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Frankia coriariae BMG5.1 cells were incubated with root exudates
derived from compatible (Coriaria myrtifolia), incompatible (Alnus
glutinosa) and non-actinorhizal (Cucumis melo) host plants. Bacteria
cells and their exoproteomes were analyzed by high-throughput
proteomics using a Q-Exactive HF high resolution tandem mass
spectrometer incorporating an ultra-high-field orbitrap analyzer.
MS/MS spectra were assigned with two protein sequence databases
derived from the closely-related genomes from strains BMG5.1
andDg1, the Frankia symbiont of Datisca glomerata. The tandem
mass spectrometry data accompanying the manuscript describing
the database searches and comparative analysis (Ktari et al., 2017,
doi.org/10.3389/fmicb.2017.00720) [1] have been deposited to the
ProteomeXchange with identifiers PXD005979 (whole cell pro-
teomes) and PXD005980 (exoproteome data).
& 2017 The Authors. Published by Elsevier Inc. This is an open access
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ubject area
 Environmental microbiology

ore specific
subject area
Frankia comparative proteogenomics
ype of data
 Mass spectrometry raw files, Excel tables

ow data was
acquired
Data-dependent acquisition of tandem mass spectra using a Q-Exactive HF tan-
dem mass spectrometer (Thermo).
ata format
 Raw and processed

xperimental
factors
Cells were incubated with filter sterilized root exudates derived from either
compatible (Coriaria myrtifolia), incompatible (Alnus glutinosa) and non-
actinorhizal (Cucumis melo) host plants, or without for the control.For each
condition, three biological replicates were performed. From each condition, cells
and supernatants (exoproteomes) were obtained by centrifugation.
xperimental
features
The 12 cellular proteomes and 12 exoproteomes were briefly run on SDS-PAGE,
followed by trypsin proteolysis. Tryptic peptides were analyzed by nano LC-MS/MS
and spectra were assigned with the genome-derived protein sequence databases
from strains BMG5.1 and Dg1.
ata source
location
CEA-Marcoule, DRF-Li2D, Laboratory “Innovative technologies for Detection and
Diagnostics”, BP 17171, F-30200 Bagnols-sur-Cèze, France
ata accessibility
 Data is within this article and deposited to the ProteomeXchange via the PRIDE
repository with identifiers PRIDE: PXD005979 (whole cell proteomes) and
PXD005980 (exoproteome data).
Value of the data

� The proteogenomics data are an invaluable resource for understanding Frankia/host plant
interactions.

� A better coverage of Frankia coriariae BMG5.1 proteome is achieved by means of querying two
closely-related genomes.

� The data have been exploited to decipher the main proteome changes in response to various root
exudates. As described in detail in the accompanying manuscript [1], the proteins which are solely
induced by Coriaria myrtifolia root exudates are involved in cell wall remodeling, signal transduc-
tion and host signals processing.
1. Experimental design and data

Interpreted tandem mass spectrometry results were acquired with a Q-Exactive HF instrument
incorporating an ultra-high-field orbitrap analyzer. This mass spectrometer allows a rapid and
deep coverage of proteome samples [2–4]. The results of peptide-to-spectra assignation were
formatted in four.xls tables using the Microsoft excel program. The whole-cell proteome and
exoproteome data from the 12 independent conditions were assigned to tryptic peptides against
either the Frankia BMG5.1 annotated genome or the Frankia Dg1 annotated genome using the
MASCOT 2.3.02 search engine (Matrix Science), with standard parameters: maximum number of
missed cleavages at 2, mass tolerances for the parent ion and the product ions at 5 ppm and
0.02 Da, respectively, carbamidomethylated cysteine residues as fixed modification, oxidized
methionine residues and deamidation of asparagine and glutamine as variable modifications,
selection of peptides of at least 7 amino acids. For this, peptide-to-spectrum matches with a score
above their peptidic identity threshold were filtered at po0.05.

The use of two databases allows an improved coverage of gene products circumventing some
erroneous annotations [5]. Supplementary Tables S1 and S2 list the peptide-to-spectrum matches for

PXD005979
PXD005980
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whole-cell proteomes queried against the BMG5.1 and Dg1 databases, respectively. A total of 149,629
and 144,213 MS/MS spectra were assigned, respectively. A total of 18,344 MS/MS spectra were spe-
cifically assigned with the Dg1 database, highlighting the interest of pan-proteomics [6]. Supple-
mentary Tables S3 and S4 list the peptide-to-spectrum matches with all the tandem mass spectro-
metry characteristics for the exoproteomes queried against the BMG5.1 and Dg1 databases, respec-
tively. The deposited data correspond to the 24 raw files and the interpreted files.
2. Materials and methods

2.1. Preparation of Frankia coriariae BMG5.1 samples

Frankia coriariae BMG5.1 cells were grown in BD-N medium supplemented with 2.5 mM pyruvate
as a carbon source at 28 °C. After ten days of cultivation, cells were supplanted with an equal volume
of root exudates from each plant species that was previously filter sterilized. The cells were incubated
for five additional days as described [1]. Cells were harvested by centrifugation. Proteins from the
resulting supernatants were precipitated by trichloroacetic acid (10% final, w/vol). Cell pellets and
exoproteins were dissolved in lithium dodecyl sulfate β-mercaptoethanol protein gel sample buffer
(Invitrogen) and incubated at 99 °C for 5 min. They were processed as indicated previously [7]. For
statistical purpose three independent biological replicates were performed for each condition.

2.2. Protein extracts and tandem mass spectrometry

The 24 peptide mixtures were analyzed by high-resolution tandem mass spectrometry using a
Q-Exactive HF mass spectrometer (Thermo) coupled to an UltiMate 3000 LC system (Dionex-LC
Packings) in similar conditions as those previously described [8]. Peptide mixtures (10 μl) were
loaded and desalted on-line on a reverse phase precolumn (Acclaim PepMap 100 C18) from LC
Packings. Peptides were then resolved onto a reverse phase Acclaim PepMap 100 C18 column and
injected into the Q-Exactive HF mass spectrometer. The Q-Exactive HF instrument was operated
according to a Top20 data-dependent acquisition method as previously described [8], selecting
2þ and 3þ possible charge states.

2.3. Protein sequence database for proteogenomics MS/MS assignment

The recorded MS/MS spectra for the 12 whole-cell proteome samples and the 12 exoproteome
samples were searched against the genome-derived protein sequence databases from Frankia strains
BMG5.1 and Dg1 with standard parameters for microbial proteomics [9–12].The number of MS/MS
spectra per protein (spectral counts) was determined for the three replicates of each of the four
conditions which were assayed.
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Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2017.07.009.
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