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Abstract

Accelerometer data are widely used in research to provide objective measurements of physical 

activity. Frequently, participants may remove accelerometers during their observation period 

resulting in missing data referred to as nonwear periods. Common approaches for handling 

nonwear periods include discarding data (days with insufficient hours or individuals with 

insufficient valid days) from analyses and single imputation (SI) methods.

Purpose: This study evaluates the performance of various discard-, SI-, and multiple imputation 

(MI)-based approaches on the ability to accurately and precisely characterize the relationship 

between a summarized measure of accelerometer counts (mean counts per minute) and an 

outcome (body mass index).

Methods: Realistic accelerometer data were simulated under various scenarios that induced 

nonwear. Data were analyzed using common and MI methods for handling nonwear. Bias, relative 

standard error, relative mean squared error, and coverage probabilities were compared across 

methods.

Results: MI approaches were superior to commonly applied methods, with bias that ranged from 

−0.001 to −0.028 that was considerably lower than that of discard-based methods (ranging from 

−0.050 to −0.057) and SI methods (ranging from −0.061 to −0.081). We also reported substantial 

variation among MI strategies, with coverage probabilities ranging from .04 to .96.

Conclusion: Our findings demonstrate the benefit of applying MI methods over more commonly 

applied discard- and SI-based approaches. Additionally, we show that how you apply MI matters, 

where including data from previously observed acceleration measurements in the imputation 

model when using MI improves model performance.
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Accelerometer devices are frequently used in medical and public health research to assess 

physical activity (PA), sedentary behavior (SB), and sleep. These devices rely on sensors 

to convert acceleration into electrical signals, which can be quantified by algorithms 

and interpreted as objective measurements of movement (Chen & Bassett, 2005; John & 

Freedson, 2012).

Some currently used accelerometers provide raw output in the form of high-frequency 

acceleration measurements in gravity units (g-units) that represent changes in velocity in 

three orthogonal directions. Prior to analysis, these measurements are often aggregated into 

epochs (distinct, equally sized windows of time) within individuals over their observation 

period. Data at a given epoch may be summarized as a count that represents the acceleration 

level for the epoch. These aggregated quantities may be further summarized into measures 

like mean counts per minute (CPM), or proportion of time spent in moderate or vigorous 

PA. Analysis of accelerometer-derived activity measures is complicated by missing data 

that arise from periods when the study participant does not wear the device as requested

—referred to as nonwear periods. As signal recorded during nonwear periods can be 

misclassified as the participant’s activity (e.g., sleep or SB), a number of algorithms have 

been developed to distinguish wear periods from nonwear periods (Choi et al., 2011; 

Evenson et al., 2008; Hecht et al., 2009; Syed et al., 2020; Tackney et al., 2021; Troiano 

et al., 2008). For example, Troiano and others used a 60-min window of zero counts with 

an allowance of up to 2 min of counts between0 and 100 (Troiano et al., 2008). Assuming 

nonwear periods are identifiable and known (as assumed for the purposes of our study), 

methods for handling nonwear periods need to be considered carefully, as the approach 

could lead to biased and or inefficient estimates of PA, SB, sleep, and relationships of 

interest that involve such measures.

A diverse set of approaches have emerged for handling such periods in the analysis 

(Alhassan et al., 2008). These vary from easy-to-apply discard-based approaches like 

complete case (CC) analyses to more complex approaches such as single imputation (SI) 

and multiple imputation (MI). The most commonly applied approaches for the analysis 

of accelerometer data, however, are discard-based approaches that eliminate participants 

or days with incomplete data (Alhassan et al., 2008; Esliger et al., 2005; Mâsse et al., 

2005). For example, CC analyses involve removing all nonwear epochs and analyzing 

the remaining periods measured during wear time. Variations on discard-based approaches 

involve eliminating entire days from the analysis if a minimum number of hours of wear 

time is not met and/or excluding individuals from the analysis if they do not contribute 

a minimum number of days (Evenson & Terry, 2009). For example, Mâsse and others 

evaluated various discard-based approaches common in the literature that include a range 

of definitions for a day to be eligible for inclusion in the analysis: 60% of recorded data 

during wake time; 80% of data recorded during a standard day, where the latter is defined by 

the length of time in which 70% of sample wore the monitor; or 12 hr of wear time during 
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a 24-hr period (Mâsse et al., 2005). Furthermore, it is common to require an individual to 

have at least 4 days of data for inclusion in the analysis. Mâsse and others demonstrate how 

even among various discard-based approaches the interpretation of findings can be greatly 

affected (Mâsse et al., 2005).

Importantly, discard-based approaches are less efficient and produce biased estimates of 

relationships of interest unless the mechanism driving nonwear is completely random, 

known as missing completely at random (i.e., if nonwear periods are not related to any 

observed or unobserved variables of interest, such as an exposure or outcome). In reality, 

however, data are rarely missing completely at random. More typically, data are either 

missing at random (MAR) or not missing at random (NMAR; Little & Rubin, 2014). In the 

former scenario, missingness is related to observed variables only (e.g., if PA is more likely 

to be missing in boys, and conditional on gender, unobserved PA values are no different than 

observed PA values). In the latter scenario, missingness may also be related to unobserved 

variables (e.g., if among boys, PA data are only available during active hours or if among 

girls, PA data are only available during sedentary periods). It is in these situations (when the 

data are not missing completely at random), where likelihood-based methods or MI-based 

methods should be considered over CC approaches in order to characterize relationships of 

interest efficiently and without bias.

