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Towards elucidating the 
radiochemistry of astatine – 
Behavior in chloroform
Emma Aneheim1,3,4*, Stig Palm1, Holger Jensen5, Christian Ekberg4, Per Albertsson2,3 & 
Sture Lindegren1

Targeted alpha therapy of disseminated cancer is an emerging technique where astatine-211 is one 
of the most promising candidate nuclides. Although astatine has been known for over 70 years, its 
chemistry is still largely unexplored, mainly due to the lack of stable or long-lived isotopes. However, 
substantial amounts of astatine-211 can be produced in cyclotrons by the bombardment of natural 
bismuth. The astatine can be recovered from the resulting irradiated target material through either 
wet extraction or dry-distillation. Chloroform has become an important intermediate solvent for 
the recovery of astatine after production, especially following dry distillation. In this work, the 
radiochemistry of astatine in chloroform was investigated using evaporation, solvent extraction, 
chromatographic methods and molecular modeling. The extraction of astatine in chloroform led to 
the formation of multiple astatine species, allowing for evaporation of the solvent to dryness without 
any loss of activity. Radiolysis products of chloroform were shown to play an important role in the 
speciation of astatine forming both reactive and kinetically stable compounds. It was hypothesized that 
reactions with chlorine, as well as trichloromethyl hydroperoxide, forming polar astatine compounds 
are important reactions under the current experimental conditions.

Astatine was first synthesized at UC Berkeley in 1940 by Corson, MacKenzie, and Segrè1. This method involves 
the bombardment of natural bismuth-209 with medium energy alpha particles in a cyclotron1–3. This method can 
be used to produce both astatine-210 and 211, which are the astatine isotopes with the longest half-lives of 8.1 and 
7.2 hours, respectively. Astatine isotopes 214–219 are, however, found in the earth’s crust, in equilibrium with ura-
nium, but it has been estimated that as little as 0.07 gram exists at any given time4,5, which is why astatine is often 
called “the rarest element on earth”. Thus, little is known about the properties of astatine and its behavior is based 
on its position in the halogen group in the periodic table6. Some of the basic properties of astatine can be extrap-
olated from its neighboring halogen, iodine. However, the chemistry of astatine differs significantly from that of 
iodine, which can be partially explained by the higher relativistic contribution in chemical bonding and hence the 
greater metallic nature of the element7,8. Another factor influencing its behavior in chemical systems is that all the 
astatine isotopes apart from three (astatine-221, 222 and 223), are alpha particle emitters5. Radiolysis induced by 
alpha particles can hence play a significant role in the behavior of astatine in many chemical systems compared 
to that of stable or β-emitting isotopes of iodine, due to the nature and yield of the radiolysis products formed9.

Astatine-211 is of particular interest for use in targeted alpha therapy for disseminated cancer. Alpha particles 
have a short range in tissue (<100 µm) and high energy, resulting in both a high linear energy transfer and rela-
tive biological effectiveness10,11. Only a few alpha particle emitting nuclides, such as astatine-211, bismuth-213, 
thorium-227, radium-223, actinium-225 and lead-212/bismuth-212, fulfill most of the physical requirements 
for applications in nuclear medicine12–14. Among these astatine-211 is one of the most promising candidates due 
to its physical properties and simple production route15. However, the chemistry of astatine is significantly less 
established than that of other alpha emitters, due to the lack of long-lived or stable isotopes16 although significant 

1Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy,University of Gothenburg, 
SE41345, Gothenburg, Sweden. 2Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, 
University of Gothenburg, SE41345, Gothenburg, Sweden. 3Region Västra Götaland, Sahlgrenska University 
Hospital, Department of Oncology, SE41345, Gothenburg, Sweden. 4Department of Energy and Materials – 
Nuclear Chemistry, Institute of Chemistry and Chemical Engineering, Chalmers University of Technology, SE41296, 
Gothenburg, Sweden. 5PET and Cyclotron Unit, Copenhagen University Hospital, KF3982, Copenhagen, Denmark. 
*email: emma.aneheim@radfys.gu.se

