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Abstract

A personalized approach based on a patient’s or pathogen’s unique genomic sequence is

the foundation of precision medicine. Genomic findings must be robust and reproducible,

and experimental data capture should adhere to findable, accessible, interoperable, and

reusable (FAIR) guiding principles. Moreover, effective precision medicine requires stan-

dardized reporting that extends beyond wet-lab procedures to computational methods. The
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BioCompute framework (https://w3id.org/biocompute/1.3.0) enables standardized reporting

of genomic sequence data provenance, including provenance domain, usability domain,

execution domain, verification kit, and error domain. This framework facilitates communica-

tion and promotes interoperability. Bioinformatics computation instances that employ the

BioCompute framework are easily relayed, repeated if needed, and compared by scientists,

regulators, test developers, and clinicians. Easing the burden of performing the aforemen-

tioned tasks greatly extends the range of practical application. Large clinical trials, precision

medicine, and regulatory submissions require a set of agreed upon standards that ensures

efficient communication and documentation of genomic analyses. The BioCompute para-

digm and the resulting BioCompute Objects (BCOs) offer that standard and are freely

accessible as a GitHub organization (https://github.com/biocompute-objects) following the

“Open-Stand.org principles for collaborative open standards development.” With high-

throughput sequencing (HTS) studies communicated using a BCO, regulatory agencies

(e.g., Food and Drug Administration [FDA]), diagnostic test developers, researchers, and

clinicians can expand collaboration to drive innovation in precision medicine, potentially

decreasing the time and cost associated with next-generation sequencing workflow

exchange, reporting, and regulatory reviews.

Introduction

Precision medicine requires the seamless production and consumption of genomic informa-

tion. The National Center for Biotechnology Information’s (NCBI) Database of Genotypes

and Phenotypes (dbGaP) [1] and ClinVar [2] illustrate the benefits of genomic data sharing

structures such as genome-wide association studies (GWAS). Linkage Disequilibrium Hub

(LD Hub), a centralized database of GWAS results for diseases and/or traits [3], is another

example of success. Although the importance of data sharing is established, recording, report-

ing, and sharing of analysis protocols are often overlooked. Standardized genomic data genera-

tion empowers clinicians, researchers, and regulatory agencies to evaluate the reliability of

biomarkers generated from complex analyses. Trustworthy results are increasingly critical as

genomics play a larger role in clinical practice. In addition, fragmented approaches to report-

ing impede the advancement of genomic data analysis techniques.

The price of high-throughput sequencing (HTS) decreased from US$20 per base in 1990 to

less than US$0.01 per base in 2011 [4]. Lower costs and greater accessibility resulted in a prolif-

eration of data and corresponding analyses that in turn advanced the field of bioinformatics.

Novel drug development and precision medicine research stand to benefit from innovative,

reliable, and accurate -omics-based (i.e., genomics, transcriptomics, proteomics) investigation

[5]. However, the availability of HTS has outpaced existing practices for reporting on the pro-

tocols used in data analysis.

Fast Healthcare Interoperability Resources (FHIR) [6,7] and the Global Alliance for Geno-

mics and Health (GA4GH) [8] capture and communicate genomic information within specific

community domains. The Common Workflow Language (CWL) [9] and research objects

(ROs) [10] capture repeatable and reproducible workflows in a domain agnostic manner. The

BioCompute framework (https://w3id.org/biocompute/1.3.0) combines these standards via a

BioCompute Object (BCO) [11] to report the provenance of genomic sequencing data in the

context of regulatory review and research. A BCO is designed to satisfy findable, accessible,

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000099 December 31, 2018 2 / 14

to Knowledge; CGI, computer graphic imaging;

CWL, Common Workflow Language; dbGaP,

Database of Geneotypes and Phenotypes; EHR,

electronic health record; EMBL-EBI, European

Molecular Biology Laboratory-European

Bioinformatics Institute; Env, environmental; FAIR,

findable, accessible, interoperable, and reusable;

