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Abstract: Iran, as a semi-arid and arid country, has a water challenge in the recent decades
and underground water extraction has been increased because of improper developments in the
agricultural sector. Thus, detection and measurement of ground subsidence in major plains is
of great importance for hazard mitigation purposes. In this study, we carried out a time series
small baseline subset (SBAS) interferometric synthetic aperture radar (InSAR) analysis of 15 L-band
PALSAR-2 images acquired from ascending orbits of the ALOS-2 satellite between 2015 and 2020
to investigate long-term ground displacements in East Azerbaijan Province, Iran. We found that
two major parts of the study area (Tabriz and Shabestar plains) are subsiding, where the mean and
maximum vertical subsidence rates are −10 and −98 mm/year, respectively. The results revealed
that the visible subsidence patterns in the study area are associated with either anthropogenic
activities (e.g., underground water usage) or presence of compressible soils along the Tabriz–Shabestar
and Tabriz–Azarshahr railways. This implies that infrastructure such as railways and roads is
vulnerable if progressive ground subsidence takes over the whole area. The SBAS results deduced
from L-band PALSAR-2 data were validated with field observations and compared with C-band
Sentinel-1 results for the same period. The C-band Sentinel-1 results showed good agreement with
the L-band PALSAR-2 dataset, in which the mean and maximum vertical subsidence rates are −13
and −120 mm/year, respectively. For better visualization of the results, the SBAS InSAR velocity map
was down-sampled and principal component analysis (PCA) was performed on ~3600 randomly
selected time series of the study area, and the results are presented by two principal components
(PC1 and PC2).

Keywords: L-band PALSAR-2; ground subsidence; synthetic aperture radar; East Azerbaijan Province

1. Introduction

Since urban growth in recent decades has accelerated on a global scale, migration of the population
from rural to urban areas has also increased. This transformation of the population has caused many
changes in which the elements of a simple rural life have been gradually replaced by more complex
elements that need more resources to meet the demands of a new urban life in an era of complexities.
New challenges need to be recognized and modeled before they become problems that can harm other
elements or components of environmental systems [1–5]. The first census of Iran in 1956 reported
201 cities, which increased five times by 2011. According to the 1976 census, Tehran was the only city
with a population over 500,000, but in the 2011 census, 14 cities, including Tabriz, Mashahd, and Isfahan,
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had a population of more than 500,000, which means that urbanization and industrialization plans
were pursued in recent decades [6].

Ground subsidence is gradually becoming a major problem for governments and people, especially
if not properly planned industrial, mining, and agricultural activities are accelerated [7–13]. It is
a long-term phenomenon in most cases and acts like a “dark death” for the Earth. It commonly
happens in different parts of Iran. For example, important basins in Tehran, Mashhad, Rafsanjan, Yazd,
and Neyshabour have fallen victim to ground subsidence due to a lack of underground water recharge,
a lack of supervision, and illegal use of natural resources [14–18].

Optical imagery suffers from the presence of clouds and night/day cycle, but synthetic aperture
radar (SAR) imagery provides an opportunity to observe the Earth during the day and at night under all
weather conditions. New satellite constellations of SAR missions such as Cosmo-SkyMed, TerraSAR-X,
and ALOS-2 can guarantee high-resolution SAR data for different applications. SAR interferometry
(InSAR) is a powerful technique that uses the phase and amplitude information of at least two
SAR images with the same geometry and characteristics to extract the displacement rate of
earthquakes [19–26], ground subsidence [14–18], volcanic activity [27–30], mining activities [7,31],
structures [32–34], and landslides [35–42]. The technique enables us to overcome the challenges of
conventional methods. For example, ground displacements can be monitored by the Global Navigation
Satellite System (GNSS) or leveling, which are point-like conventional methods that require more labor
and a considerable budget to maintain a network [43,44]. InSAR has fair spatial coverage without
maintenance costs and provides acceptable results for different time spans.

This study presents the spatiotemporal characteristics of intensity, phase, and coherence of
PALSAR-2 L-band images (λ ~24 cm) of the ALOS-2 satellite provided by the Japan Aerospace
Exploration Agency (JAXA) at different times and focuses on the small baseline subset (SBAS) InSAR
technique and principal component analysis (PCA) in NW Iran (East Azerbaijan Province) to monitor
the ground subsidence of major basins using 15 PALSAR-2 images.