OPEN

https://doi.org/10.1038/s41598-019-52365-5
mailto:emma.aneheim@radfys.gu.se


2Scientific Reports | (2019) 9:15900 | https://doi.org/10.1038/s41598-019-52365-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

advances have been made in basic astatine chemistry in the past decade8,17–19. Astatine-211 has 100% alpha 
emission with only one alpha particle per decay. This characteristic prevents unpredictable localization of the 
dose caused by the detachment of radioactive daughters from the carrier vector, as is the case with thorium-227, 
radium-223, lead-212/bismuth-212 and actinium-225, which all have long decay series or suffer from recoil prob-
lems5,15,20,21. Although cell internalization may prevent the daughter activity from escaping from the cell, this 
factor places very high demands on the delivery method21. On the other hand, the alpha decay of astatine requires 
higher activities to be administered to the patient than with serially decaying radionuclides to achieve the same 
cytotoxicity. The half-life of astatine-211 is 7.2 h, which is long enough to allow for efficient labeling chemistry and 
compatibility with a number of different carrier vectors, compared, for example, to the half-life of bismuth-213, 
which is 46 minutes5. It should, however, be noted that the known astatine-carbon bonds are relatively unstable in 
vivo, currently limiting systemic use of the nuclide22. The carrier vector can be, e.g. a small molecule, a peptide or 
a monoclonal antibody23, which carries the radioactivity to the site of the tumor. Astatine-211 is today predom-
inately produced in cyclotrons using the original method developed by MacKenzie, and Segrè by the following 
reaction 209Bi (α, 2n)211At. The use of astatine for cancer therapy was first proposed in the early 1950s24 and 
astatine-211 has since been used in numerous pre-clinical14,25–30 and clinical studies31–33.

Few research labs around the world work with astatine because its short half-life requires relatively close 
proximity to a medium energy cyclotron capable of producing astatine2. In addition to the production, a chemical 
infrastructure to retrieve astatine from the irradiated target material is required34. Astatine recovery from irra-
diated target material can be performed with good yields either through dry-distillation or wet extraction2,34–37. 
Both methods involve treatment of astatine using organic diluents such as chloroform or methanol. Speciation 
of astatine in such organic diluents is difficult and the state of the nuclide is generally not known38. One aspect, 
which is difficult to consider in basic chemical investigations, is the dense ionization of the media surrounding 
the short-lived alpha emitters. This factor is particularly important for understanding the chemistry relevant to 
nuclear medicine applications where high activities and high activity concentrations of the alpha particle emitting 
astatine-211 are used.

Upon recovery of astatine-211 after dry distillation, astatine can be dissolved in chloroform and this solution 
evaporated to dryness, after which astatine can be transformed into chemically useful forms and further incor-
porated into organic molecules or biomolecules using various halogen binding chemistry strategies2,39. Thus, 
chloroform has become an important intermediate solvent for recovery of astatine and the subsequent labeling 
chemistry. However, the chemistry of astatine in this particular solvent is not well known, and this study was 
undertaken to shed light on this.

Results and Discussion
Evaporation studies.  Astatine-211 dissolved in chloroform directly from elution after target recovery using 
dry distillation was found to be completely retained (101.2 ± 0.2%) during evaporation to dryness (six repetitions 
of 62 ± 9 MBq, 1.43 MBq/µL). This chloroform solution containing astatine after dry distillation is designated 
herein as “Chloroform Eluate”. Comparatively, if small activities of 131I dissolved in chloroform were evaporated 
to dryness, almost half of the activity (48 ± 5%) was released from the solvent. This result highlights the difference 
in chemistry between astatine and iodine, but could also be a result of the large difference in dose delivered to the 
solvent during the two experiments.

To compare astatine behavior in other solvents with the results in chloroform, portions of the Chloroform 
Eluate were evaporated to dryness and then redissolved in fresh solvent, before subsequent evaporation of the 
new solvent. When this process was performed using chloroform as the redissolution solvent, a clear relationship 
was observed between time after redissolution and remaining activity after subsequent evaporation (Fig. 1). It 
should be noted that in this experiment, dose delivered to the bulk solvent was significantly lower than in the 
former direct evaporation of Chloroform Eluate, and can explain why the astatine speciation may differ. However, 
as the activity concentration in the solvent rapidly increases during the course of an evaporation experiment 
the astatine speciation is likely to change during the course of the procedure and the final species may be the 
same both for Chloroform Eluate and redissolved Chloroform Eluate. A similar behavior was observed when 
changing the redissolution diluent to dichloromethane (Fig. 1). However, the use of methanol resulted in no 
time dependent behavior and a significantly smaller portion of retained activity (51 ± 4%). In a previous report, 
the stabilization of astatine using N-chloro succinimide was necessary for subsequent reactions with organic tin 
molecules after astatine recovery from distillation using methanol39. This outcome indicate that the presence of 
another halogen is important for the formation of stable astatine species, allowing for evaporation to dryness. In 
addition, the time-dependence seen in evaporation studies suggests that the formation of stable astatine species 
also is dependent on the absorbed dose to the solvent.