In contrast to discard-based methods, imputation methods, enable use of the whole data set 

by filling in missing data. SI methods are those that replace missing values with imputed 

values once, resulting in one full data set (Donders et al., 2006). For example, Alhassan 

et al. (2008) applied SI to accelerometer data via a composite method that used wear time 

data to produce participant-specific data stratified by weekday or weekend, which were then 

combined to generate summary measures that outperformed those generated by a number 

of discard-based approaches. While they have the potential to address loss of efficiency of 

discard-based approaches, SI approaches may still be biased. Furthermore, they may still 

yield incorrect estimates of the standard error (SE), as it has been well established that SI 

methods do not appropriately account for the uncertainty of the imputation process nor of 

the imputed value (Little & Rubin, 2014).

In contrast, MI techniques produce valid estimators under less stringent assumptions 

regarding missingness (MAR) than discard-based approaches, and can be described in three 

steps: (a) generate multiple imputed data sets from a plausible distribution specified for the 

data using an imputation algorithm; (b) fit scientific model to each imputed data set; and (c) 

pool estimates from models (d) in a way that incorporates variation, both within and across 

imputated data sets, to appropriately account for all sources of uncertainty (Little & Rubin, 

2014; Rubin, 1987; Van Buuren, 2007).

We are not the first to consider MI strategies for analyzing accelerometer studies. 

However, most of the literature does not specifically focus on handling missing data when 

characterizing a relationship between accelerometer-based measures and other covariates. 

For example, Lee and Gill’s (2018) goal was to impute agnostically to any prespecified 

analysis plan as part of data preprocessing. To that end, they targeted imputation efforts 

directly at the epoch-level count data and developed an imputation model that accounts 
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for autocorrelation and over/under dispersion based on a zero-inflated Poisson lognormal 

mixture model. Their approach was evaluated via root mean squared error (MSE) and 

was superior to several other models in the ability to predict actual count data. The 

method’s performance in estimating relationships involving accelerometer data have yet 

to be characterized. Similar to Lee and Gill, Liu et al. also imputed on the epoch level, 

using an additive regression, bootstrapping, and predictive mean matching approach on 

National Health and Nutrition Examination Survey data to address systematic missing step 

data across individuals and even whole municipalities (Liu et al., 2016). As they were 

not interested in assessing the performance of imputation in characterizing relationships 

between accelerometer-based PA measures and a covariate, evaluation of the imputation 

procedure was similarly done by comparing imputed and actual distributions. Similarly, 

Catellier et al. evaluated MI and SI approaches for missing summary measures of 

accelerometer data. They found the two methods comparable with respect to bias, where 

MI resulted in superior precision (Catellier et al., 2005).

The literature on MI to handle missing data when characterizing relationships between an 

accelerometer-based measure and covariate is less prevalent. Tackney et al. (2021) provide 

a framework for the specific context for imputing an aggregated summary measure—daily 

steps—when daily steps can be considered right censored and used the MOVE-IT trial to 

illustrate ideas. In a novel study by Butera et al. (2019), a hot deck-based MI approach 

that involved imputing counts on the epoch level demonstrated comparable or superior 

performance relative to discard-based approaches. While interest was centered on bivariable 

relationships and the study was simulation-based, they did not evaluate their methods based 

on a known (simulated) bivariable relationship. Instead properties were assessed relative to 

a full data set without missing data, which was taken as the gold standard. Futhermore, 

the evaluation was limited to one MAR scenario under a limited range of fraction of 

missingness (from 1% to 10%). Borgundvaag et al. (2017) compared estimation of the 

association of minutes of moderate or vigorous PA with cardiovascular fitness measures 

between a discard-based analysis and epoch-level MI approaches in a limited simulation 

study with a low percentage of missing data (7%) under one MAR condition. Based on their 

findings that imputation- and discard-based analyses were comparable, they concluded that 

discard-based analyses were sufficient to address missing data issues.

Despite the prevalence in the literature of different approaches for handling nonwear time, 

there has yet to be a thorough, simulation-based exploration of how epoch-level imputation 

methods compare in their ability to characterize relationships between summarized 

accelerometer-based data and outcome. More specifically, our focus is in assessing the 

relationship between a summarized measure of PA based on accelerometer data (CPM) and 

a clinical outcome when imputing at the epoch level. Aside from work by Butera and others, 

none of the above studies have thoroughly explored performance of methods for handling 

non-wear periods when addressing this question. Furthermore, none use a simulation 

approach that enables comparison of statistical properties under a known relationship, 

critical for a valid comparison. In response to the current gap in the literature, using real data 

as the basis, we developed a novel, nonparametric pseudo-bootstrap approach to simulate 

a new set of complete accelerometer data with known relationships between a summarized 

PA measure (CPM) and outcome (body mass index [BMI]). Through this approach, we 
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simulated relationships between CPM and BMI, under a wide range of scenarios, and 

compared the performance of several MI-based and commonly applied analytic approaches 

for dealing with missingness.

Methods

Participant Pool

Our study is motivated by the Stanford GOALS study, a randomized controlled clinical 

trial to evaluate a multifaceted intervention to reduce obesity in children conducted at 

Stanford University (Robinson et al., 2021) that was part of the larger National Heart 

Lung Blood Institute-sponsored Childhood Obesity Prevention and Treatment Research 

Consortium (Pratt et al., 2013; Robinson et al., 2013).

Preparation of the Accelerometer Data Sampling Pool

For simplicity and without loss of generality to other univariable measures such as 

the triaxial-based vector of magnitude, we generated data based on the vertical axis 

accelerometer data from participants of Stanford GOALS. Using 1-s epoch accelerometer 

count data from the vertical axis, we aggregated data over a 60-s epoch length by summing 

across seconds. We then used default arguments in the wearingMarking() function from 

the PhysicalActivity R package, which implements the nonwear classification algorithm 

described by Choi et al. (2021), to detect periods of nonwear, and removed all whole number 

(e.g., 0:00–0:59, 1:00–1:59, etc.) hours that contained any minutes classified as nonwear. 