2. Study Area and Datasets

2.1. Study Area Description

The present study mainly focuses on two major plains in East Azerbaijan Province of northwestern
Iran, Shabestar and Tabriz basins, with an area of approximately 1000 km2. As shown in Figure 1a,
the study area has a harsh topography, and accordingly, there is a concentration of agricultural activities
in these flat basins due to their fertility and suitability for different activities. Shabestar and Tabriz
basins have been known for intensive agricultural and industrial practices for several decades [45–48].
The substrate of these basins contains various formations such as gypsiferous marl and Quaternary
units [13]. The basins contain abundant unconsolidated Quaternary deposits and a lower erosion level
(Figure 1b). As shown in Figure 1b, the level of erosion and soil loss are related to the topography,
in which steep positions present a higher erosion level [49]. According to the geological map of the
study area provided by the Geological Survey of Iran (Figure 1c), the area of Quaternary deposits inside
the PALSAR-2 footprint is higher than in other units. Approximately 2500 km2 inside the PALSAR-2
footprint contains unconsolidated Quaternary units, whereas the Quaternary units near Lake Urmia
changed to salt flats. The second largest unit in terms of area is around 900 km2 for pyroclastic and
claystone units over the Sahand volcano. Figure 1c shows that major roads and railways are mainly
extended over Quaternary deposits in the Shabestar and Tabriz basins, which generally implies a high
risk of damage to infrastructure due to ground subsidence. The Tabriz basin is a hotspot of agricultural
and industrial activities in NW Iran, with many legal and illegal pumping wells. Some of the legal
piezometric wells are shown in Figure 1c, indicated by blue pushpins.
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Figure 1. (a) Topographic map of study area from Shuttle Radar Topography Mission (SRTM 1 arc-
second). (b) Erosion map of study area provided by Geological Survey of Iran (GSI) on shaded relief 
SRTM 1 arc-second. (c) Study area with geological units provided by GSI on shaded relief SRTM 1 
arc-second. White polygons are cities, red stars and numbers are locations of field observations, blue 
pushpins are locations of piezometers, dashed square indicates ascending footprint of L-band 
PALSAR-2 images. Green and thick yellow lines are main railways and roads, respectively. Qsl, 
Quaternary (unconsolidated sediment); Md.av, dacitic to andecitic subvolcanic rocks; Murm, red to 
brown marl with gypsiferous marl with sandstone; Plmb, pyroclastic and claystone with vertebrate 
fauna remains; pCk, dull green-gray salty shales; Plmb, ash-flows; Egb, gabbro rock. 

2.2. Dataset Description 

Figure 1. (a) Topographic map of study area from Shuttle Radar Topography Mission (SRTM
1 arc-second). (b) Erosion map of study area provided by Geological Survey of Iran (GSI) on shaded
relief SRTM 1 arc-second. (c) Study area with geological units provided by GSI on shaded relief SRTM
1 arc-second. White polygons are cities, red stars and numbers are locations of field observations,
blue pushpins are locations of piezometers, dashed square indicates ascending footprint of L-band
PALSAR-2 images. Green and thick yellow lines are main railways and roads, respectively. Qsl,
Quaternary (unconsolidated sediment); Md.av, dacitic to andecitic subvolcanic rocks; Murm, red to
brown marl with gypsiferous marl with sandstone; Plmb, pyroclastic and claystone with vertebrate
fauna remains; pCk, dull green-gray salty shales; Plmb, ash-flows; Egb, gabbro rock.
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2.2. Dataset Description

Previous studies show that using 17 ENVISAT C-band images (λ ~6 cm), the ground subsidence
rate in the Tabriz basin was extracted by the SBAS method for a 7-year period from 2003 to 2010 [45,46],
in which the maximum ground subsidence rate was −20 mm/year in the line of sight (LOS) of the
satellite. Furthermore, these studies reported that the water level during those 7 years declined up
to 1.5 m in some of the piezometric wells, which resulted in three oval-shaped subsidence patterns
in the Tabriz basin [45,46]. For Shabestar basin, 14 ENVISAT C-band images from 2003 to 2010 were
processed based on the SBAS technique, and the results revealed that the maximum rate of subsidence
was about −40 mm/year in the LOS direction [47]. There are several InSAR techniques, depending
on the topographic situation, extent of the study area, and number of images, and different InSAR
techniques might be selected for crustal displacement analysis [12]. This work used SBAS InSAR time
series analysis for L-band data acquired from 5 December 2015 to 4 April 2020. As shown in Table 1,
the PALSAR-2 and Sentinel-1 datasets were used. Generally the continuity of L-band (PALSAR-2)
data is lower than C-band (Sentinel-1) data, but L-band data has the advantage of strong intensity
correlation and long-lasting temporal coherence in order to perform more accurate time series InSAR
analysis [50].