Direct labeling of protein-based targeting molecules starting with astatine in chloroform requires evaporation 
of the solvent. Upon redissolution in an aqueous medium, the astatine is often reacted with a reagent such as 
N-iodo succinimide or chloramine T40,41. Thus, the astatine speciation after evaporation changes before labeling, 
circumventing plausible problems in labeling with difference in astatine speciation caused by dilution or change 
in evaporation solvent. Indirect, or two-step, labeling of proteins with astatine in chloroform has previously been 
shown to be problematic as a result of competing reactions with chlorine radicals formed by radiolysis of the 
solvent42.

Solvent extraction.  To investigate the speciation of astatine in Chloroform Eluate, solvent extraction exper-
iments were carried out. Initially three different aqueous phases (0.1 M KNO3, 0.1 M NaClO4 and water) were 
used for extraction with Chloroform Eluate as organic phase resulting in very similar low distribution ratios of 
astatine activity after 10 and 20 minutes with all aqueous phases (DAt = 0.018 ± 0.008). Thus, less than 2% of the 
astatine activity remained in the organic phase after contact with the different aqueous phases. These values are 
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similar to previously found astatine distribution ratios from similar aqueous phases into chloroform43. When 
comparing solvent extraction experiments performed using 0.1 M NaClO4 as the aqueous phase and Chloroform 
Eluate as organic phase with a dilution of 10% Chloroform Eluate in fresh chloroform, the results differed signif-
icantly, both regarding extraction kinetics and equilibrium distribution ratio (not reached for the diluted series) 
(Fig. 2, panel a). For the investigated time-points, the low astatine distribution ratio for Chloroform Eluate was 
independent of contact time while for the diluted Chloroform Eluate the astatine distribution ratio increased, 

Figure 1.  Portion of retained activity after evaporation of redissolved evaporated Chloroform Eluate as a 
function of time after redissolution in chloroform (CHCl3) and dichloromethane (CH2Cl2).

Figure 2.  (a) A comparison of astatine distribution ratios (DAt) as a function of time between Chloroform 
Eluate (100%) and Chloroform Eluate (10%) diluted into fresh chloroform. (b) DAt as a function of time, 
diluting Chloroform Eluate (10%) into fresh chloroform at different time points after elution. (c) DAt as a 
function of time, diluting Chloroform Eluate (10%) in fresh chloroform at different time points after elution, 
allowing the organic phase to react >1 h before solvent extraction experiments. In all cases the aqueous phase 
was 0.1 M NaClO4.
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reaching a value of 6.2 ± 0.3 after 20 minutes of contact. This result indicate that astatine speciation rapidly 
changes with the introduction of fresh chloroform, forming extractable compounds. It was postulated previously 
that astatine changes oxidation state at the phase boundary during solvent extraction experiments into chloro-
form through reactions with solvent components or degradation products43. A change in astatine speciation at the 
phase boundary may also be true for the current experiments where astatine is present in the organic phase before 
the start of the solvent extraction experiments. The chemical form(s) of astatine in these experiments are hence 
difficult to determine. The finding, however, correlate well with the evaporation investigation where redissolved 
evaporated Chloroform Eluate behaved differently compared to directly evaporated Chloroform Eluate.

If diluted Chloroform Eluate ought to be used without additives or evaporation in the subsequent chemistry, 
e.g. in labeling of organic molecules or indirect labeling of protein-based vectors, the found complex behavior 
and difference in astatine speciation compared to Chloroform Eluate alone may compromise the resulting radi-
ochemical yield.

The radioactive dose to the solvent is an important factor affecting astatine speciation, which is evident when 
repeating the experiments, diluting the Chloroform Eluate at later time-points after elution (Fig. 2, panel b). 
Waiting 27 hours after elution compared to 6 hours, before diluting the Chloroform Eluate to 10% resulted in 
significantly higher astatine distribution ratios and a break in the kinetic curve, indicating a change in speciation 
and/or extraction mechanism during the experiment. However, it was not possible to make a correlation between 
equilibrium distribution ratio and absorbed dose to the solvent. Solvent extraction directly with Chloroform 
Eluate was not dependent on time in the same way, as may be expected since in the case the solvent has already 
received a very high dose shortly after elution, and the results presented in Fig. 2, panel a, represent an average of 
10 experiments at different time points after elution.

