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Abstract: Since the emergence of head-mounted displays (HMDs), researchers have attempted
to introduce virtual and augmented reality (VR, AR) in brain–computer interface (BCI) studies.
However, there is a lack of studies that incorporate both AR and VR to compare the performance
in the two environments. Therefore, it is necessary to develop a BCI application that can be used
in both VR and AR to allow BCI performance to be compared in the two environments. In this
study, we developed an opensource-based drone control application using P300-based BCI, which
can be used in both VR and AR. Twenty healthy subjects participated in the experiment with this
application. They were asked to control the drone in two environments and filled out questionnaires
before and after the experiment. We found no significant (p > 0.05) difference in online performance
(classification accuracy and amplitude/latency of P300 component) and user experience (satisfaction
about time length, program, environment, interest, difficulty, immersion, and feeling of self-control)
between VR and AR. This indicates that the P300 BCI paradigm is relatively reliable and may work
well in various situations.

Keywords: brain–computer interface (BCI); virtual reality (VR); augmented reality (AR); P300; drone;
BCI application; electroencephalogram (EEG)

1. Introduction

The brain–computer interface (BCI) is a technology that allows for direct commu-
nication between humans and a computer through the user’s brain activity and mental
states [1]. A BCI can improve the quality of life by translating the brain activity into “mental
commands” that can be exploited in a wide number of applications ranging from assisting
people with disabilities or re-education therapies to entertainment and video games [2].

P300 BCI is one of the popular paradigms used in the BCI field. P300 is a positive
event-related potential (ERP) that appears approximately 300 ms after the stimulus [3].
Farwell and Donchin introduced modern P300-based BCI in 1988 as a means of com-
munication for patients suffering from the ‘locked-in’ syndrome [4]. The P300 Speller is
a typewriter that uses the P300-based BCI paradigm. It consists of rows and columns
with alphabetic and numeric characters; most are non-target and several are target stimuli.
It detects the user’s intended character (target) based upon the P300 component elicited
by flashing rows and columns [4]. The goal of the P300 is to analyze the ERPs in one or
more repetitions to pinpoint which item has produced a P300, which is a positive ERP that
appears approximately 300 ms after the item the user wants to select has flashed [5].

Many BCI studies in the past were based upon 2D visual stimulation but the recent de-
velopment of head-mounted displays (HMDs) has paved the way to the commercialization
of combined BCI+VR (virtual reality) or BCI+AR (augmented reality) [5]. Indeed, HMDs
provide a build-in structure that can support the embedding of EEG (electroencephalogra-
phy) electrodes, which are necessary for BCI [5].
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With the emergence of HMDs, some BCI studies have been conducted that combine
VR or AR using a HMD. Table 1 provides an overview of previous VR-BCI and AR-BCI
studies. It summarizes the application contents, BCI paradigm, and display type. The AR
systems were classified according to the type used: video-see through (VST) and optical
see through (OST).

Table 1. Overview of previous VR-BCI and AR-BCI studies. Motor imagery (MI) and steady-state visual-evoked poten-
tial (SSVEP).

Environment Application Contents Study BCI-Paradigm Display Type/(AR Type)

VR

Post-stroke rehabilitation Aamer et al. [6] MI HMD
Attention training Mercado et al. [7] Neurofeedback HMD

BCI system McMahon et al. [8] MI HMD
Attention training Rohani et al. [9] P300 HMD
Attention training Ali et al. [10] SSVEP HMD

AR

Real-time monitoring applications Arpaia et al. [11] SSVEP HMD/OST
Robot-based rehabilitation Arpaia et al. [12] SSVEP HMD/OST

Robot control Si-Mohammed et al. [2] SSVEP HMD/OST
Home appliance control Park et al. [13] SSVEP HMD/OST

Quadcopter control Wang et al. [14] SSVEP HMD/VST
Communication Kerous et al. [15] P300 HMD/VST

Robotic arm control Zeng et al. [16] MI CS/VST
Robot control Tidoni et al. [17] P300 HMD/VST