FHIR, Fast Healthcare Interoperability Research;

FDA, Food and Drug Administration; GA4GH,

Global Alliance for Genomics and Health; GWAS,

genome-wide association studies; HIVE, High-

performance Integrated Virtual Environment; HPC,

high-performance computing; HL7, Health Level 7;

HTS, high-throughput sequencing; IEEE, Institute

of Electrical and Electronics Engineers; IO, input/

output; ISO, International Organization for

Standardization; JSON, JavaScript Object Notation;

LD Hub, Linkage Disequilibrium Hub; NCBI,

National Center for Biotechnology Information;

NCI, The National Cancer Institute; NGS, Next-

Generation Sequencing; NIH, National Institutes of

Health; ORCID, Open Researcher and Contributer

ID; OS, operating system; PAV, Provenance,

Authoring and Versioning ontology; Prereq,

prerequisite; PROV, provenance specification;

PROV-O, PROV ontology; ReSeqTB-UVP, The

Relational Sequencing Tuberculosis-Unified Variant

Pipeline; RO, research object; TCGA, The Cancer

Genome Atlas; URI, uniform resource identifier;

UVP, Unified Variant Pipeline; W3C, World Wide

Web Consortium; WGS, whole genome

sequencing; Xref, external reference.

https://w3id.org/biocompute/1.3.0
https://github.com/biocompute-objects
https://w3id.org/biocompute/1.3.0
https://doi.org/10.1371/journal.pbio.3000099


interoperable, and reusable (FAIR) data principles [12], ensuring that data and pipelines are

available for evaluation, validation, and verification [11,13,14]. The BCO also meets the

National Institutes of Health (NIH) strategic plan for data science [15], which states that the

quality of clinical data should be maintained at all stages of the research cycle, from generation

through the entire analysis process. These characteristics ensure that the BioCompute frame-

work is applicable in any context in which scientists are required to report on data provenance,

including large clinical trials or the development of a knowledge base. In the following text, we

describe how the BioCompute framework (see Fig 1) leverages and harmonizes FHIR,

GA4GH, CWL, and RO to create a unified standard for the collection and reporting of geno-

mic data.

Background

At a recent Academy of Medical Sciences symposium on preclinical biomedical research, par-

ticipants identified several measures for improving reproducibility. These include greater

openness and transparency, defined reporting guidelines, and better utilization of standards

and quality control measures [16]. Compromised reproducibility dissipates resources and hin-

ders progress in the life sciences, as highlighted by several other publications [17,18].

Researchers utilize two types of reproducibility—method reproducibility and result repro-

ducibility [19]. The first type, also called repeatability, is defined by providing detailed experi-

mental methods so others can repeat the procedure exactly. The second type, also called

replicability, is defined by achieving the same results as the original experiment by closely

adhering to the methods. Method reproducibility depends on a comprehensive description of

research procedures. CWL achieves this aim for computational methods by encouraging scien-

tists to adhere to a common language. This facilitates better methods for identification of

errors and locating deviances. ROs for workflows are built on this concept by using metadata

manifests that describe the experimental context, including packaging of the method, prove-

nance logs, and the associated codes and data [20].

Universally reproducible data is an aspirational goal, but challenges remain. Without widely

adopted repeatability and analytical standards for Next-Generation Sequencing (NGS)/HTS

studies, regulatory agencies, researchers, and industry cannot effectively collaborate to validate

results and drive the emergence of new fields [21]. Irreproducible results can cause major

delays and be a substantial expenditure for applicants submitting work for regulatory review

and may even be viewed as not trustworthy by third-party verification groups or regulatory

agencies. A large number of workflow management systems and bioinformatics platforms

have been developed to overcome this barrier, each with their own unique method to record

computational workflows, pipelines, versions, and parameters, but these efforts remain disor-

ganized and require harmonization to be fully effective. BioCompute enables clear communi-

cation of “what was done” and “why it was done” by tracking provenance and documenting

processes in a standard format irrespective of the platform or the programming language or

even the tool used.