Table 1. Synthetic aperture radar (SAR) images and detailed characteristics of L-band PALSAR-2
and C-band Sentinel-1 datasets used in this study. * indicates super master image; D and A indicate
descending and ascending orbits, respectively.

Label (#) Date (YYYY/MM/DD) Polarization Incidence Angle (◦) Band Orbit Track

0 2015/12/05 HH/HV 28 L-band A 178
1 2016/07/16 HH/HV 28 L-band A 178
2 2016//12/03 HH/HV 28 L-band A 178
3 2016/03/25 HH/HV 28 L-band A 178
4 2017/07/15 HH/HV 28 L-band A 178
5 2017/11/18 HH/HV 28 L-band A 178

6 * 2018/01/27 HH/HV 28 L-band A 178
7 2018/04/07 HH/HV 28 L-band A 178
8 2018/04/21 HH/HV 28 L-band A 178
9 2018/10/06 HH/HV 28 L-band A 178

10 2018/12/15 HH/HV 28 L-band A 178
11 2019/01/12 HH/HV 28 L-band A 178
12 2019/04/06 HH/HV 28 L-band A 178
13 2020/01/11 HH/HV 28 L-band A 178
14 2020/04/04 HH/HV 28 L-band A 178
1 2015/12/05 VV/VH 39 C-band D 79
2 2017/11/12 VV/VH 39 C-band D 79
3 2020/04/06 VV/VH 39 C-band D 79

Figure 2 shows the correlation of backscattering values (dB) of all PALSAR-2 images with the
super master image (27 January 2018). Overall, the correlation of all images with the super master
image is high, but images from the same month or season as the super master image have much
higher correlation, indicating that the vegetation effects of the backscattering coefficients are probably
similar. For example, the correlation between images 6 (super master image) and 13 is 0.98, since their
seasonal difference is only 16 days regardless of what year they were acquired. In addition, Figure 3
shows a histogram of the backscattering coefficients of the target area, in which the majority of images
show a normal distribution (bell-shaped curve). The shape of the distribution is important in natural
sciences to understand the physical situation of the study area [26]. Figure 3 shows that the peak of
the bell curve for all PALSAR-2 images is formed between −5 and −15 dB. The normal distribution is
generally symmetric near the mean value and is non-zero over the real line. However, some curves in
Figure 3 are not exclusively symmetric (red curves). For example, histograms of the images acquired
in February, March, and April show sinusoidal behavior in the left shoulder of the bell curve, mainly
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because of considerable rain. Other images, including the master image, that were acquired in dry
seasons or months show relatively symmetric bell curves.Sensors 2020, 20, x FOR PEER REVIEW 5 of 19 
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Figure 2. Scatter plots of backscattering coefficients of PALSAR-2 images with respect to super
master image.

Although the main focus of this work is SBAS analysis of L-band PALSAR-2 data, conventional
differential InSAR (DInSAR) analysis was also applied on the C-band Sentinel-1 dataset, for comparison
or validation of the L-band SBAS results. The dual polarized horizontal (H) and vertical (V) PALSAR-2
data (HH + HV) were acquired from ascending orbits (right-looking observations) of track 178,
while the dual polarized Sentinel-1 data (VV + VH) were acquired from descending orbits (left-looking
observations) of track 79. The averaged incidence angle difference (∆θ) of the two datasets for all
interferometric pairs did not exceed 0.02◦, which implies that the acquisition positions were ideal.
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3. Methods

The displacement is extracted in two stages: SBAS time series analysis and PCA.