Wheelchair control Borges et al. [18] SSVEP HMD/VST
Feasibility study Bi et al. [19] P300 head-up display

Robot control Martens et al. [20] P300, SSVEP HMD/VST
Light and TV control Takano et al. [21] P300 HMD/OST

Robot control Faller et al. [22] SSVEP HMD/VST
Robotic arm control Lenhardt et al. [23] P300 HMD/VST

However, the development of BCI content in VR and AR environments has not been
carried out actively because of the limited performance of BCI-based control, the two
technologies’ inherent complexity, as well as the difficulty in designing effective UIs based
upon BCI [2]. Furthermore, no BCI study has been conducted in both AR and VR to
compare the performance in the two environments, although there are BCI studies that
include either VR or AR. Therefore, it is necessary to develop a BCI application that can
be used to compare the performance in both VR and AR and to test their feasibility in
real-world environments.

To do so, we developed a BCI drone control application in this study that can be used
in both VR and AR. In VR, a virtual drone was controlled with virtual maps, while in AR,
a real drone was controlled and real-time video could be viewed with a drone camera.
Using this application, we conducted an experiment with 20 subjects and compared the
differences in the VR and AR environments.

In general, AR using head-mounted displays (HMD) includes optical see-through
(OST) and video see-through (VST) [24]. The OST-HMD does not obstruct the subject’s front
view and allows the user to observe the surrounding environment directly. The VST-HMD
often captures environmental information through the camera so that the subjects can still
obtain information about the surrounding environment. In this study, we use VR-assisted
AR that floats virtual directional buttons above a real time video from a drone’s camera.
Note that the AR we compare with VR in this study is video see-through (VST) AR.

To compare the performance in VR and AR effectively, we focused on one BCI
paradigm (P300), two environments (VR and AR), and one task (mobile drone control).

We selected the P300 paradigm for our drone control system for the following reasons.
First, drone control systems require rapid interaction between users and a drone, as the
direction in which a user wants to go must be controlled with a rapid response with
higher accuracy. Second, compared to the motor imagery BCI paradigm, P300-based BCIs
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require less training time and achieve a higher accuracy and information transfer rate
(amount of information sent per unit of time). Third, P300 allows for a larger number of
possible commands [18,25], which can be used as the directional buttons (forward, up,
down, right, right turn, left, and left turn) in the drone control system. Finally, the P300
paradigm provides an intuitive user interface (UI); what a user sees is what should be
recognized [26–29], which is essential to control the drone easily. In the SSVEP paradigm,
the visual stimulus was flickered at different frequencies depending upon each target
button, which can cause a different performance for each target button [30,31]. In addition,
all target buttons in the P300 paradigm have the same ISI and ERPs corresponding to each
target button and are preprocessed with the same procedure. Therefore, P300 was selected
as the BCI paradigm for the drone control system to ensure that all directional buttons
have a similar effect regardless of the order or frequency of the instructions because all
instructions to control the drone were generated randomly in our experiment.

The first objective of this paper was to introduce an opensource-based drone control
application using P300 BCI in the AR and VR environments. This application can allow peo-
ple who are physically challenged to travel outside their normal environment and increase
their autonomy by controlling a drone with their brainwaves alone. In addition, it also
allows for more immersive experiences by combining BCI with VR and AR environments
using a HMD.

The second objective of this paper was to study the feasibility of combining BCI
and VR or AR technologies and compare the VR and AR environments. We evaluated
the two environments from two perspectives: online performance and user experience.
We compared the classification accuracy and analyzed the differences in event-related
potential (ERP) signals in each environment. We also compared user satisfaction in the two
environments and their effect according to preference.

2. Materials and Methods
2.1. Application Development
2.1.1. Development Environment

In this project, we used OpenViBE, Python, Unity 3D, and Tello for Unity, which are
competitive with respect to portability, scalability, and online performance.