The remaining data were used as the sampling pool for the generation of count data as part 

of the simulated data sets.

Sampling Process

To construct simulated data, we labeled the count data by their corresponding day (e.g., 

Monday, Tuesday, etc.) and hour (e.g., 0:00–0:59, 1:00–1:59, etc.). Figure 1 shows an 

abbreviated illustration of the process. We took all wear epochs present in Stanfod GOALS 

data (a), split them by hour of the day (b), and collected these hour-long pieces of data into 

a sampling pool (c). For each hour of the day for each of 7 days for each simulated subject, 

we randomly sampled with replacement from the sampling pool (d). Each sampled hour was 

kept intact and the order of epochs were maintained. These samples were then combined 

across hours and days chronologically to construct data for each subject (e). We used this 

process of sampling 1-hr blocks to generate 100 data sets where each data set was composed 

of 100 individuals with 7 days (Sunday–Saturday), with longitudinal count measurements 

composed of underlying data measured within 1-min length epochs.

Assessing PA Level

The PA level for each minute epoch was classified using classification thresholds defined by 

Evenson et al. (2008) into either sedentary, light, moderate, or vigorous activity.

Our primary PA measure of interest for this study is mean CPM, which is calculated 

for each individual by summing up their weartime counts—defined as counts (levels of 

acceleration for a given epoch) during the time when the individual is wearing the device
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—and dividing by their number of weartime minutes (the total number of minutes when 

the individual is wearing the device). For a simulated participant with complete data, there 

are 7 days × 24hours
day × 60minutes

hour = 10, 800 min of wear time. For individuals who do not wear 

their device the entire time, the number of wear time minutes is reduced. If an individual 

only wore the device half the time, their wear time minutes would be 5,400 min. CPM would 

be calculated by summing up the counts during these 5,400 min and dividing by 5,400.

Generating Demographic and Baseline Characteristics

We generated race, age, gender, and season, where race and age were generated based on 

patterns present in the Stanford GOALS data set. Specifically, we assigned race to each 

member of our simulated cohort based on the marginal probability distribution that matched 

the Stanford GOALS study (98% Latinx, 2% Black, and <1% other). Age was generated 

as a sum of the mean GOALS cohort age (9.53 years), within-subject standardized CPM, 

and random noise from N 0, σage
2 , where σage

2  was set as the observed variance of age in the 

GOALS data. Gender was generated as a probabilistic function of a subject’s CPM, so that 

individuals with higher CPMs were more likely to be girls and individuals with lower CPMs 

were more likely to be boys. In a typical simulated cohort, this produced a 3:2 ratio of 

females to males. The relationship induced between CPM and gender was not based on any 

findings in the literature. Instead the decision to have a relationship between a covariate 

(gender) and outcome (CPM) was motivated by the goal that the relationship could be 

leveraged in an MI strategy. Relationships between gender and PA, however, are seen in the 

literature, although not consistently. In a 2-year longitudinal study of Swedish 8-year-olds, 

Lahti et al. (2019) found that compared to boys, girls had significantly lower PA 2 years 

after baseline. On the other hand, Schwarzfischer et al. studied children from the Childhood 

Obesity Project and found no difference in overall PA between boys and girls, but did find 

a difference in time spent at different PA intensities (Koletzo et al., 2009; Schwarzfischer 

et al., 2019). The relationships we induced in our simulations were not intended to reflect 

findings in the literature. Finally, season (school year vs. summer vacation) was randomly 

assigned to each subject producing a 3:1 ratio of school year days to summer vacation days.

Generating BMI

Our true data-generating model defines the relationship between BMI and CPM as a 

simple linear model. We generated BMI as a linear function of CPM under three effect 

sizes indexed by j (j = 1, 2, and 3), using the general form: BMIji = αj + βj × CPMi + ϵi, where 

individuals are indexed by i = 1, 2, …, 100, ϵi represents random error that is assumed to be 

normally distributed such that ϵi ∼ N(0, 3), and effect sizes that describe the relationship 

between CPM and BMI took on three values (no relationship, modest relationship, and 

strong relationship) corresponding to β = 0, 0.05, and 0.1 for j = 1, 2, and 3. Intercepts, 

represented by αs, were chosen so that the mean of each BMI variable was 25. Note that 

these simulated relationships are not reflective of those found in the literature, where there 

exists strong evidence for a negative relationship between PA and BMI (Chen et al., 2021). 

We chose these associations to illustrate principles, and we consider a range of strengths (no 

relationship, moderate, and strong).
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Generating Auxiliary Counts

We generated a single auxiliary variable that was intentionally strongly related to the epoch-

level count data (Pearson correlation with counts of 0.9 and never missing).

Inducing Nonwear for Hours and Days

The missing data mechanisms (MDMs) for hours and days were specified separately. We 

imposed nonwear time in hour-long blocks using the following four MDMs for missing a 

given hour; model coefficients are explained below:

1. Missing at random (MAR1): The probability that any particular hour is missing 

is a function of a constant probability and whether or not the previous hour was 

nonwear. This corresponds to the following equation:

P nonweariℎ = 1 = L η1 + γlag1nonweari, ℎ − 1 + O(ℎ) ,

where nonweariℎ = 1 if hour hr for subject i is nonwear and 0 otherwise. Here, 

missingness at the particular hour is a function of missingness in the previous 

hour.