If the solutions diluted 6 and 27 hours after elution were allowed to react for >1 hour before performing the 
solvent extraction experiment, kinetics and equilibrium distribution ratio again changed (Fig. 2, panel c). For 
the 27 h time point, distribution ratios dropped significantly, indicating that upon dilution into fresh chloroform 
after receiving a high dose, extractable but reactive species were formed. A long time of contact (80 minutes) 
was performed for the freshly diluted samples at 6 and 27 hours after elution and, in both cases, the distribution 
ratio dropped. In the 27 h study the equilibrium distribution ratio approached the ratios found in Fig. 2, panel c 
(DAt(6 h) = 2.8 DAt(27 h) = 1.3). This result further strengthen the proposal of formation of reactive extractable 
astatine species when the Chloroform Eluate samples were diluted in fresh chloroform. It is possible that one or 
more of the astatine species in Chloroform Eluate is present in chemical equilibria with radiolysis products of 
chloroform and neat chloroform and that this equilibrium is shifted upon dilution with fresh chloroform without 
the presence of degradation products. The addition of fresh chloroform may also introduce additional oxygen to 
the reaction mixture, which can result in (additional) formation of oxygen-containing astatine species.

Chromatographic investigations.  To obtain more information about the astatine species present in 
Chloroform Eluate a variety of chromatographic methods were applied.

TLC experiments showed that two or more species of astatine with different polarities likely were present 
simultaneously in Chloroform Eluate (Table 1). Applying acetonitrile as the mobile phase resulted in separation 
of at least two astatine species between the solvent front and the starting application point. Applying solvent mix-
tures intended for the separation of polar species (dichloromethane/methanol 90:10 and ethyl acetate/methanol/
acetic acid/water (80:10:5:5)) resulted in mobility of greater portions of activity compared to acetonitrile alone 
but with less distinct separation of components, suggesting that one or more of the present astatine species are 
of polar nature. Aqueous-based mobile phases resulted in significant losses of activity from the TLC plate and in 
many cases large portions of the activity was volatilized, which is why these results are not included in Table 1.

In addition to TLC the behavior of Chloroform Eluate on a polar organic matrix in the form of a low pressure 
pre-packed column with hydrophilic styrene divinylbenzene polymer was also investigated.

Chloroform Eluate was strongly retained on the polymer resulting in <4% loss of activity when washed with 
water or 5% methanol in water. Removal of the activity proved difficult as <25%, and often significantly less, of 
the activity was eluted when applying different organic mobile phases (methanol, ethanol, acetonitrile, dichlo-
romethane, chloroform). When comparing the use of N-chloro-succinimide (NCS) with N-bromo-succinimide 
(NBS) and N-iodo succinimide (NIS) in methanol/1% acetic acid as eluent it led to the conclusion that NCS 
removed <9% of the activity whereas NBS and NIS removed >25% of the activity. This outcome indicated that 

Mobile phase Start Middle Front Liquid

Hexane 99,6% 0,3% 0,1% 0,0%

Dichloro methane (DCM) 99,1% 0,9% 0,0% 0,0%

Methanol (MeOH) 93,4% 3,5% 2,6% 0,5%

Ethyl acetate (EtAc) 71,0% 16,7% 12,3% 0,0%

Ethanol (95%) 68,0% 15,8% 15,0% 1,2%

Acetonitrile 67,0% 4,3% 28,7% 0,0%

DCM/MeOH (90:10) 55,0% 30,2% 14,8% 0,7%

EtAc/MeOH/acetic acid/
water (80:10:5:5) 19,5% 21,7% 57,0% 1,9%

Table 1.  Activity distribution on TLC strips after application of Chloroform Eluate using different mobile 
phases.
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the reaction between existing astatine species and bromine as well as iodine is preferred over the reaction with 
chlorine, further strengthening the theory that chlorine is present in one or more of the astatine species in this 
setting.