OpenViBE for integration overall: This is an open-source software platform that
is specialized in integrating various components of the brain–computer interface [32].
OpenViBE allows brain waves to be acquired, preprocessed, classified, and visualized in
real-time and specializes in designing and testing brain–computer interfaces. In this project,
we implemented the OpenViBE designer code for the Training Session and Online Session.
These components collect brain signals from an EEG device (DSI-VR300, Wearable Sensing
Inc., San Diego, CA, USA), the stimulation information from Unity, and save data in a file.

Python for signal processing: Signal processing algorithms were implemented in
Python. Brainwaves were processed with Python to detect the P300 signal and the target
button that a user saw was predicted by a pre-constructed classifier.

Unity 3D for VR and AR application: Unity 3D is a cross-platform game engine that
can be used to create three-dimensional, VR, and AR games, as well as simulations and
other experiences [33]. In this project, it was used to display a visual panel that blinks
randomly, virtual maps for drone movement, and video from a drone on the screen.

Tello for Unity to control the drone: Unity API was used to control a DJI Tello drone
in the AR mode [34]. This API provides a function to move the drone in several directions,
automatic take-off and landing functions, as well as hijack functions to control the drone
with keyboards in case of emergency [34]. It also allows users to view real-time video
from the drone on screens in the HMD [34]. However, Tello for Unity uses a keyboard to
control drones by giving them constant commands. To address this, we made it possible
for the drones to travel a certain distance with a single command by relaying commands
continuously over a period of time.
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All the source codes for the drone control system are available through the Github
repository [35].

2.1.2. System of Drone Control Application

The drone control system’s environment and composition are shown in Figure 1.
We implemented an application to control the drone in the AR and VR environments
using Unity. In Unity, an interface for blinking buttons was implemented to provide
visual stimulation. Unity relays the timing information of a flickering button to OpenViBE
through the TCP/IP protocol. OpenViBE parses the timing information from Unity and
the data from DSI-VR300 into a single file. The timing information and EEG signal are
processed in Python to predict the user’s direction to control the drone. The command
predicted is transferred to either a virtual or real drone. A real drone transfers the real-time
video from the drone camera back to Unity through Wi-Fi.
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2.1.3. Signal Processing and Classification

Basically, the signal acquired was processed through a pre-defined pipeline, as shown
in Figure 2. Each step is described as follows.

• Re-referencing: seven channels (Fz, Pz, Oz, P3, P4, PO7, and PO8) were re-referenced
using a channel on the left ear.

• Bandpass filtering: data were filtered to the frequency band of 0.1–30 Hz using the
SciPy package with the 5th order Butterworth filter [36].

• Epoching: data were segmented to 0–1000 ms epochs from each stimulus onset.
• Baseline Correction: Each epoch’s mean value was subtracted from the epoch. EEG

signals are prone to amplitude shifts attributable to such factors including changes
in impedance or noise, which can be fatal in the data analysis. Baseline correction
compensates for this random amplitude shift.

• Consecutive Trial Averaging: to improve the signal-to-noise ratio (SNR), segmented
epochs were averaged continuously by 20 epochs.

• Resampling: Brain signals were digitized originally at a sampling rate of 300 Hz. To
reduce the data size, signals were down-sampled to 100 Hz.
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The EEG data acquired during the training session were processed through the steps
in Figure 2 and a classifier was constructed using these data. Then, this classifier was
used in the following two online sessions. Linear discriminant analysis (LDA) was used as
our classifier. LDA uses a linear hyperplane to separate data from two classes, assuming
that data are distributed normally [37]. As its classification is highly efficient despite its
simplicity, this classifier is used widely for BCI designs, particularly for P300-based BCI [38].
The EEG data from the online session were processed through the same steps in Figure 2.
All outputs from the classifier across blinks were summed and the selection (direction
button) with the highest value was chosen as the target direction.