2. Missing related to covariates (MAR2): For each subject, the probability that 

any particular hour is nonwear is a function of whether the previous hour was 

nonwear and the following subject-specific covariates: season, time of day, day 

of the week, sex, race, age, and BMI. This corresponds to the following equation:

P nonweariℎ = 1
= L η2 + X2iℎβ2 + γlag2nonweari, ℎ − 1 + O(ℎ) ,

where nonweariℎ is defined as above, X2iℎ contains covariates for subject i at hour 

hr and β2 is a vector of corresponding weights.

3. Missing related to covariates and true overall activity (NMAR1): For each 

subject, the probability that any particular hour is nonwear is a function of 

whether the previous hour was nonwear and the following subject-specific 

covariates: season, time of day, day of the week, sex, race, age, BMI, and a 

subject’s true overall activity levels. As a subject’s true overall activity level is 

not always fully observed, this is considered a NMAR mechanism.

P nonweariℎ = 1)
= L η3 + X3iℎβ3 + γlag3nonweari, ℎ − 1 + O(ℎ)

where nonweariℎ is defined as above, X3iℎ contains covariates for subject i at hour 

hr and β3 is a vector of corresponding weights.

4. Missing related to covariates and true epoch-level activity (NMAR2): For each 

subject, the probability that any particular hour is nonwear is an arbitrarily 

prespecified function of whether the previous hour was nonwear and the 

following subject-specific covariates: season, time of day, day of the week, 
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sex, race, age, BMI, and a subject’s true hour-specific activity level, as often 

missingness may be more or less likely depending on the actual level of activity. 

Imposing missingness on the hour level as a function of an hour-level resolution 

variable produces nonrandom missingness.

P nonweariℎ = 1)
= L η4 + X4iℎβ4 + γlag4nonweari, ℎ − 1 + O(ℎ) ,

where nonweariℎ is defined as above, X4iℎ contains covariates for subject i at hour 

hr and β4 is a vector of corresponding weights.

L() is the standard logistic function. Coefficients describing the relationship between each 

variable and missingness were set according to empirical relationships observed from the 

GOALS study. For example, for MAR2, we fit a logistic regression model regressing any 

nonwear on the hour as a function of the previous hour’s nonwear status, season, time of 

day, day of the week, sex, race, age, and BMI to the Stanford GOALS data. We then used 

the resulting coefficients to calculate a probability of nonwear for each hour in the simulated 

data sets. An offset term, O(ℎ), was included in the calculations to enable control over the 

prevalence of nonwear time in our simulated data sets. Specifically, to more closely mimic 

the real data, the offset term was defined as a periodic function of time of day that increased 

the probability of nonwear during the evening using the following expression.

O(ℎ) = − 3 × cos ℎ − 12
12 × π .

Nonwear was then induced by comparing probabilities of missingness to uniformly 

distributed random variables such that if p < P  nonweariℎ = 1 , p ∈ U(0, 1), the hour was 

set to nonwear.

Additionally, we induced missing data for an entire day under an NMAR mechanism. 

Specifically, we assumed the probability that a day was missing was a function of gender 

and true overall activity level. As a subject’s true overall activity level may not be fully 

observed, this is considered an NMAR mechanism.

Methods Used to Handle Nonwear Periods in Analyses

We implemented three general approaches to dealing with nonwear time, which comprised 

the specific strategies outlined in this section and shown in Table 1.

Discard

Complete Case—The CC approach discards all nonwear data from the analysis.

Subject and/or Day Exclusion (Exclude Days/Subjects)—Entire days of data are 

discarded if nonwear time is too extensive, and entire subjects are discarded if they are 

missing too many days. Specifically, we removed days that had fewer than 15 hr of wear 

time and subjects who had fewer than five (out of a possible seven) days of data.
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Single Imputation

Imputation of Nonwear as Sedentary (Nonwear Sedentary Imputation)—
Nonwear time was recategorized as sedentary wear time and corresponding counts were 

set to zero. This approach, which may or may not be reasonable, represents a strong NMAR 

assumption about the nature of nonwear—specifically that all nonwear epochs correspond to 

SB.

Imputation of Cohort-Wide Regression Mean (Regression Imputation)—We 

used wear time data to regress counts on time of day, an indicator for whether the count 

occurred on the weekend, sex, race, age, and BMI across the whole cohort and imputed 

counts falling in the nonwear periods using the model intercept.

Within-Person MI—We split each subject’s wear time data into weekday (Monday–

Friday) and weekend (Saturday–Sunday) components and the mean number of counts for 

each minute of wear time was calculated. For nonwear epochs, the subject-minute-specific 

mean count for the weekday or weekend was used to impute data that occurred on the 

weekday or weekend, respectively, as studied by Alhassan et al. (2008).

Multiple Imputation by Chained Equations

We used R’s Multiple Imputation by Chained Equations package to multiply impute 

nonwear counts at the epoch level using Multiple Imputation by Chained Equations’s built-

in Bayesian Linear Regression method (Van Buuren & Groothuis-Oudshoorn, 2011). We 

calculated CPM in each imputed data set, regressed BMI on CPM, and pooled our results 

across each data set using Rubin’s Rules (Little & Rubin, 2014). More specifically, for 

each MI strategy, we imputed five data sets, each with five iterations using the Bayesian 

linear regression (“norm”) imputation model (see example code in Supplementary Code 

[available online]). These MI strategies have three stages. The first stage (imputation) 

involves imputing count data for nonwear epochs to create a complete data set with 

minute-long epochs. In the second stage (analysis), for each imputed data, counts are 

aggregated into CPM, and each participant’s BMI is regressed on their CPM. In the third 

stage (summarization), results from all regression models are pooled to produce a single 

estimate and confidence interval describing the relationship between CPM and BMI.