To confirm the simultaneous presence of several different astatine species, as indicated by TLC, Chloroform 
Eluate was analyzed using a specific HPLC setup with activity detection and directly adjacent quantification44. 
HPLC analysis had previously shown the simultaneous presence of different astatine species in solution under 
other experimental conditions32.

Analysis of Chloroform Eluate with a comparatively low activity concentration (circa 0.26 MBq/µl at time of 
elution) and injection shortly after elution  showed the presence of two different astatine species, using a gradient 
with high organic content (Fig. 3, series 1). However, the total area of the peaks only corresponded to 62% of 
the activity applied on the column, suggesting that, at least, one other astatine species, retained on the column, 
may be present. Repeated analysis of the same solution (series 2 and 3) as well as analysis of Chloroform Eluate 
with higher activity concentration (circa 1.0 MBq/µl at time of elution, series 4) showed that the peak area of the 
detected species is proportionately reversed to the absorbed dose to the solvent (Fig. 3, insert graph). A high dose 
to Chloroform Eluate hence results in the formation of astatine species that are completely retained on a C18 
reversed phase column, despite efforts to change gradients and mobile phases. Basic compounds are known to 
react with the silica support and/or metal impurities in the support of HPLC columns45, which could indicate that 
the astatine species retained on the column display basic properties.

Chloroform Eluate diluted in fresh chloroform, previously shown to have a behavior different from that of 
only Chloroform Eluate, was also analyzed with HPLC. Similar to the case with Chloroform Eluate two early 
peaks were detected (Supplementary Figure S1) but when the gradient was changed, several different activity 
peaks with relatively long retention time were also found. A dynamic relationship between astatine speciation 
and absorbed dose was also evident as the relation between peak area as well as the number of peaks and their 
retention times shifted over time (Supplementary Figure S2). However, the combined area of the peaks in all 
cases correspond to less than 42% of the injected activity, which indicated that a large portion of the activity was 
absorbed onto the C18 column, similar to the results with directly injected Chloroform Eluate. A very low abun-
dance of peaks with similar long  retention times could also be found when analyzing Chloroform Eluate with a 
low activity concentration, shortly after elution (Supplementary Figure S3).

HPLC analyses of both Chloroform Eluate and diluted Chloroform Eluate after solvent extraction were also 
performed (Supplementary Figure S4 and S5). The results differ from that of Chloroform Eluate and diluted 
Chloroform Eluate using the same HPLC gradient, indicating that astatine speciation changed upon aqueous 
phase contact, as could be expected.

Molecular modeling.  Speciation of astatine has generally been attempted in aqueous media at ultra-trace 
concentrations i.e. astatine activity concentrations <1 kBq/µl, in order to avoid the effect of radiolysis8,18. This 
can be compared to this work where activity concentrations in Chloroform Eluate generally were more than a 
thousand fold higher. In this work, radiolysis has also shown to  play an important role in the astatine speciation, 
which is why molecular modeling of astatine interactions with both neat solvent and different plausible radiolysis 
products of chloroform was performed to elucidate the observed experimental behavior of astatine.

Molecular modeling suggested that no direct favorable interactions take place between astatine and neat chlo-
roform (Supplementary Table 1).

γ-Radiolysis of chloroform give rise to a number of different radiolysis products depending on dose, pres-
ence of oxygen, moisture and impurities in the solvent9. Besides the presence of low-molecular species such 
as chlorine gas and hydrochloric acid, different forms of dimers of the two diluents are commonly found. Also 
oxygen-containing species such as peroxides and phosgene can be found when oxygen is present during irradia-
tion, which was the case in the experiments in this work.

Modeling suggested that energetically favorable reactions could take place with chlorine, trichloromethyl 
hydroperoxide or hexachloro ethane (Fig. 4, Supplementary Table 1). Repeating solvent extraction experiments 
both with Chloroform Eluate and 10% Chloroform Eluate diluted in fresh chloroform with the addition of hexa-
chloroethane to the solvent did not significantly alter the resulting astatine distribution ratio. This result suggests 
that hexachloroethane is not the predominant radiolysis product reacting with astatine in chloroform. Under 
oxygenated conditions trichloromethyl hydroperoxide is the dominant radiolysis product of chloroform, which 