2.1.4. Game Scenario and Contents

The characteristics of the P300 component in an ERP may differ in appearance, latency,
and amplitude depending upon users’ individual differences, age effects, and ultradian
rhythms [39]. Thus, it is reasonable to collect data during a training session before running
a real-time BCI application (e.g., testing, or online session). As most BCI systems, the
application developed consists of two phases: the training session and online session. Thus,
we designed a training scenario as shown in Figure 3a and then the classifier was used to
detect the target button from Figure 3b, which is the UI during the testing session.
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Figure 3. UI of the system developed. (a) Button interface for the training session. (b) Button interface
for the online session. (c) VR content to control a virtual drone. Desert map is shown. (d) All four
maps (park, dessert, maze, and forest). (e) AR contents to control a real drone. Button interface is
shown. (f) A real video in HMD streamed from the drone.

In the training session, the user looks at the target button according to the instructions
on the top. In one selection of a training session, seven buttons blink 30 times with a fixed
ISI in random sequence. “Blink” in this system refers to visual stimulation using a color
that toggles between gray and yellow. A button toggles to yellow for 100 ms and re-toggles
to gray for 100 ms to give one visual stimulation.

After the training session, online sessions are run to control the drone. The button
interface for online sessions is shown in Figure 3b. There are seven directional buttons
(forward, up, down, right, right turn, left, and left turn). In one selection of the online
session, seven buttons blink 20 times with fixed ISI in random sequence. The user looks at
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the button in the direction she/he wants to move the drone and this application predicts
the direction the user is looking at and controls the drone.

The drone control application is divided into VR and AR contents depending upon
the environment. Figure 3c,d are parts of the VR application with which a user controls
a drone in the VR environment. In the VR environment, the virtual drone (Figure 4a)
allows the user to navigate a virtual map of his/her choice (park, desert, maze, and forest).
Figure 3e,f are images of controlling a drone in the AR environment. Furthermore, in
the AR environment, a drone (Figure 4b) can be controlled in real environments through
a real-world drone (DJI-Tello) (Figure 5b) and users can watch real-time images from the
drone’s camera.
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Figure 5. Experimental view. (a) A subject wearing HMD is playing the drone control system.
(b) A real drone (red box) is being controlled by a subject (blue box) through the AR-drone con-
trol system.

2.2. Experiment
2.2.1. Subjects

To compare the performance in VR and AR, 20 subjects (age: 20 to 27, ten males and
ten females) participated in this experiment with the same equipment in the same place
and performed one task (mobile drone control) in VR and AR sequentially. The Public
Institutional Bioethics Committee designated by the Ministry of Health and Welfare ap-
proved the study (P01-201812-11-004) and all subjects were informed about the experiment
and their right to stop the experiment if/when they felt uncomfortable or experienced 3D
motion sickness before the experiment. All subjects signed a written consent form prior to
this experiment and were paid for their participation. None of them had participated in
a BCI experiment before this study.

Each experiment took a total of 50 min. The experimental procedure is shown in
Figure 6. Before and after the experiment, the experimental survey was conducted. Training
sessions were conducted to generate a classifier, followed by online sessions to control the
drone. Half of the participants engaged in the AR online session after the VR online session
and the other half engaged in the VR online session after the AR online session. To test their
accuracy in the online session, the subjects were instructed to move the drone according to
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the instructions given at the top in the display. Each subject played 15 selections (15 in VR
and 15 in AR) in two online sessions.
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The EEG data were recorded with DSI-VR300, which has a HMD (HTC-Vive) and
a headset to measure the EEG (Figure 5a) [40]. The device has seven channels of dry
electrodes (Fz, Pz, Oz, P3, P4, PO7, and PO8) and a 300 Hz sampling frequency [40].
A DJI-Tello drone was used in the AR applications (Figures 4b and 5b) [41].