3.1. SBAS Analysis

Several SBAS InSAR time series studies based on different X-band and C-band datasets have been
done for NW Iran [45–48,51]. A small baseline selection is based on SBAS interferogram calculation.
We assume that 15 PALSAR-2 images make up a set of single-look complex (SLC) images (N) over the
same area, with the same imaging geometry from the same orbit acquired at ordered times (t1, t2, t3,
. . . , tn). The quality of interferogram correlation between 2 selected images is a product of the time
period (T), the normal baseline of the two acquisitions (B), the Doppler centroid of the 2 images (D),
and the thermal noise imposed by the sensor [52]. Thus, the conventional form of SAR interferometry
is as follows:

ρ = ρtemporal·ρspatial·ρDoppler ≈ (1− f (T⊥ − Tc
⊥)). (1− f (B⊥ − Bc

⊥)) . (1− f (D⊥ −Dc
⊥
)) (1)

where ρ is the correlation, T⊥, B⊥, and D⊥ are temporal, normal interferometric, and Doppler baseline
respectively, and Tc

⊥
, Bc
⊥

, and Dc
⊥

are critical temporal, critical normal, and Doppler centroid baseline,
respectively. If the correlations defined by Equation (1) meet the SBAS criteria, the corresponding
SAR pair can be selected for interferogram generation of small baseline analysis. Instead of following
Zebker et al. [52], here, for the SBAS analysis, we followed Berardino et al. [53]. For this analysis,
the minimum number of pairs is 1 for 2 images and each interferogram consists of 2 images. Thus,
the amount of phase value can be estimated considering N as the odd number of images and M as the
number of interferograms:

N + 1
2
≤M ≤ N

(N + 1
2

)
. (2)

Since the pixel values of SAR images are in radar coordinates, not geodetic/geographic coordinates,
the pixel value of unwrapped interferogram j at times tB and tA in the azimuth and range direction
will be as follows [53]:

ϕ j(x, r) = ϕ(tB, x, r) −ϕ(tA, x, r) ≈ 4π
λ

[
dLP(tB, x, r) − dLP(tA, x, r)

]
+

∆ϕatm
j (tB, tA, x, r) + ∆ϕtopo

j (x, r).
(3)
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where j is an integer number from 1 and M, ϕ(tB, x, r) and ϕ(tA, x, r) are phases of 2 SAR images
looked at multiple times at times tB and tA in the range and azimuth direction, dLP(tB, x, r) and
dLP(tA, x, r) are displacement values of low-pass component for a time span from tA to tB in the
LOS of the satellite, ∆ϕatm

j (tB, tA, x, r) is the associated phase component of atmosphere from tA to

tB, the wavelength of the satellite is represented by λ, and ∆ϕtopo
j (x, r) is the phase component of

topography, which is defined as follows:

∆ϕtopo
j (x, r) ≈

4π
λ

B⊥ j∆z(x, r)

rsinθ
, (4)

where B⊥ j is the perpendicular (normal) baseline of the two SAR acquisitions, θ is the incidence angle
of the SAR images, which is approximately 28◦ for PALSAR-2 images used in this study, and ∆z(x, r)
is a topographic artifact that can be reduced by a digital elevation model (DEM).

Here, thermal noise is assumed to be negligible, and according to Equation (3), the topography
and atmosphere are non-displacement phase components that must be reduced or removed. Thus,
the number of processed pairs and their temporal and spatial baselines should be selected under
predefined criteria. Since the L-band PALSAR-2 images can keep high phase correlation over time,
we assume that all SAR images are eligible for SBAS analysis, despite the large gaps between image
acquisitions. So, the maximum temporal gap for a potential SBAS pair is assumed to be 365 days,
and the spatial (normal) baseline eligible for an SBAS pair is up to 45% of the critical baseline shown in
Equation (1). Although more SAR images are preferred for SBAS analysis, 15 images is marginally
enough [48].