We considered MI models that included the following variables:

• MI1: BMI only

• MI2: BMI and demographic variables (hour, weekend, sex, race, age, and BMI).

• MI3: BMI, demographic variables, and observed CPM.

• MI4: BMI, demographic variables, observed CPM, and auxiliary count.

• MI5: BMI, demographic variables, and lag (this matches the true missing data 

mechanism specified by MAR1).

• MI6: BMI, demographic variables, lag, and auxiliary count where lag at time t is 

the observed or missing count value from time t − 1.
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Metrics Used to Compare Performance

These strategies are designed to capture the known relationship we imposed between BMI 

and CPM. With that goal in mind, we focus on the following metrics which correspond to 

measures of fidelity between the regression results produced by these approaches and the 

known relationship.

• Bias: The mean difference between the true value of a parameter and the 

estimated value across all simulation replications.

• Mean relative SE: The mean ratio of model SE to the SE obtained by fitting the 

True Model (true data generating model fit to the data with no nonwear data).

• Relative MSE: The ratio of a model’s MSE to the MSE obtained by fitting the 

True Model.

• Coverage: The proportion of simulated data sets in a scenario for which the 

model-estimated 95% confidence interval contained the true value.

Results

Accelerometer Data Simulation

Subjects in the Stanford GOALS study ranged in number of nonwear minutes from 0 to 

15,986 (percentage of nonwear time: 0–78.3). We removed 6,814 hr (14.1%) that included 

any nonwear periods as identified by the algorithm. This produced a sample pool with 

41,635 hr of count data. Summary statistics were nearly equal between simulated sets and 

real sets—wear time CPM (SD) were 349 (802) and 352 (818), respectively, for observed 

Stanford GOALS data and a randomly selected simulated data set.

We observed negligible within-person clustering at the count level in the GOALS data 

(intraclass correlation coefficient = .01), and our sampling procedure preserved this 

characteristic. In the Stanford GOALS study, 12.9% of the epochs were classified as 

nonwear. In order to better examine the effects of extensive nonwear data, our simulated 

data had a higher level of nonwear than GOALS data. Overall, the number of imposed 

nonwear time epochs in simulated data had a median (interquartile range) of 44% (43%– 

45%) and ranged from 38% to 53%.

Differences in Effect Sizes Between CPM and BMI

Table 2 shows summary statistics across all scenarios shown in Figures 2–4. For simplicity, 

we present results for β = 0.10 only and include results for other values of β in 

Supplementary Table S1 (available online), as patterns remained the same under these 

conditions.

Comparative Performance Among Discard-, SI-, and MI-Based Approaches

Figure 2 shows mean relative SE on the y-axis and absolute bias on the x-axis for β = 0.1
for discard approaches (CC and exclude days/subjects), and SI and the MI1 (simplest MI 

strategy) approaches. The results for the True Model fall at the intersection of the two 

red dashed lines. All approaches fall to the left of the vertical red dashed line, indicating 
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that they underestimate the true effect of CPM on BMI. With the exception of exclude days/

subjects under MAR1 and MAR2, all approaches underestimate SE. MI1 has substantially 

less bias than all of discard and SI approaches, with bias ranging from −0.018 to −0.01 BMI 

units per CPM (or BMI/CPM). The closest approach to MI1 is exclude days/subjects, which 

has 2.8–5 times the bias of MI1.

Figure 3 shows relative MSEs on the log10 scale for discard, SI, and MI1 approaches. Here 

too, MI1 shows results more consistent with the True Model, with relative MSE ranging 

from 1.9 to 3.8.

Comparative Performance Across MI Approaches

Considerable variation in bias and efficiency was observed across MI strategies (Table 2, 

Figure 4). Across all MDMs, bias across the MI strategies ranged from 0.001 to 0.028 

BMI/CPM in magnitude. Aside from MAR1 missing mechanisms, the approach with the 

auxiliary and lag terms in addition to BMI and demographic variables included in the MI 

model (MI6) had superior performance among MI approaches. For example in MAR2, MI6 

yielded bias of 0.002 BMI/CPM with proportional SE of 1.01. Among methods that did 

not include a strong auxiliary variable, MI1 fared better than other MI approaches in terms 

of bias, with biases ranging from 0.010 to 0.018 BMI/CPM in magnitude. However, this 

approach underestimated the SE for the CPM effect, especially for non-MAR1 approaches. 

MI5 was superior to MI1. MI that included demographics and a lag variable performed only 

slightly worse than the MI1 with respect to bias, but more accurately captured the SE, with 

mean relative model SEs ranging from 0.96 to 1.06 for non-MAR1 approaches.

Relative MSE improved with the inclusion of a strong auxiliary variable as observed in 

performance of MI4 and MI6 (Figure 5). Absent a strong auxiliary variable, the simpler MI1 

model had slightly lower relative MSE than the remaining MI methods.

Figure 6 shows coverage for MI approaches. Coverage for auxiliary-including models was 

highest, ranging across MDMs from 0.82 to 0.96, while coverage for other approaches was 

smaller and variable, ranging from 0.04 to 0.84.

Discussion

Overview

Our study is the first to quantitatively compare the most common missing data strategies 

along with numerous types of simple MI strategies for handling nonwear in accelerometer 

studies where relationships between PA and an outcome are of primary interest. Importantly, 

our approach is suitable for linear regression models where the goal is to draw inference on 

a relationship between a PA measure and outcome. Thus our metrics for evaluation include 

bias, relative MSE, and coverage and do not rely on comparisons between imputed and 

actual data, as the latter is not relevant for reflecting the ability to capture relationships 

of interest. These results demonstrate that there are clear benefits to using MI to impute 

epoch-level counts in accelerometer data. We found that MI produced less biased and more 

efficient estimation of the underlying relationship between BMI and CPM than did the 

non-MI approaches (discard and SI). Among MI approaches, the use of a strong auxiliary 
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variable provided the best results in terms of bias, SE estimation, coverage, and relative 

MSE. Absent a strong, epoch-level auxiliary variable, we found that it was more beneficial 

to include the previous epoch’s count in the imputation model than to simply include BMI 

and demographics.