2.2.2. Questionnaire

Two questionnaires were generated pre and post-task (Table 2). Before the experiment,
the subjects filled out a pre-task questionnaire that includes questions about mental disease,
experience with BCI content or AR and VR contents, and 3D sickness. They were also
asked of their condition, such as the number of hours they slept and hours elapsed since
they had ingested alcohol, coffee, or cigarettes. After the experiment, the subjects filled
out a post-task questionnaire about their satisfaction with VR and AR to compare the two
environments. They evaluated their satisfaction with the time, program, environment,
interest, difficulty, immersion, feeling of self-control of the drone, and 3D sickness. They
also indicated their predicted accuracy from 1 to 10 as well as their preferred environment
(VR or AR) and reason for preference.

Table 2. Pre- and post-questionnaire items.

Questionnaires Question Answer Format

Pre

Do you have mental disease? Yes or No
Have you ever participated in a BCI experiment? Yes or No
Have you ever experienced AR or VR contents? Yes or No
Have you ever experienced 3D motion sickness? Yes or No

Did you sleep well for more than 6 h? Yes or No
Did you drink coffee within 24 h? Yes or No

Did you drink within 24 h? Yes or No
Did you smoke within 24 h? Yes or No

Evaluate your physical condition. 1 to 5 (good)
Evaluate your mental condition. 1 to 5 (good)

Post
(VR and AR)

Evaluate the playing time (time). 1 to 5 (long)
Evaluate how you feel about this application

(program). 1 to 5 (excited)

Evaluate the comfort of surroundings
(environment). 1 to 5 (good)

Were you interested in the application (interest)? 1 to 5 (interested)
Was the application difficult (difficulty)? 1 to 5 (easy)

Evaluate the immersiveness of the application
(immersion). 1 to 5 (high)

Evaluate the ability to control the drone (control). 1 to 5 (high)
Did you feel 3D motion sickness? Yes or No
Please predict your performance. 1 to 10 (high)
What do you prefer, VR or AR? VR or AR

2.2.3. Analysis and Statistical Tests

Primarily, we investigated the online performance, peak latency, and amplitude of the
ERP component to compare the VR and AR environments. The scores and answers to the
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questionnaires were also examined to assess any differences between the two. We used the
Wilcoxon signed-rank tests to analyze the data, as the Kolmogorov–Smirnov test indicated
that most of the data did not follow a normal distribution. We set the significance level
to 0.05.

3. Results

Before the analysis of the experimental results, we looked at all subjects’ full P300
waves in 30 selections (15 each in VR and AR) one by one. In one selection, there was
20 epochs (or blinks) per button. In total, 140 epochs (20 epochs × 7 buttons) were required
to predict one directional button. If the maximum amplitude of the ERP in each epoch
exceeded 80 µV, which is over the conventional range of P300 amplitude [42,43], the
epoch was considered poorly measured, and if these exceeded 50% of the total epochs, the
selection was considered to be noise-contaminated. If at least 10 of the 15 selections (66%),
either in AR or VR, were considered noise-contaminated, the subject was excluded from
the analysis. As a result, three subjects (S07, S12, and S13) were excluded from the analysis
because of heavy noise in their EEG signals.

Performance in each environment, 3D motion sickness, and environment preference
are shown in Table 3. We compared the VR and AR environments from two perspec-
tives: online performance (classification accuracy and ERP signal) and user experience
(satisfaction and preference) in Sections 3.1 and 3.2.

Table 3. Results of the experiment.

Subject No.
Accuracy (%) 3D Sickness

Preference
VR AR Mean VR AR

S1 90.00 60.00 75.00 N N VR
S2 66.67 80.00 73.33 Y N AR
S3 95.00 85.00 90.00 N N VR
S4 80.00 73.33 76.67 N N AR
S5 80.00 66.67 73.33 N Y AR
S6 100.00 100.00 100.00 N N AR
S8 100.00 100.00 100.00 N N AR
S9 73.33 86.67 80.00 N N AR

S10 73.33 93.33 83.33 N N VR
S11 93.33 100.00 96.67 N N VR
S14 100.00 73.33 86.67 N N VR
S15 100.00 100.00 100.00 N N AR
S16 100.00 93.33 96.67 Y Y VR
S17 100.00 100.00 100.00 N N AR
S18 100.00 93.33 96.67 N Y VR
S19 93.33 100.00 96.67 N N AR
S20 100.00 100.00 100.00 N N AR