Figure 3.  HPLC chromatograms with activity detection of Chloroform Eluate with low activity concentration 
(series 1–3) and high activity concentration (series 4). Absorbed dose to solvent increases from series 1–4. 
Insert graph show the amount of eluted activity as a function of absorbed dose to the solvent for the four series.
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upon prolonged irradiation forms phosgene, with which no favorable interactions with astatine were found 
through modeling. Favorable interactions with the peroxide were found, which partly could explain the dif-
ference in behavior when diluting Chloroform Eluate with fresh chloroform as formed peroxides rapidly react 
further to form carbonyl chloride and hypochlorous acid, or in the presence of moisture to yield hydrochloric 
acid, carbon dioxide and oxygen9. No interaction between hydrochloric acid and astatine were found. Peroxide 
reactions are, however, not likely to be the only interaction taking place, as peroxides also are formed upon irra-
diation of methanol9 and the astatine evaporation behavior in methanol in this work was found to be significantly 
different from that in chloroform. Therefore, the interaction found with chlorine is likely to be one of the most 
important processes in explaining the stable behavior of astatine in chloroform upon evaporation. Radiolysis of 
dichloromethane also form a number of radiolysis products where chlorine atoms are intermediate products46, 
providing an explanation to the similar evaporation stability found in this solvent. Di-halogen and di-halogen 
binary astatine compounds such as AtI/AtBr and AtI2

−/AtBr2
− as well as a ternary halogen compound (IAtBr−) 

have previously been shown to exist in aqueous solution47. Halogen compounds involving two or more astatine 
atoms are not likely to form in solution due to the low concentration of astatine atoms. The di-halogen compound 
between astatine and iodine, AtI, has also been shown to form halogen bonds with organic Lewis bases where 
astatine acts as the halogen bond donor48. It is therefore possible that additional reactions take place including the 
postulated binary di-halogen formed between astatine and chlorine, but this remain to be investigated.

Conclusions
Astatine in chloroform forms species that are stable, allowing for evaporation of the solvent to dryness with-
out any loss of astatine activity. Different sets of experiments suggest that multiple astatine species are pres-
ent simultaneously in chloroform and that these species most likely result from interactions with chlorine and 
oxygen-containing radiolysis products of chloroform. The formation and nature of these species have been shown 
to be heavily dependent on dose to the solvent and modeling suggest that reactions with chlorine and trichlo-
romethyl hydroperoxide are of importance. Astatine speciation has been shown to rapidly change when intro-
ducing fresh chloroform to a solution that already has received a high astatine radiation dose, which complicates 
radiochemical analysis of the original solution.

More extensive studies are needed to fully elucidate the radiochemistry of astatine in chloroform and other 
organic halogenated solvents. The effect of oxygen must be investigated by performing the experiments under 
inert atmosphere conditions. It is also possible that other radiolysis products and especially in different yields are 
formed during the described present situation with a dense α-radiation field compared to literature data that are 
based on γ-irradiation. In addition, the possibility that astatine forms halogen bonds in the resulting complicated 
organic matrixes after radiolysis of halogenated solvents should be investigated.

Methods and Material
All aqueous solutions were prepared using ultrapure water, MilliQ (>18.2 MΩ*cm) and all organic reagents used 
were of analytical grade or higher.

Astatine production and recovery.  Astatine-211 was produced in the MC32 Scanditronix cyclotron at 
Copenhagen University Hospital by 28 MeV alpha particle bombardment of a target consisting of an aluminum 
backing (0.5 × 27 × 30 mm) with a bismuth layer of ∼20 µm, covered with a thin aluminum layer (∼5 µm, to hin-
der astatine evaporation during production). Upon arrival in Gothenburg the astatine containing (circa 600–800 
MBq) bismuth layer was removed from the backing together with the covering aluminum layer by a mechanical 
scraper. The resulting powder was dry-distilled (710 °C, circa 30 s) and recovered in chloroform (300–500 µl) 
using an automatic system28. Decay corrected recovery yields were typically between 75–85% resulting in a gen-
eral astatine-211 activity concentration of 1–2 MBq/µL of chloroform. The recovered astatine was then either 
used as-is or portioned into different fractions and evaporated to dryness.

Figure 4.  Geometry optimized structures of interactions between astatine (brown) and (a) Cl2 (b) CCl2OOH 
and (c) C2Cl6 modeled in Materials Studio 6.0, Accelrys.
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Evaporation.  Astatine-211 recovered in chloroform after dry-distillation, termed throughout this study as 
Chloroform Eluate, was evaporated by placing a portion of the chloroform in a Screw Top Tapered Vial (1.1 mL) 
under a gentle stream of nitrogen (160–220 mL/h) directed into the vial until dryness. This process, depending 
on liquid volume took 0.5–5 minutes. Activity was measured before and after evaporation using a dose calibrator 
(VEENSTRA instruments).