Imputing Autocorrelated Data

Given the time series nature of the data, it is not clear how to best formulate the imputation 

model when imputing epoch-level count data for the purpose of exploring the relationship 

between an outcome and a summarized measure of counts. Lee and Gill (2018) proposed a 

model that appropriately accounts for the autocorrelation in the data, although their method 

has not been evaluated in the context of capturing a bivariable relationship. However, we 

had practical issues with fitting the model using their package. Their algorithm uses a log-

normal, zero-inflated Poisson mixture model for imputation. This algorithm imputes within 

days, starts in each day at a user-specified epoch and moves iteratively forward from that 

epoch. At each subsequent epoch, it uses imputed values from the previous epoch as part 

of its imputation model. Our data produced singularity errors in the algorithm when all the 

previous epoch’s values were zero for all nonzero, nonmissing observations in the current 

epoch. We thus considered a simpler approach to account for the time series nature of the 

data by including a lag term in our imputation models and achieved superior performance 

over commonly used methods.

Use of Patient-Level Characteristics in the Imputation Model

The inclusion of demographic variables in MI2 yielded an increase in bias of around 50% 

compared with the BMI-only MI (MI1). The results from including demographics and 

observed CPM (MI3) are almost identical to those of MI2 in terms of bias, SE, coverage, 

and relative MSE. These results may seem counterintuitive, but make sense since the data 

were generated so that the patient-level characteristics relate more to a person’s aggregate 

activity levels than to epoch-level activity. Thus they do not contain useful information for 

imputing epoch-level data.

The addition of lag (MI5) to imputation models did not improve bias, but did improve 

SE estimation, which yielded higher coverage and reduced relative MSE. For MAR1, this 

produced an overestimate for SE, while for more severe MDMs, inclusion of the lag term 

produced more efficient estimates.

Use of Auxiliary Terms in the Imputation Model

Auxiliary variables are those variables that may be useful to the imputation process in that 

they are correlated with either the variable with missing data, the MDM, or both (Little & 

Rubin, 2014). Including a strong auxiliary variable without the lag term (observed PA data 

in the prior epoch) (MI4) reduced bias by approximately 75%, yielded relative SE within 

0.93 for all MDMs, increased coverage probabilities above .8, and reduced relative MSEs to 

less than 1.5. The pattern of these improvements was also present when adding the auxiliary 

variable to more complex models (MI6 compared to MI5). Our most robust MI model, 

MI6, achieved close to 95% coverage probabilities across all MDMs. All nonauxiliary 

variable-inclusive MI approaches failed to achieve 95% coverage in any scenario, although 
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they yielded improved properties over discard and SI approaches. As expected, non-MI 

approaches yielded estimates with bias and underestimated SEs. Excluding individuals 

based on nonwear time thresholds provided the least bias, but resulted in relative MSEs 

that were higher than that of MI strategies.

Summary of MI Choices in Practice

Our study suggests that MI approaches provide a general improvement over more standard 

non-MI approaches. Once the decision to use MI has been made, practitioners must decide 

which variables to include in the MI model. Our results suggest that a strong, epoch-level 

auxiliary variable; the analytic outcome; and a lag variable are important to include. More 

complex strategies, like that of Lee and Gill, may be able to further improve on the statistical 

properties yielded by simple MI-analytic frameworks that impute under a separate model at 

the epoch-level, summarize, and then estimate the summary measure relationship to outcome 

in a simple linear model. This assessment remains as future work.

Strengths and Limitations of Our Study

Our study draws conclusions about methods for imputing accelerometer data in the specific 

context of relating an outcome to an accelerometer-based summary measure when the 

underlying accelerometer data may be missing. To that end, we developed a flexible 

approach to simulate accelerometer data that can produce data reflective of a target 

population and also allows for the imposition of tailored statistical relationships between 

outcome, covariates, and accelerometer data. Previous studies have worked with existing 

data where true relationships are unknown and thus do not provide the ability to assess the 

performance of how well these approaches accurately capture true relationships in the data.

Our approach relies on the assumption that nonwear time can be realistically simulated using 

wear time from the same hour on a different day. Additionally, we assume that nonwear 

is known and measured without error. In practice, accounting for uncertainty of nonwear 

measurements would be sensible and is future work. Our findings here are the first step in 

understanding how MI methods perform when data are known to be observed or missing.

In addition, we generated and evaluated a strong auxiliary variable highly correlated with 

minute-level epoch counts. In practice, the auxiliary variable may vary in strength. Our 

intention, however, was to demonstrate the possibility of MI in the presence of a strong 

auxiliary term or in its absence, providing a range of its performance. The authors have been 

involved in numerous trials, however, when accelerometer data was accompanied by strong 

auxiliary terms and thus, we believe these are plausible scenarios. For example, one study 

generated accelerometer data from two devices, where one was worn at the hip, measured 

at two discrete time points, considered the gold standard, and would serve as the outcome, 

and the second was generated from a Fitbit worn continuously on the wrist that served as 

both the intervention and to generate secondary outcome data. Due to battery issues, primary 

outcome data were missing in a large percentage of participants at one of the three time 

points. In this example study, the Fitbit data could serve as a strong auxiliary variable when 

imputing gold standard accelerometer data for the primary outcome.
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We recognize that the generalizability of our results is limited by our source data. For 

example, while we summarized PA only using the vertical axis, our results generalize to 

use of any axis or even the vector of magnitude, which summarizes across the three axes 

at a given window. The issue of how to handle missingness at the count level when trying 

to characterize a summarized PA measure and outcome remain if using uniaxial data or a 

univariable measure like vector of magnitude that summarizes across the three axes. We 

therefore do not anticipate that CPM aggregated over the vector of magnitude would yield 

different findings. Another approach that we did not explore here, however, would be to 

impute the individual axes prior to deriving vector of magnitude rather than imputing vector 

of magnitude at a given window. Our results do not generalize to this specific scenario and 

would need further exploration. Furthermore, only one MI strategy in our study matched the 

true MDM. Thus, most of the MI strategies we considered did not match the more complex 

