initialization
	Hardware Trojan Detection
	Fault Attack on Trojan Detection Unit

	Conclusions
	References