Provenance of data

In order to be reproducible, the origin and history of research data must be maintained. Prove-

nance refers to a datum’s history starting from the original source, namely, its lineage. A line-

age graph can show the source of a datum in a database, data movement between databases or

computational processes, or data generated from a computational process. Complementary to

data lineage is a process audit. This is a historical trail that provides snapshots of intermediary

states, values for configurations and parameters, and traceability of stepwise analytical

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000099 December 31, 2018 3 / 14

https://doi.org/10.1371/journal.pbio.3000099


Fig 1. Schematic of BCO as a framework for advancing regulatory science by incorporating existing standards and introducing additional concepts that

include digital signature, usability domain, validation kit, and error domain. API, application programming interface; app, application; BCO, BioCompute

Object; CGI, computer graphic imaging; FHIR, Fast Healthcare Interoperability Research; GA4GH, Global Alliance for Genomics and Health; HL7, Health

Level 7; OS, operating system.

https://doi.org/10.1371/journal.pbio.3000099.g001
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processing [22]. Such audit trails enable an independent reviewer to effectively evaluate a

computational investigation. Both types of records gather critical provenance information to

ensure accuracy and validity of experimental results which can be presented as is or collected

into databases. Modern computational workflows produce large amounts of fine-grained but

useless trace records, whereas modern web developments facilitate easy data transformation

and copying. Combing and organizing the large volume of resulting material is a daunting

challenge. In the molecular biology field alone, there are hundreds of public databases that

curate, filter and annotate data to make them more useful. Only a handful of these retain the

“source” data; the remainder consist of secondary views of the source data or views of other

publications’ views [23]. Databases are challenged to accurately collect lineage and process rec-

ords while also maintaining granularity and “black-box” steps [24,25].

Provenance tracing issues have far-reaching effects on scientific work. Advancement

depends on confidence in each of the following—accuracy and validity of the data, process

used, and knowledge generated by research. Establishing trust is especially difficult when

reporting a complex, multistep process involving aggregation, modeling, and analysis [26].

Computational investigations require collaboration with adjacent and disparate fields to effec-

tively analyze a large volume of information. Effective collaboration requires a solution beyond

open data to establish open science. Provenance must be preserved and reported to promote

transparency and reproducibility in complex analyses [27]. Standards must be established to

reliably communicate genomic data between databases and individual scientists.

An active community has engaged in provenance standardization to achieve these aims

[28], culminating in the World Wide Web Consortium (W3C) provenance specification

(PROV) [29]. PROV Ontology (PROV-O) is used by FHIR and ROs and is based on the con-

cept of generating an entity target via an agent’s activity (see Fig 2). Workflow management

systems capture analytic processes, while bioinformatic platforms capture analysis details. In

combination, they provide a record of data provenance. Few, if any, systems and platforms

offer a consistent method to accurately capture all facets of the various roles assumed by an

agent who manipulates digital artifacts. BCO encourages adoption of standards such as

PROV-O (https://www.w3.org/TR/prov-o/) and Open Researcher and Contributor ID

(ORCID; https://orcid.org/) by defining how to recreate a complete history of what was com-

puted, how it was computed, by whom it was computed, and why it was computed. Also

known as the provenance domain, this section of BCOs incorporate the Provenance, Author-

ing and Versioning ontology (PAV, namespace http://purl.org/pav/) to capture “just enough”

information to track how data are authored, curated, retrieved, and processed among many

specific designations of an “agent.”

Key considerations for communication of provenance, analysis,

and results

Workflow management systems

Scientific workflows have emerged as a model for representing and managing complex scien-

tific computations [26]. Each step in a workflow specifies a process or computation to be exe-

cuted, linked with other steps by the data flow and dependencies. In addition, workflows

describe the mechanisms to carry out the steps in a distributed computing environment

[26,30]. Documentation of both analytic processes and provenance information is essential for

useful reporting [31].