MDMs. We see this as a strength because it allows the evaluation of simple MI methods 

when the true MDM is unknown. We used a readily available imputation method with an 

underlying normal parametric assumption that is not consistent with the distribution of our 

simulated data that were nonparametrically generated. However, given that our ultimate goal 

was to evaluate performance of an accessible method, we felt this was the most useful 

contribution to the literature. We also did not evaluate the algorithm developed by Lee 

and Gill because we could not get it to converge using our data, but this may also reflect 

the practical difficulties in adopting more complex algorithms. Finally, our findings do not 

necessarily generalize to handling missing accelerometer data through MI under goals that 

differ from relating an outcome to a PA summary measure. For example, if the goal is to 

identity different patterns of activity, other considerations of how to best impute would have 

to be made that depend on the analytic tool used to identify patterns and other covariates. 

How to apply MI under different types of goals that employ other analytic tools would 

involve future studies that evaluate the performance of MI in those specific contexts.

Concluding Remarks

We demonstrated compelling evidence that MI produces results superior to commonly 

applied methods that discard/ignore missing data or use SI to fill in count values for nonwear 

time when estimating associations between accelerometry-derived summary variables and 

individual-level outcomes. How the imputation models are derived matters, and we observed 

considerable variation in performance across MI strategies. In addition to including terms 

that are related to PA as auxiliary variables, including PA in a previous epoch was 

advantageous. Among MI models, we noted that the inclusion of patient-level characteristics 

did not improve model performance as much as the inclusion of a lag variable and strong 

auxiliary variables.

While MI-based approaches are slightly more difficult to implement than discard or SI 

methods, software is accessible and easy to adopt. Furthermore, they make up for the 

increase in complexity with their improved ability to accurately capture true relationships 

in the underlying data. In fact, we show that discard- and SI-based approaches yielded 

estimates with considerably more bias and inefficiency to the extent that these techniques 

should be avoided with accelerometer data when possible.

Kapphahn et al. Page 14

J Meas Phys Behav. Author manuscript; available in PMC 2024 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Future research can leverage our approach to simulating data to evaluate other methods for 

the analysis of accelerometry data as well as to evaluate additional missing data strategies. 

Future research on missing data strategies should include the assessment of more complex 

research questions. These may include relating patterns of PA to outcome, where patterns of 

PA may be summarized to better describe PA changes over time. Additionally, performance 

and ease of adoption of more complex MI strategies should be evaluated that include 

imputing under one scientific model that can characterize more sophisticated relationships 

between PA and outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 —. 
Diagram illustrating sampling process used to generate simulated data.
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Figure 2 —. 
Mean relative SE and absolute bias for discard, SI, and MI1 approaches for beta = 0.1. 

BMI = body mass index; CC = complete case; MAR1 = missing at random; MAR2 = 

missing related to covariates; NMAR1 = missing related to covariates and true overall 

activity; NMAR2 = missing related to covariates and true epoch-level activity; SI = single 

imputation; MI1 = multiple imputation, BMI only.
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Figure 3 —. 
Relative MSEs for discard, SI, and MI1 approaches for beta = 0.1. CC = complete case; 

MAR1 = missing at random; MAR2 = missing related to covariates; NMAR1 = missing 

related to covariates and true overall activity; NMAR2 = missing related to covariates and 

true epoch-level activity; SI = single imputation; MI1 = multiple imputation, body mass 

index only; MSE = mean squared error.
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Figure 4 —. 
Mean relative SE and absolute bias for MI approaches for beta = 0.1. BMI = body mass 

index; CPM = mean counts per minute; MAR1 = missing at random; MAR2 = missing 

related to covariates; NMAR1 = missing related to covariates and true overall activity; 

NMAR2 = missing related to covariates and true epoch-level activity; MI = multiple 

imputation; MI1 = BMI only; MI2 = BMI and demographic variables (hour, weekend, 

sex, race, age, and BMI); MI3 = BMI, demographic variables, and observed CPM; MI4 = 

BMI, demographic variables, observed CPM, and auxiliary count; MI5 = BMI, demographic 

variables, and lag (this matches the true missing data mechanism specified by missing at 

random); MI6 = BMI, demographic variables, lag, and auxiliary count.
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Figure 5 —. 
Relative MSEs for MI approaches for beta = 0.1. BMI = body mass index; CPM = mean 

counts per minute; MAR1 = missing at random; MAR2 = missing related to covariates; 

NMAR1 = missing related to covariates and true overall activity; NMAR2 = missing related 

to covariates and true epoch-level activity; MI = multiple imputation; MI1 = BMI only; MI2 

= BMI and demographic variables (hour, weekend, sex, race, age, and BMI); MI3 = BMI, 

demographic variables, and observed CPM; MI4 = BMI, demographic variables, observed 