Figure 4 shows that the criteria applied for SBAS network creation have enough integrity to
minimize the errors, as the pairs are continuously connected to each other. The algorithm is adopted to
retrieve the highest coherence values, on the one hand, and keep the integrity of the SBAS network for
the pairs with coherence higher than 0.8, on the other hand. Therefore, interferograms with a coherence
value lower than 0.8 are withdrawn. The minimum and maximum normal baselines are 24 and 352 m,
respectively. The selected pairs must be co-registered to one of the images. Image co-registration is
a process where 2 or more SAR images have the same geometric nature and corresponding pixels
should represent the same objects that might be integrated. This is an essential step for SBAS time
series analysis to make sure that pixel values for a certain object are correctly resampled and able to
create the same voxel of the objects. We co-register the images to a super master image that is located
in a fair position (both temporally and spatially) to the other images.
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Figure 4. (a) Arrangement of interferometric synthetic aperture radar (InSAR) pairs and corresponding
mean coherence values for each pair. (b) InSAR links of PALSAR-2 (black diamonds) and Sentinel-1
(purple circles). Super master image for small baseline subset (SBAS) analysis of PALSAR-2 data
indicated by red diamond.
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In Figure 4a, the super master image is indicated by a small red diamond in the middle of the
network that is used to generate 8 interferograms. Moreover, it can satisfy the major temporal and
spatial limitations of time series analysis as it is located in fair position with respect to the other images
(Figure 4b). Overall, 86 pairs were analyzed, and their average coherence values are shown in Figure 4a.
Generally, short pairs have higher mean coherence values and long pairs have lower mean coherence
values: most of the pairs have an average coherence value between 0.5 and 0.8. The 1 arc-second
Shuttle Radar Topography Mission (SRTM) DEM (30 m resolution) along with 50 ground control points
(GCPs) were used for removal of topographic and atmospheric phases. The mean coherence map of all
pairs, the topography map, and interferograms are criteria used for the selection of GCPs in highly
coherent areas with smooth topography, far from the subsiding areas.

The method described above is efficient when geodetic measurements are limited or not available.
Once the displacement map in LOS is generated and reprojected in a geographic/geodetic coordinate
system, in order to compare the results of PALSAR-2 with other datasets, such as Sentinel-1, the LOS
values can be transformed into vertical values. The transformation of coordinates is done by assuming
a stable (motionless) area in the results, selected based on high coherence values, away from the
subsiding areas. For a three-dimensional displacement map, both ascending and descending datasets
of PALSAR-2 are necessary. Since our PALSAR-2 dataset was limited only for the ascending dataset,
the retrieval of vertical values could be done under several assumptions. The SAR imaging system is
not highly sensitive to north–south movements due to its pole-to-pole movements. We assume that
displacements in the N–S and E–W directions are negligible and only the vertical displacement can be
inferred, as follows:

Vv =
VLOS + VEWsinθcosα

cosθ
(5)

where Vv is the vertical displacement rate, VLOS is the LOS deformation rate, VEW is the east-west
displacement rate, α is the azimuthal angle of the LOS, and θ is the incidence angle of the satellite.

3.2. Principal Component Analysis (PCA)

The results obtained from the SBAS need to be interpretable, since thousands of pixel values have
displacement values for a certain time span. PCA is a useful method to analyze time series data in
the form of observations (M) and variables (N). It has advantages in allowing us to quickly visualize
the results, and to analyze the correlation between variables and observations on a simple map that
has a low dimension and an optimal view for a variability criterion. Here, the vertical displacement
deduced from SBAS are on matrix or a table, in which the observations are displacements (mm) of
different locations and the variables are different acquisition dates. The observations and dates are
kept in individual rows and columns of the matrix, respectively. The general form of the PCA in this
study can be defined as follows:

X = TP′ + r (6)

where X is the PCA matrix that contains the time series, T is a matrix of scores and P is a matrix
containing the loading factors (this matrix is transposed), and r is the residual or unexplained portion of
the results. It must be noted that PCA originates from a projection method. If the data are too complex,
the results may lead to misinterpretation, because PCA does not allow testing of the hypotheses.
One solution could be to select different observations or variables from the SBAS results and run
the model each time, as long as such manipulations (adding or removing observations/variables)
are justified in the interpretation. Here, since the size of the preliminary SBAS matrix was too large,
we randomly selected 5000 SBAS time series candidates for the PCA matrix (X). T and P were estimated
from the least squares method, and each PC had one score and loading factor.
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4. Results

4.1. Coherence Changes

Figure 5a shows spatiotemporal changes of the coherence histograms of four time periods,
in which the corresponding time span is nearly one year: time span 1 (365 days), time span 2 (351 days),
time span 3 (323 days), and time span 4 (365 days). The mean coherence values of time spans 1,
2, 3, and 4 are 0.559, 0.548, 0.563, and 0.528 and the standard deviations are not small regarding
the calculated mean values. The standard deviations are 0.182, 0.186, 0.173, and 0.183, respectively
(Figure 5b). Although the general behavior of the coherence maps is similar, the peak position of the
third period (18 November 2017 to 6 October 2018) is higher than the others, probably because of
its shorter temporal gap (Figure 5a). The mean value of time spans shows that as the temporal gap
between two images increases, the mean coherence value decreases. Figure 6 shows a cross comparison
of time span 1 with time spans 2, 3, and 4.Sensors 2020, 20, x FOR PEER REVIEW 9 of 19 
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4.2. InSAR Displacements and Field Observations