Workflow management systems coordinate the sequential components in an analysis pipe-

line [30]. They also enable researchers to generate pipelines that can be executed locally on

institutional servers and remotely on the cloud [32]. Cloud infrastructure, high-performance
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computing (HPC) systems, and Big Data cluster-computation frameworks enhance data

reproducibility and portability (see S1 Text). Workflow-centric ROs with executable compo-

nents are an extension of these management systems [5,20]. Extensive reviews of workflow sys-

tems currently in use for bioinformatics have already been published [32–35], and we are not

recommending any one over the others. Currently, workflow management systems capture

provenance information but rarely in the PROV standard (https://www.w3.org/TR/prov-

overview/). Therefore, BCOs rely on existing standards that are themselves based on PROV

standards, like CWL to manage pipeline details, and ROs and FHIR to unify and enhance

interoperability.

Bioinformatics platforms

HTS technology is increasingly relevant in the clinical setting, with a growing need to store,

access, and compute more sequencing reads and other biomedical data [36]. The increase in

computational requirements has directed the scientists in this space to a call for standard usage

methods on integrated computing infrastructure, including storage and computational nodes.

This kind of standardization will minimize transfer costs and remove the bottlenecks found in

both downstream analyses and community communication of computational analysis results

[37]. For bioinformatics platforms, communication requirements include (a) recording all

Fig 2. W3C PROV data model overview, used in Fast Healthcare Interoperability Research (FHIR) and research object (RO). Adapted from http://

www.w3.org/TR/prov-primer/.

https://doi.org/10.1371/journal.pbio.3000099.g002
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analysis details such as parameters and input data sets and (b) sharing analysis details so that

others can understand and reproduce analyses.

HTC environments deliver large amounts of processing capacity over long periods of time.

These are ideal environments for long-term computation projects, such as those performed for

genomic research [38]. Most HTC platforms utilize distributed cloud-computing environ-

ments to support extra-large data set storage and computation, as well as hosting tools and

workflows for many biological analyses. Cloud-based infrastructures also reduce the “data

silo” phenomenon by converting data into reproducible formats that facilitate communication

(see S1 Text). Additionally, the National Cancer Institute (NCI) has initiated the Cloud Pilots

project in order to test a distributed computing approach for the multilevel, large-scale data

sets available on The Cancer Genome Atlas (TCGA) [39]. Several of the high-throughput [26],

cloud-based platforms that have been developed, including High-performance Integrated Vir-

tual Environment (HIVE) [37,40] and Galaxy [41]—along with commercial platforms from

companies like DNAnexus (dnanexus.com) and Seven Bridges Genomics (sevenbridges.com)

—have participated in the development of BioCompute. This participation ensures that while

using these bioinformatics platforms, users would not need to keep track of all of the informa-

tion needed to create a BCO. Such information will be automatically or semiautomatically col-

lected during the creation and running of a workflow.

The genomic community has come to acknowledge the necessity of data sharing and com-

munication to facilitate reproducibility and standardization [42,43]. Data sharing is crucial in

everything from long-term clinical treatments to public-health emergency response [44].

Extending bioinformatics platforms to include data provenance, standard workflow computa-

tion, and encoding results with available standards through BCO implementation will greatly

support the exchange of genomic data analysis methods for regulatory review.

Regulatory supporting standards

Assessment of data submitted in a regulatory application requires clear communication of

data provenance, computational workflows, and traceability. A regulatory reviewer must be

able to verify that sequencing was done appropriately and that pipelines and parameters were

applied correctly, and assess the final results. They must have the tools to critically evaluate the

validity of results such as allelic difference or variant call. Because of these requirements,

review of any clinical trial or any submission supported with HTS results requires considerable

time and expertise. Inclusion of a BCO with a regulatory submission would help to ensure that

data provenance is unambiguous and that the bioinformatics workflow is fully documented

[11,15,23,45,46].