CPM, and auxiliary count; MI5 = BMI, demographic variables, and lag (this matches the 

true missing data mechanism specified by missing at random); MI6 = BMI, demographic 

variables, lag, and auxiliary count; MSE = mean squared error.
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Figure 6 —. 
Coverage probabilities for MI approaches for beta = 0.1. BMI = body mass index; CPM 

= mean counts per minute; MAR1 = missing at random; MAR2 = missing related to 

covariates; NMAR1 = missing related to covariates and true overall activity; NMAR2 = 

missing related to covariates and true epoch-level activity; MI = multiple imputation; MI1 

= BMI only; MI2 = BMI and demographic variables (hour, weekend, sex, race, age, and 

BMI); MI3 = BMI, demographic variables, and observed CPM; MI4 = BMI, demographic 

variables, observed CPM, and auxiliary count; MI5 = BMI, demographic variables, and lag 

(this matches the true missing data mechanism specified by missing at random); MI6 = BMI, 

demographic variables, lag, and auxiliary count; MSE = mean squared error.
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Table 1:

Non-wear processing approaches

Discard Non-wear

 Complete Case (CC) Discard all non-wear observations

 Exclude Days/Subjects Discard all days and subjects with insufficient data

Single Imputation (SI)

 Non-Wear Sedentary Imputation Impute 0 counts for all non-wear observations

 Regression Imputation Impute with a cohort-wide, regression-derived mean count value

 Within Person Mean Imputation Within each subject, impute for each non-wear minute the mean value across that same minute from 
subject’s remaining data separately for weekdays and weekends

Multiple Imputation (MI)

 MI1 Impute counts as a function of subject-specific BMI

 MI2 Impute counts as a function of subject-specific BMI and demographic variables

 MI3 Impute counts as a function of subject-specific BMI, demographic variables, and observed CPM

 MI4 Impute counts as a function of subject-specific BMI, demographic variables, observed CPM, and 
auxiliary count variable

 MI5 Impute counts as a function of subject-specific BMI, demographic variables, and lag

 MI6 Impute counts as a function of subject-specific BMI, demographic variables, lag, and auxiliary count 
variable
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Table 2:

Performance statistics for non-wear processing approaches

Approach Mechanism Bias Mean Relative 
Standard Error

Coverage Probability Relative Mean 
Squared Error

True/Complete MAR1 −0.001 1 0.93 1

True/Complete MAR2 −0.001 1 0.93 1

True/Complete NMAR1 −0.001 1 0.93 1

True/Complete NMAR2 −0.001 1 0.93 1

Complete Case MAR1 −0.057 0.76 0 31.7

Complete Case MAR2 −0.055 0.64 0 29.8

Complete Case NMAR1 −0.056 0.67 0 30.8

Complete Case NMAR2 −0.057 0.61 0 31.4

Subject and/or day exclusion MAR1 −0.05 1.07 0 24.9

Subject and/or day exclusion MAR2 −0.051 1.15 0.03 26.8

Subject and/or day exclusion NMAR1 −0.052 0.94 0 26.5

Subject and/or day exclusion NMAR2 −0.052 0.87 0 27.2

SI with non-wear imputed as sedentary MAR1 −0.074 0.72 0 53.5

SI with non-wear imputed as sedentary MAR2 −0.081 0.72 0 62.9

SI with non-wear imputed as sedentary NMAR1 −0.078 0.68 0 58.5

SI with non-wear imputed as sedentary NMAR2 −0.078 0.65 0 59.5

SI with cohort-wide regression mean MAR1 −0.061 0.9 0 36.5

SI with cohort-wide regression mean MAR2 −0.068 0.88 0 45.5

SI with cohort-wide regression mean NMAR1 −0.064 0.85 0 39.8

SI with cohort-wide regression mean NMAR2 −0.064 0.82 0 39.5

SI within-person, within-minute mean MAR1 −0.071 0.75 0 49.6

SI within-person, within-minute mean MAR2 −0.075 0.69 0 54

SI within-person, within-minute mean NMAR1 −0.075 0.64 0 54.8

SI within-person, within-minute mean NMAR2 −0.077 0.58 0 57

MI1 MAR1 −0.01 0.93 0.84 1.9

MI1 MAR2 −0.014 0.69 0.47 2.5

MI1 NMAR1 −0.014 0.75 0.52 2.4

MI1 NMAR2 −0.018 0.65 0.25 3.8

MI2 MAR1 −0.016 0.94 0.55 3.6

MI2 MAR2 −0.021 0.72 0.24 5.2

MI2 NMAR1 −0.022 0.78 0.31 5.7

MI2 NMAR2 −0.028 0.69 0.06 8

MI3 MAR1 −0.016 0.93 0.57 3.7

MI3 MAR2 −0.021 0.72 0.24 5.1

MI3 NMAR1 −0.022 0.78 0.31 5.6

MI3 NMAR2 −0.028 0.69 0.04 8
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Approach Mechanism Bias Mean Relative 
Standard Error

Coverage Probability Relative Mean 
Squared Error

MI4 MAR1 −0.004 0.99 0.86 1.3

MI4 MAR2 −0.005 0.94 0.84 1.3

MI4 NMAR1 −0.006 0.95 0.84 1.5

MI4 NMAR2 −0.007 0.93 0.82 1.5

MI5 MAR1 −0.016 1.22 0.77 4.1

MI5 MAR2 −0.016 1.02 0.68 3.4

MI5 NMAR1 −0.018 1.06 0.62 4.4

MI5 NMAR2 −0.021 0.96 0.45 4.9

MI6 MAR1 0.005 1.07 0.93 1.5

MI6 MAR2 0.002 1.01 0.96 1.1

MI6 NMAR1 0.001 1.02 0.95 1.2

MI6 NMAR2 −0.001 0.99 0.92 1
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