Figure 7a,b shows the mean vertical velocity of SBAS results extracted from LOS rates and
Equation (5) for PALSAR-2 L-band ascending images and conventional velocity map of C-band
(Sentinel-1) descending images, respectively. There are two main displacement features in results of
both L-band and C-band datasets with an NE–SW trend in Shabestar and Tabriz basins. Although
velocity precision and height estimations during SBAS analysis show that some uncertainties may still
remain in the results (Appendix A, Figure A1), the associated motions in the two datasets suggest a
dominant long-term downward movement peaking at up to −100 and −120 mm/year, respectively.
Figure 7c, d shows the ground subsidence rate along profiles A–B and C–D (shown in Figure 7a,b)
from east to west. The A–B section for Sentinel-1 and PALSAR-2 shows good agreement, but at some
locations, there are differences up to 4 cm. The subsidence rate in the first 12 km of profile A–B is higher
in the Sentinel-1 results. On the contrary, the subsidence rate in the rest of the profile is higher in the
PALSAR-2 results. In profile C–D, the results of PALSAR-2 and Sentinel-1 also show a similar pattern.
Since the time spans of PALSAR-2 and Sentinel-1 datasets are very close, the reason for the cm-scale
difference between their results in section A–B might be related, first, to the temporal decorrelation
of the Sentinel-1 dataset and the high level of uncertainty in conventional InSAR analysis. Second,
the wavelength of PALSAR-2 images is longer than that of Sentinel-1 images, and the sensitivity of the
two datasets is different in detecting ground displacements. The correlation between PALSAR-2 and
Sentinel-1 results along the profiles A–B and C–D, are 0.81 and 0.85, respectively. We also compared
the SBAS InSAR map of PALSAR-2 data and the InSAR map of Sentinel-1 data for the whole study
area. Figure 7 shows a cross comparison of the results. The correlation of the two maps is 0.6, and the
mean vertical rate of ground subsidence and standard deviation for PALSAR-2 results are −10 and
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9 mm/year, respectively (Figure 8). For Sentinel-1, the mean vertical rate and standard deviation are
−13 and 12 mm/year, respectively.
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Geodetic measurements such as Global Positioning System (GPS) and precise leveling in the
study area are lacking, and we only gathered time series measurements of piezometric wells in the
Tabriz plain. In addition, we gathered field evidence in the Shabestar plain. As shown in Figure 9,
many buildings in the Shabestar basin and adjacent areas have been damaged as a result of progressive
ground subsidence. Site 2 in Figure 9 (see its location in Figures 1c and 7a), an old piezometric
well that was established approximately four decades ago, subsided at least 80 cm. Although the
subsidence evidence around the old piezometric well is clear, it is unknown when the subsidence rate
was accelerated. Some infrastructure in Shabestar city and two small towns, Shendabad and Vayqan
(see their location in Figure 1), are also at immediate risk of ground subsidence.

We drew a buffer of 5 km around the railways and major roads, and their proximity to the subsidence
rates is presented in Table 2. The Shabestar basin is an unconfined aquifer with approximately 800 wells,
6 springs, and 161 qanats (traditional water extraction system in Iran), from which the extracted water
in 2014 was estimated to be around 88 × 106 m3 [13]. The number of deep wells not only in the study
area but also in other large basins of Iran, such as Tehran basin, has increased. The latest public report
shows that the number of legal/illegal wells in Tehran increased more than eight times over 44 years
(1968 to 2012) [54]. In Tabriz plain, the situation is the same, but the exact volume of extracted water is
unknown due to many illegal deep-water pumping wells.
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Figure 7. Mean vertical velocity map of study area from (a) PALSAR-2 L-band and (b) Sentinel-1
C-band during 2015–2020, (c) displacement profile from A to B, and (d) displacement profile from C to
D. Black stars show locations where field observations were carried out (see Figure 9). Blue pushpins
in (a) show locations of wells where regular groundwater measurements are available. Purple circles in
(b) are displacement, atmospheric, or topographic phases that are not observed in (a). Thick green and
yellow lines indicate railway and first-degree networks, respectively.