3.1. Online Performance in AR and VR
3.1.1. Accuracy in VR and AR

The classification accuracy was calculated to evaluate the two-drone control system.
Figure 7 shows the subjects’ accuracy in VR and AR and the mean. On average, the
subjects’ performance was 90.88% (VR) and 88.53% (AR), with a mean of 89.71% overall.
The Wilcoxon signed-rank tests were performed to test the statistical significance and
showed that the classification accuracy did not differ significantly in the two environments
(p > 0.05).
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3.1.2. ERP in AR and VR

To compare the difference in ERP signals in the two environments, we analyzed
the latency and amplitude of the peak in the P300. In this research study, AR for com-
parison with VR is VR-assisted and video see through-based. Three-hundred epochs
(15 selection × 20 blinks) in one environment were averaged per subject; we identified the
peak of the P300 component in the averaged ERP manually and calculated the peak value’s
amplitude and latency.

As shown in Table 4, the mean latency in VR and AR were 415.88 ± 22.77 ms and
411.76 ± 23.82 ms, respectively, and the mean amplitude in the two were 5.09 ± 4.79 µV
and 6.22 ± 7.94 µV, respectively.

Table 4. Comparison of the ERP in VR and AR. Mean and standard deviation (SD) are presented at
the bottom.

Subject No.
Latency (ms) Amplitude (µV)

VR AR VR AR

S1 410 420 5.65 6.05
S2 390 410 3.7 2.16
S3 390 380 2.72 4.97
S4 420 410 2.49 2.54
S5 440 430 9.05 5.28
S6 460 440 4.35 7.72
S8 420 410 3.8 4.74
S9 420 420 7.19 5.62
S10 400 400 2.25 2.94
S11 430 430 2.94 3.09
S14 370 340 4.48 9.01
S15 400 400 3.17 3.1
S16 420 430 1.47 2.24
S17 410 400 3.89 2.76
S18 450 430 3.59 2.86
S19 400 410 22.85 37.05
S20 440 440 2.88 3.53

Mean 415.88 411.76 5.09 6.22
SD 22.77 23.82 4.79 7.94

The Wilcoxon signed-rank tests were used to test the statistical significance of the ERP
because the Kolmogorov–Smirnov test showed that the latency and amplitude dataset
also did not follow a normal distribution. The Wilcoxon signed-rank test showed that the
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latency and amplitude of the P300 peak point did not differ significantly in the VR and AR
environments (p > 0.05).

In the analysis above, each subject’s mean target ERP was compared in VR and AR.
This time, we divided the targets into seven directions (forward, up, down, right, right
turn, left, and left turn) and analyzed the ERP signal depending upon the directions.

Figure 8a shows the averaged ERP of the seven directions between 0 and 1000 ms
after the stimulus. The ERP signal of 17 experiments in VR and AR were averaged in
each direction.
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As observed, prominent peaks presented at approximately 0.4 s for both VR and
AR. To examine the difference in peak amplitude between the two environments, we
collected the mean amplitude from 0.3 to 0.5 s in each direction and conducted a statistical
test (Wilcoxon rank-sum test). However, we found no statistically significant difference
between the AR and VR peak amplitudes in all directions (p > 0.05, FDR corrected [44,45]).

Furthermore, we collected all trials from all subjects and attempted to calculate all
subjects’ direction-based accuracy. Figure 8b presents the results. Overall, direction-based
accuracies were 75% (minimum) to 95% (maximum) for VR and 80% to 100% for AR.
However, no statistically significant difference was found between the two environments
(p > 0.05).
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3.2. User Experience in AR and VR

We also evaluated the users’ experience using the answers from the two questionnaires
in Table 2, alongside any difference associated with VR or AR preference and 3D sickness.