To truly understand and compare computational tests, a standard method (like BCO)

requires tools to capture progress and to communicate the workflow and input/output data.

As the regulatory field progresses, methods have been developed and are being continually

refined to capture workflows and exchange data electronically [26]. See Fig 3 for BioCompute

extensions to HTS analysis that support data provenance and reproducibility.

BCOs and their harmonizing efforts

The BioCompute paradigm and BCOs were conceptualized to capture the specific details of

HTS computational analyses. The primary objectives of a BCO is to (a) harmonize and com-

municate HTS data and computational results as well as (b) encourage interoperability and the

reproducibility of bioinformatics protocols. Harmonizing HTS computational analyses is espe-

cially applicable to clarify the results from clinical trials and other genomic related data for reg-

ulatory submissions.
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Fig 3. Generic HTS platform schematic with proposed BCO integrations and extensions. BCO, BioCompute

Object; BD2K, Big Data to Knowledge; Desc., description; EMBL-EBI, European Molecular Biology Laboratory-

European Bioinformatics Institute; Env., environmental; FDA, Food and Drug Administration; FHIR, Fast Healthcare

Interoperability Research; GA4GH, Global Alliance for Genomics and Health; ID, identification; IO, input/output;

NCBI, National Center for Biotechnology Information; NGS, Next-Generation Sequencing; Prereq., prerequisite;

PROV, provenance specification; RO, research object; URI, uniform resource identifier; W3C, World Wide Web

Consortium; Xref, external reference.

https://doi.org/10.1371/journal.pbio.3000099.g003
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The BioCompute paradigm is novel in its combination of existing standards with the meth-

odologies and tools to evaluate an experiment both programmatically and empirically. The

BCO takes a snapshot of an experiment’s entire computational procedure adhering to FAIR

data guidelines. A BCO is findable and publicly accessible through the BCO portal, interopera-

ble by maintaining the computational context and data provenance, which also makes the

computational experiment reusable. Using this snapshot of the experiment, which can include

the range of acceptable experimental results in the verification kit, allows any other user to run

the exact experiment and produce the same results. Additionally, through the use of prove-

nance and usability domains, a reviewer can quickly decide whether the underlying scientific

principles merit approval or whether further review or reanalysis is required.

BCO specification

The BCO specification provides details about the BCO structure. BCOs are represented in

JavaScript Object Notation (JSON) formatted text. The JSON format was chosen because it is

both human and machine readable as well as easy to write and store. Top-level BCO fields

include BCO identifier, type, digital signature, and specification version. The rest of the infor-

mation is organized into several domains. Below is a brief summary of the type of information

present in the various domains. For additional details, please see the latest version of the BCO

specification (https://w3id.org/biocompute/releases).

Provenance domain includes fields such as structured name, version, inheritance, status,

contributors, license, and creation and modification dates. Usability domain provides a clear

description of the intended use of the BCO. Extension domain allows users to add content

related to other standards that enhances interoperability. Description domain provides details

such as keywords, external references, and human-readable descriptions and sequence of pipe-

line steps. The execution domain is machine-readable information that can be used to run the

entire pipeline. Parametric domain provides information on parameters that were changed

from default, and the input/output domain provides links to input and output files. The error

domain includes details that can be used to verify whether a particular BCO has been used as

intended and that any errors are within the acceptable range. Error domain along with verifi-

cation kit (such as in silico generated read files with known mutations) of the BCO allows veri-

fication of a workflow in different bioinformatics platforms, for example.

BCO implementation

The BCO stores information relating to every package and every script—including nuanced

data that are often not reported, like version number—in a human- and machine-readable for-

mat. A typical workflow analyzing HTS data may have a dozen iterations as different software,

packages, and scripts are used—each with their own parameters. Through trial and error, vari-

ous analyses and parameters are refined, which may yield new insights. If new insights are dis-

covered, a snapshot of the state that produced the result in question can be stored as a BCO.