In Tabriz plain, we obtained groundwater information of 10 piezometric wells as gathered by
the regional water organization (RWO). Regular monthly measurements of the water level in Tabriz
basin are available since 2001. We only plotted groundwater time series from 2015 to 2019. The water
fluctuation and ground subsidence (SBAS results) at the same level along with the linear regression are
shown in Figure 10. The level and behavior of piezometric wells are different. Wells S1, S2, and S2 have
a very low water level ranging from 0 to 4 m, probably because they are not deep enough to conduct
accurate measurements, while some wells, such as S7 and S10, have a higher water level ranging from
20 to 55 m. In some wells, such as S3, S7, and S10, seasonal fluctuation is evident, while in wells such
as S5, the water level was stable or gently rose from 2015 to 2020. One reason for the gentle water
rise in the subsiding area could be related to the synthetic recharge of wells by sewage water of large
infrastructure such as the Tabriz petrochemical factory or power plant.
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A comparison between water level and InSAR displacement in Figure 10 shows that ground
subsidence matches with water level decline in some of locations, such as S8 and S9. Unfortunately,
water measurements at S9 were not completed and there are some gaps without regular measurement.
In other locations far from the subsiding area, such as S4 and S10, ground water fluctuation and
InSAR displacement are in good agreement, which implies that the ground water level and InSAR
displacement have a direct relationship. Nevertheless, in locations such as S3, ground displacement
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does not follow ground water fluctuations. In Tehran basin, the same issue happened in some
piezometric wells [54].

Table 2. Detailed information of affected length of railways and roads in PALSAR-2 and Sentinel-1
displacement maps.

Subsidence Map

Total
Affected

Major Road
(km)

Total
Affected
Railway

(km)

Mean Road
Subsidence

Rate
(mm/Year)

Maximum
Road

Subsidence
Rate

(mm/Year)

Mean
Railway

Subsidence
Rate

(mm/Year)

Maximum
Railway

Subsidence
Rate

(mm/Year)

PALSAR-2 SBAS 383 144 −8 −81 −9 −56
Sentinel-1 383 144 −10 −77 −12 −63
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Figure 10. Vertical water changes versus vertical InSAR at 10 locations. Locations of wells are shown
in Figures 1c and 7a.

At the heart of the subsiding area in Tabriz basin where S9 is located, the mean displacement value
is−195 mm, which is the highest subsidence value among the listed wells. In contrast, the corresponding
mean coherence value of S9 is about 0.56, which is lower than other known pumping stations. Figure 11
shows that an increased mean coherence value can result in a slower displacement rate. When the
mean coherence value is high, it could be an indicator of slower changes in agricultural activities and
vegetation growth of the study area. Comparing the spatial distance of the wells reveals that closer
wells have similar mean coherence values, which implies that soil moisture and geomorphological
characteristics of the wells may be related to mean coherence values over the time span. In Figure 11,
S1 and S2, at the upper margins of the subsidence area, are spatially close to each other, and not
surprisingly, their mean coherence values are 0.69 and 0.71, respectively.
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4.3. PCA Results

Several studies proposed that because of the high dimensionality of InSAR time series, it is
difficult to study separate crustal movements that may occur simultaneously. For example, seasonal
movements and long-term movements occur in the study area, as shown in Figure 12a. However,
a conclusive estimation of different trends needs further analysis, such as PCA. PCA may fail for large
SBAS results. Hence, we resampled only 10,000 points randomly in different parts of the study area.
The results show that the first three principal components (PCs) explain a major part of the SBAS results:
PC1 (~76%), PC2 (~18%), and PC3 (~2%) together explain about 96% of the entire variance (Figure 12b).
However, some information might be hidden in other PCs.