3.2.1. Satisfaction

To compare the users’ satisfaction in VR and AR, seven items (time length, program,
environment, interest, difficulty, immersion, and feeling of self-control) were evaluated.
Each item was scored from one to five points on VR and AR and three points indicates
moderate or neutral. The mean score and standard deviation for the seven items evaluated
are shown in Figure 9. The Wilcoxon signed-rank test showed that the users’ experience of
the seven items did not differ significantly in the VR and AR environments (p > 0.05).
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3.2.2. Accuracy According to Preference

The mean accuracy between VR and AR did not differ significantly in Section 3.1.1.
However, the accuracy differed slightly depending upon the subjects’ preferred environ-
ment. Figure 10 shows the group’s mean accuracy according to preference. The mean
accuracy in the group that preferred VR (n = 7) was 93.1% in VR and 89.33% in AR, which
indicates that VR accuracy was slightly higher than that in AR. In addition, the group that
preferred AR (n = 10) showed greater accuracy in AR (90.67%) than VR (85.48%). How-
ever, the statistical test showed no significant difference between the two (VR preferred:
p = 0.23336, AR preferred: p = 0.58091).
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3.2.3. User’s Self-Predicted Performance

BCI users’ self-prediction of their accuracy is useful information for understanding BCI
performance variation [46–49] and there is typically a high positive correlation between self-
predicted BCI performance and actual classification accuracy [47]. Similarly, in this drone
control experiment in VR and AR, the subjects were asked to predict their accuracy overall
after the experiment. Figure 11 presents the predicted and actual accuracies averaged over
the two environments. Interestingly, we also found that their self-predicted accuracy was
correlated highly positively with their actual classification accuracy (r = 0.68, p < 0.05).
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4. Discussion

In this study, we demonstrated a P300 BCI drone control application for VR and
AR environments and showed that the two environments did not differ significantly in
performance (classification accuracy and ERP patterns) and user experience (time length,
program, environment, interest, difficulty, immersion, and feeling of self-control).

We extended the conventional 2D-based BCI experiment to a 3D-based BCI experiment
in both virtual reality (VR) and augmented reality (AR) using a HMD. A wearable HMD-
based BCI is promising as it provides a more user-friendly BCI system for hands-free
interaction with real and virtual objects in AR and VR environments [50]. These 3D
environments can be highly interactive and can provide a suitable way to alleviate the
limitations of BCI control, such as slow and error-prone interactions and limited degrees
of freedom [51]. Beyond the typical BCI paradigm, we developed the drone control
application, which can be used in a real situation. This application can improve the level
of freedom and offer the possibility for an immersive scenario through induced illusions
of an artificially perceived reality that can be used not only in basic BCI studies but also
in many other fields of application [52]. We also used dry rather than wet EEG electrodes
because of their easy use in real situations for a user-friendly system.

In BCI studies, the user’s experience is one of the most important aspects of the
system’s feasibility. We compared the two environments using not only performance but
also users’ experience in a real-world environment and all participants showed a positive
response in both VR and AR. This confirms the feasibility of applications available in both
VR and AR with respect to users’ satisfaction as well as performance.

This work encourages more exciting and promising new research topics to further
develop the association between BCI and mixed reality, which uses both VR and AR. In ad-
dition to the P300 paradigm, other paradigms, such as motor imagery and SSVEP, can also
be tested in a mobile drone control system in VR and AR for more practical applications.
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Both VR and AR offer immersive and interactive effects but even when the same HMD
is used, some elements such as UI and contents can lead to different user satisfactions.
Thus, we investigated the participants’ preferred environment as well as their satisfaction.

Although the subjects expressed the same positive opinion about the two environ-
ments, they had their own preferred environment and corresponding reasons. The reasons
why some preferred VR were “interest in a virtual environment” and “feeling of playing
the game”, while the reasons why others preferred AR were “strong immersion due to the
AR”, “controlling of real drone”, and “liveliness of real time video”.