Dry portions of Chloroform Eluate in Screw Top Tapered Vials (1.1 mL) were also redissolved in 200 µL of 
chloroform, dichloromethane or methanol. After different periods of time small portions (3 × 20 µL) from these 
solutions were removed and once again subjected to evaporation as described above.

Evaporation of iodine-131 containing chloroform was performed as stated above after creating the radioac-
tive solution from H2SO4 (500 µL, 3 M) spiked with 131I (50 µL), subsequently oxidized with the addition of H2O2 
(70 µL) under a layer of chloroform (500 µL), which then was removed from the aqueous phase.

Solvent extraction.  Organic phases were in all cases astatine containing chloroform, either recovered 
directly from dry distillation of astatine, Chloroform Eluate, or fresh solvent spiked with a small portion of 
Chloroform Eluate (10%). Unless otherwise stated, aqueous phases were either NaClO4 (0.1 M), KNO3 (0.1 M) 
or water and both phases were always of equal volume (40–200 µl). The organic and aqueous phases were con-
tacted using an IKA VIBRAX mechanical vortex shaker (2000 rpm) in glass vials with screw top lid (either 2 ml 
or 300 µL). Equal volume samples (2–10 µL) were withdrawn from each phase for activity distribution analysis. 
Sampling was performed at different time-points after the beginning of contact for kinetics analysis.

Results are discussed in terms of astatine distribution ratios, determined by measuring the activity in both 
phases, according to the following equation:
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Thin Layer Chromatography (TLC).  Chloroform Eluate (2–5 µL) was spotted on TLC plates with alumi-
num backing (Silica Gel 60 F254, Merck). After drying, the plates were placed in conical screw cap poly propylene 
tubes (50 mL) with 4 ml mobile phase (acetonitrile, hexane, methanol, ethanol (95%), dichloromethane, ethyl 
acetate, dichloromethane/methanol (90:10), ethyl acetate/methanol/acetic acid/water (80:10:5:5), water/ethanol 
(80:20), water, NaClO4 (0.1 M), citrate buffer (pH 5.5), NaOH (0.1 M)). When the front of the mobile phase had 
travelled close to the end of the plate, the plate was removed from the tube, dried, and cut in three equal parts; 
start (spot), middle and front, before the activity was measured in a dose calibrator.

Low-pressure chromatography.  Chloroform Eluate (5–10 µL) was added to 1 ml Bond Elut PLEXA col-
umns (Agilent) both dry and pre-equilibrated using methanol (5%) in water. After application of the activity the 
columns were measured with a dose calibrator before being washed with methanol (5%) in water or water (1 mL). 
After washing the activity of the column was measured before elution with different types of organic solvents and 
solvent mixtures (1 mL). After elution, the activity of the column was measured again.

HPLC.  HPLC analyses were performed using a Jasco LC4000 Prep-LC (UV detector UV-4075, autosampler 
AS-4050, pump PU-4086 Binary, LC-NetII/ADC and ChromNAV software), in combination with a flow-through 
sodium iodide NaI(Tl) well detector used for activity analysis and quantification44. Analytical chemistry was 
conducted on a reversed-phase C18 column (YMC-Triart). After studying several different gradient systems as 
well as combinations of mobile phases (water, buffer of pH 6.5, methanol and acetonitrile) the following mobile 
phase conditions were used if nothing else is  stated: 20% A (water/ 0.1% trifluoroacetic acid (TFA)) and 80% B 
(acetonitrile), for 10 minutes, linear gradient to 0% A and 100% B during 5 minutes, followed by 10 minutes hold, 
thereafter a linear gradient to 95% A and 5% B during 5 minutes and hold for another 5 minutes.

Molecular modeling.  Density functional theory (DFT) calculations were performed using Materials Studio 
6.0 from Accelrys. Gas-phase properties (energy, geometry) were determined for different combinations of asta-
tine and chloroform as well as radiolysis products of chloroform. Calculations were made using the Generalized 
Gradient Approximation PW91 Functional, implementing a chloroform solvation model.

Data availability
All relevant data generated or analyzed during this study are included in this published article (and its 
Supplementary Information files).
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