Each PC corresponds to a specific score value that describes the variation shape. Figure 12c
shows PC1, PC2, and PC3 loading values from 2015 to 2020. We can consider PC1 as a long-term
component of ground subsidence, which is the largest portion of the variance, while PC2 and PC3 are
seasonal changes with several troughs and peaks. The behavior of PC2 and PC3 is complex despite
their similar pattern, indicating that seasonal change may have occurred differently between 2015 and
2020. Figure 12d shows a correlation circle of the results, which is a projection of the SBAS variables in
the PC space. If two variables are far from the center of the circle and close to each other, then it can
be interpreted that they are positively correlated (near +1), and if two variables are perpendicular to
each other, they are not correlated (near 0). If two variables are located in opposite directions of the
center, they are negatively correlated (near −1). Comparing PC1 and PC2 in Figure 12d, the positive
correlation of the results between 2018 and 2020 is higher, probably because the number of obtained
images in this period is considerably higher than in 2015–2017.
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are shown), (b) scree plot of principal components (PCs), (c) three major components of principal
component analysis (PCA), which explain about 96% of the variance, and (d) circle plot of variables for
PC1 and PC2 loadings.

5. Discussion

The correlation coefficient of the coherence between time spans 1 and 2 is 0.72, between time
spans 1 and 3 is 0.64, and between time spans 1 and 4 is 0.62 (Figure 6). The high values for time
spans 1 and 2 and low values for time spans 1 and 4 are not surprising, because as the temporal gap
increases, the correlation coefficient decreases, mainly because of urban or vegetation growth, land use
changes, etc. Although the PALSAR-2 with longer wavelengths can preserve the phase correlation in
larger timespans, the standard deviation of the above-mentioned time spans is not small. The results
of L-band (SBAS) and C-band (DInSAR) both identified two subsidence patterns in Shabestar and
Tabriz basins. The mean subsidence rate of the DInSAR method is higher than that of the SBAS
method. The velocities deduced from the C-band dataset show that there are higher subsidence rates
in central, eastern, and western parts of the study area (dashed circles in Figure 7b), while these parts
are almost stable in L-band results (Figure 7a). The strong displacement (overestimation) in these parts
is related to the ambiguous nature of the phase [55] in pure displacement, atmospheric component,
and remaining topographic phase, etc. For this reason, establishment of GPS stations in different parts
of the study area for continuous measurement is essential for accuracy evaluation of DInSAR and
SBAS results in future studies.

As stated before, the PCA methodology helped us to find the trend of long-term and seasonal
displacements based on the average velocity and the explained variance. PC1 explains ~70% of the
variance (Figure 12b) and the corresponding PC loading in Figure 12c gives insight into the correlation
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between the uniform trend of subsidence in the study area. PC1 is well-explained by PC loading and
the land subsidence is evident. But explanation of seasonal behavior is difficult, because PC2 and PC3
are similar. Further statistical tests may help to solve the complexity of the PCs, especially when the
results are similar.

6. Conclusions

Tabriz and Shabestar basins have experienced ground subsidence for several years, mainly due
to heavy water extraction for industrial and agricultural activities, as reported in several previous
studies [13,42–44]. All of the previous studies presented results of ground subsidence for the years
before 2010 using C-band datasets such as ENVISAT tracks 49 and 92. As a fresh step in this study,
we presented the ground subsidence rate using the L-band PALSAR-2 dataset. The SBAS results
demonstrated that roads and railways are at immediate risk of ground subsidence, in which the
maximum vertical subsidence rate for the roads and railway inside the ALOS-2 footprint is −81 and
−56 mm/year, respectively. As shown in PCA results, the existence of long-term subsidence (i.e., PC1)
in the study area could cause serious damage to the infrastructure. The SBAS ground subsidence rates
were compared with the Sentinel-1 ground subsidence map. The displacement rates of both maps for
the settlement zones showed a similar pattern and relatively close displacement rates. We concluded
that the main urban area in Tabriz is stable according to Figure 7a,b. However, the displacement
rates, piezometric measurements, and field observations suggest progressive land subsidence during
2015–2020. We also conclude that in the absence of geodetic measurements, the combination of SBAS
and PCA can provide us with an opportunity to extract seasonal and long-term motions using PC
loadings and scores. However, with regard to the similarity of PC2 and PC3, a question remains
about whether the secular motions and noises are separated appropriately or not. Independent
component analysis (ICA) could be conducted in the future to quantify the behavior of PC2 and
PC3. This study mainly compared the SBAS vertical rate for 10 locations of piezometric data without
in-depth quantitative analysis. Further geological and geotechnical data from boreholes in different
locations could reveal more aspects of ground subsidence in the future.
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