Section 3.2.2 showed that classification accuracy was slightly higher in the subjects’
preferred environment. However, there was no statistically significant difference between
VR and AR accuracy in either the group that preferred VR (n = 7) or AR (n = 10). In
general, a small sample size can influence statistical tests’ significance [53] and a larger
sample increases reliability and minimizes the effect of measurement error [54]. Thus, we
expect that more data would help us draw a solid conclusion about the relation between
environment preference and BCI performance. Furthermore, there is another possible
scenario. Subjects may prefer an environment in which they believe their accuracy is
higher, i.e., perceived accuracy may affect the environment. However, in this study, we
surveyed the subjects’ environment preference after an experiment. One possible approach
to check whether there is bias attributable to the experience (regarding accuracy) would be
to provide the VR and AR experience without classification feedback and conduct a post-
experimental survey. In the future, we will consider this when designing an experiment.

Now we discuss the potential limitations and issues with respect to user-friendly
BCI applications. As in traditional ERP-based systems, this drone control application
requires a training session before use. During the session, a classifier for the online session
is constructed by applying a supervised algorithm to adjust the user’s ERP signal [55].
However, throughout this process, the subject is instructed to focus on a specific direction
button without any meaningful interaction. This calibration process is one of the major
factors that limits the current BCI systems’ progress [56]. Therefore, to achieve a practical
BCI system, we need to develop a BCI application that requires no calibration.

Various studies have been conducted to minimize or reduce the calibration process.
Lotte et al. proposed regularized canonical correlation analysis combined with a regular-
ized linear discriminant analysis in 2009 [57], and in 2011, Rivet et al. proposed an adaptive
training session to reduce the calibration time [58]. Recently, the convolutional neural
network (CNN) has been proven to be useful in optimizing EEG classification [59,60]
because of the model’s ability to capture local features, which should be sufficiently robust
to data shifts [61]. An ideal calibration-free algorithm should follow one of two paths:
(1) determine a set of generalized features that do not differ among subjects or (2) store
various forms of P300 signals for comparison [56]. In the future, we will investigate various
models (such as the CNN, random forest, and ensemble classifier) that fit our system and
collect a large sample of ERP data in VR and AR. Ultimately, we will develop a user-friendly
BCI drone control application that requires no training session.

Another aspect to improve in our experiment is to include an evaluation of the drone’s
free flight through user’s intention. In this experiment, the subjects had to move the
drone according to designated instructions to test their accuracy. If the result of a user’s
P300 classification matched the specified instruction, the drone moved in that direction;
otherwise, it did not. In fact, controlling the drone in the direction that the user wants it to
go is one of the important points in this system. Therefore, in the future, we need to test
the drone’s free flight performance through users’ intention.

The last issues are related to the basic concept of this study. Many P300 BCI appli-
cations have been implemented in a desktop environment (2D monitor screen). Hence,
a desktop-based BCI application may provide a different user experience. In this study, we
only compared VR with AR. Thus, investigating any differences in user feedback in the
three environments would provide insightful information that may be helpful in designing
a new BCI application. Furthermore, different control paradigms (e.g., SSVEP or motor
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imagery) may provide different experiences as well. Considering the methods used to com-
mand vary somewhat across control paradigms, VR and AR should be tested in different
BCI types as well. Finally, we recruited 20 subjects and used data from only 17. Although
this is not a small sample, more data will help strengthen the results, particularly for group
analysis (VR/AR preferred or 3D sickness, etc.). In the future, we will consider these issues
in further studies.

5. Conclusions

We developed a P300 BCI drone control application that worked with VR and AR.
To check the difference between and influence of the different environments, an online
experiment was conducted with 20 subjects and their opinions were collected using a ques-
tionnaire. We found that all subjects controlled a drone in the VR and AR environments
well and expressed the same positive opinions about both environments. These results
demonstrate that VR and AR do not differ in performance (including ERP patterns) and
user experience. Thus, we conclude that the P300 BCI paradigm is relatively stable and
works well in various situations.
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