To further increase the probability of successful replication, the BCO can even be verified

before it is sent out for replication. In this step, for example, a third-party can verify that all

input parameters across the entire analysis pipeline will generate robust and reliable output

within the usability domain described in the BCO.

The BCO is therefore far more efficient than any existing means of communicating HTS

analysis information. For example, a researcher has discovered a specific variant that corre-

sponds to a population being studied in her own country, and she is interested in learning the

relevance of this variant in other populations. By using a BCO, her entire analysis can be

quickly understood and repeated by her international colleagues, working with their own data
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sets, with high confidence in the ability to compare all of the results. If the researcher then uses

her data for a clinical trial that is subsequently submitted to the FDA for regulatory review, she

can be confident that all of the necessary details are included to successfully repeat her analysis.

The final result is a transparent, efficient process that may substantially reduce the amount of

time, money, and potential confusion involved with clarifying any details that might otherwise

have been overlooked.

In order to form a more cooperative community we have migrated all of the BioCompute

development to GitHub (https://github.com/biocompute-objects) and are following the Open-

Stand.org principles for collaborative open standards development (https://open-stand.org/

about-us/principles/). The BioCompute specification has been published as a GitHub reposi-

tory so that comments and issues can be addressed using the GitHub issue-tracking system.

The GitHub organization is setup to have a separate repository for each of the use case exam-

ples or implementations. Each of these will be able to link back to the specification, encourag-

ing parallelized development.

BCO use case: The relational sequencing tuberculosis-unified variant

pipeline

Several BCO examples are available in repositories under the BioCompute organization on

GitHub (https://github.com/biocompute-objects/). As an example, the Unified Variant Pipeline

(UVP) BCO is described. The complex UVP BCO captures a validated whole genome sequencing

(WGS) analysis pipeline, for The Relational Sequencing Tuberculosis (ReSeqTB) knowledge base.

This knowledge base is a one-stop resource for curated Mycobacterium tuberculosis genotypic and

phenotypic data that have been standardized and aggregated [47]. It is designed as a global

resource to rapidly predict M. tuberculosis antimicrobial resistance from raw sequence data. The

UVP is an Illumina-based consensus NGS pipeline comprising several bioinformatic tools with

defined thresholds designed to annotate and produce a list of mutations (SNPs and indels) in

comparison to a reference M. tuberculosis genome. The ReSeqTB platform also includes a data-

base containing phenotypic metadata from culture-based testing and molecular probe-based

genotypic data, all housed in a cloud environment enabling multitiered user access. In addition, a

web-based application containing public data is now freely available (www.reseqtb.org).

A publicly available BCO was developed and released for the UVP to standardize and com-

municate the process for inputting drug resistance profiles using sequence-based technologies.

The UVP BCO for ReSeqTB delineates the key aspects or domains in both human- and

machine- readable JSON file format. The current version of the UVP BCO can be found in the

public BCO GitHub (https://github.com/biocompute-objects/UVP-BCO). As multiple bioin-

formatic pipelines currently exist for M. tuberculosis, the BioCompute paradigm will allow

users, including regulators, to identify variables and the ways in which they differ between

pipelines, while assessing sources of error, in order to standardize and validate HTS results

required for patient management.

Discussion and conclusions

Robust and reproducible data analysis is key to successful personalized medicine and genomic

initiatives. Researchers, clinicians, administrators, and patients are all tied by the information

in electronic health records (EHRs) and databases. Current systems rely on data stored with

incomplete provenance records and in different computing languages. This has created a cum-

bersome and inefficient healthcare environment.

The initiatives discussed in this manuscript seek to make data and analyses communicable,

repeatable, and reproducible to facilitate collaboration and information sharing from data

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000099 December 31, 2018 10 / 14

https://github.com/biocompute-objects
https://open-stand.org/about-us/principles/
https://open-stand.org/about-us/principles/
https://github.com/biocompute-objects/
http://www.reseqtb.org/
https://github.com/biocompute-objects/UVP-BCO
https://doi.org/10.1371/journal.pbio.3000099


producers to data users. Without an infrastructure like BCO, increased HTS creates silos of

unusable data, making standardized regulation of reproducibility more difficult. To clear the

bottleneck for downstream analysis, the provenance (or origin) of data along with the analysis

details (e.g., parameters, workflow versions) must be tracked to ensure accuracy and validity.

The development of high-throughput, cloud-based infrastructures (such as DNAnexus, Gal-

axy, HIVE, and Seven Bridges Genomics) enables users to capture data provenance and store

the analyses in infrastructures that allow easy user interaction and creation of BCOs according

to BCO specifications described above and in the specification document (https://github.com/

biocompute-objects/BCO_Specification).

Platform-independent provenance has largely been ignored in HTS. Emerging standards

enable both representation of genomic information and linking of provenance information.

By harmonizing across these standards, provenance information can be captured across both

clinical and research settings, extending into the conceptual, experimental methods and the

underlying computational workflows. There are several use cases of such work, including sub-

mission for FDA diagnostic evaluations, the original use case for the BCO. Such standards also

enable robust and reproducible science and facilitate open science between collaborators, and

the development of these standards is meant to satisfy the needs of downstream consumers of

genomic information.

The need to reproducibly communicate HTS computational analyses and results has led to

collaboration among disparate industry groups. Through outreach activities—including con-

ferences and workshops—awareness of the importance of standardization, tracking, and

reproducibility methods has improved [9,48]. Standards like FHIR and ROs capture the

underlying data provenance to be shared in frameworks like GA4GH, enabling collaboration

around reproducible data and analyses. New computing standards like CWL increase the scal-

ability and reproducibility of data analysis. The BioCompute paradigm acts as a harmonizing

umbrella to facilitate human and machine communication, increasing interoperability in fields

that use genomic data. Detailed BioCompute specifications (available at: https://github.com/

biocompute-objects/BCO_Specification/) can be used to generate BCOs by any bioinformatics

platform that pulls underlying data and analysis provenance into its infrastructure. Ongoing

BCO pilots are currently working to streamline the flow, with the goal of providing users with

effortlessly reproducible bioinformatics analyses. As BCOs aim to simplify the review of data

that are essential for FDA approval, these pilots mirror clinical trials involving HTS data for

FDA submissions.

Subsequently, the incorporation of a verification test kit (a test for the range of input values

that will still produce the same output values) that evaluates the integrity of the BCO will

enable pipelines described by a BCO to be implemented on other servers. The verification test

kit would consist of simulated or real HTS data sets in which the expected results are known.

Each unique implementation of the BCO can then be tested using this verification kit to ensure

that it reports the expected results. This work will further the development of the error

domain, which describes the observed deviations from the expected results. We can arrive at

values in this domain by repeatedly running the pipeline on the verification kit data and testing

the analysis methods deployed. In this way, BioCompute can fulfill the goal of communicating

exactly what was done and also what it means scientifically.

Community involvement has grown to more than 300 contributors, participants, and col-

laborators from public institutions (including NCI, the FDA, and others), universities (includ-

ing George Washington University, University of Manchester, Harvard, and others), and

several private sector partners. The BioCompute effort has resulted in two publications, three

workshops, and FDA submissions. Efforts to integrate the BioCompute standard into existing

platforms mentioned above are underway. The standard has also moved to Working Group
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status within the Institute of Electrical and Electronics Engineers (IEEE; http://sites.ieee.org/

sagroups-2791/) and is expected to be an International Organization for Standardization

(ISO)-recognized standard. Finally, publicly accessible databases of crowd-sourced BCOs that

allow researchers or clinicians to reproduce workflows in a variety of contexts are also

planned.
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9. Peter Amstutz MRC, Nebojša Tijanić (editors), Brad Chapman, John Chilton, Michael Heuer, Andrey
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